1
|
Toh WK, Gan HM, Wong HL. Complete genome sequencing of Agrobacterium leguminum strain EL101 isolated from Khaya senegalensis tree bark using nanopore technology. Microbiol Resour Announc 2024; 13:e0029824. [PMID: 38934609 PMCID: PMC11256852 DOI: 10.1128/mra.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
We report the complete genome sequence of Agrobacterium leguminum strain EL101, isolated from the tree bark of Khaya senegalensis in Kampar, Perak, Malaysia, obtained using Q20+ Nanopore Sequencing chemistry. The assembled genome has a total length of 5,324,685 bp, comprising a circular chromosome, a linear chromid, and two non-Ti circular plasmids.
Collapse
Affiliation(s)
- Wai Keat Toh
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Han Ming Gan
- Patriot Biotech Sdn. Bhd, Bandar Sunway, Selangor, Malaysia
| | - Hann Ling Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| |
Collapse
|
2
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Tamang A, Swarnkar M, Kumar P, Kumar D, Pandey SS, Hallan V. Endomicrobiome of in vitro and natural plants deciphering the endophytes-associated secondary metabolite biosynthesis in Picrorhiza kurrooa, a Himalayan medicinal herb. Microbiol Spectr 2023; 11:e0227923. [PMID: 37811959 PMCID: PMC10715050 DOI: 10.1128/spectrum.02279-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Picrorhiza kurrooa is a major source of picrosides, potent hepatoprotective molecules. Due to the ever-increasing demands, overexploitation has caused an extensive decline in its population in the wild and placed it in the endangered plants' category. At present plant in-vitro systems are widely used for the sustainable generation of P. kurrooa plants, and also for the conservation of other commercially important, rare, endangered, and threatened plant species. Furthermore, the in-vitro-generated plants had reduced content of therapeutic secondary metabolites compared to their wild counterparts, and the reason behind, not well-explored. Here, we revealed the loss of plant-associated endophytic communities during in-vitro propagation of P. kurrooa plants which also correlated to in-planta secondary metabolite biosynthesis. Therefore, this study emphasized to consider the essential role of plant-associated endophytic communities in in-vitro practices which may be the possible reason for reduced secondary metabolites in in-vitro plants.
Collapse
Affiliation(s)
- Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
4
|
Moraitou M, Forsythe A, Fellows Yates JA, Brealey JC, Warinner C, Guschanski K. Ecology, Not Host Phylogeny, Shapes the Oral Microbiome in Closely Related Species. Mol Biol Evol 2022; 39:msac263. [PMID: 36472532 PMCID: PMC9778846 DOI: 10.1093/molbev/msac263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species.
Collapse
Affiliation(s)
- Markella Moraitou
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Adrian Forsythe
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
| | - James A Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, 07745 Jena, Germany
| | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Science for Life Laboratory, 75237 Uppsala, Sweden
| |
Collapse
|
5
|
Kolytaitė A, Vaitiekūnaitė D, Antanynienė R, Baniulis D, Frercks B. Monilinia fructigena Suppressing and Plant Growth Promoting Endophytic Pseudomonas spp. Bacteria Isolated from Plum. Microorganisms 2022; 10:microorganisms10122402. [PMID: 36557655 PMCID: PMC9781308 DOI: 10.3390/microorganisms10122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Brown rot caused by Monilinia spp. fungi causes substantial losses in stone and pome fruit production. Reports suggest that up to 90% of the harvest could be lost. This constitutes an important worldwide issue in the food chain that cannot be solved by the use of chemical fungicides alone. Biocontrol agents (BCAs) based on microorganisms are considered a potential alternative to chemical fungicides. We hypothesized that endophytic bacteria from Prunus domestica could exhibit antagonistic properties towards Monilinia fructigena, one of the main causative agents of brown rot. Among the bacteria isolated from vegetative buds, eight isolates showed antagonistic activity against M. fructigena, including three Pseudomonas spp. isolates that demonstrated 34% to 90% inhibition of the pathogen's growth when cultivated on two different media in vitro. As the stimulation of plant growth could contribute to the disease-suppressing activity of the potential BCAs, plant growth promoting traits (PGPTs) were assessed for bacterial isolates with M. fructigena-suppressing activity. While all isolates were capable of producing siderophores and indole-3-acetic acid (IAA), fixating nitrogen, mineralizing organic phosphate, and solubilizing inorganic phosphate and potassium, only the Pseudomonas spp. isolates showed 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Overall, our study paves the way for the development of an eco-friendly strategy for managing M. fructigena pathogens by using BCAs including Pseudomonas spp. bacteria, which could also serve as growth stimulators.
Collapse
Affiliation(s)
- Augustina Kolytaitė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
| | - Dorotėja Vaitiekūnaitė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepu Str. 1, 53101 Girionys, Kaunas reg., Lithuania
| | - Raminta Antanynienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
- Correspondence:
| | - Birutė Frercks
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, 54333 Babtai, Kaunas reg., Lithuania
| |
Collapse
|
6
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
7
|
Ashrafi S, Kuzmanović N, Patz S, Lohwasser U, Bunk B, Spröer C, Lorenz M, Elhady A, Frühling A, Neumann-Schaal M, Verbarg S, Becker M, Thünen T. Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis viciifolia) Show Different Plant Colonization Strategies. Microbiol Spectr 2022; 10:e0109922. [PMID: 36005754 PMCID: PMC9603459 DOI: 10.1128/spectrum.01099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Root nodules of legume plants are primarily inhabited by rhizobial nitrogen-fixing bacteria. Here, we propose two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia), as shown by core-gene phylogeny, overall genome relatedness indices, and pan-genome analysis. Mesorhizobium onobrychidis sp. nov. actively induces nodules and achieves atmospheric nitrogen and carbon dioxide fixation. This species appears to be depleted in motility genes and is enriched in genes for direct effects on plant growth performance. Its genome reveals functional and plant growth-promoting signatures, like a large unique chromosomal genomic island with high density of symbiotic genetic traits. Onobrychidicola muellerharveyae gen. nov. sp. nov. is described as a type species of the new genus Onobrychidicola in Rhizobiaceae. This species comprises unique genetic features and plant growth-promoting traits (PGPTs), which strongly indicate its function in biotic stress reduction and motility. We applied a newly developed bioinformatics approach for in silico prediction of PGPTs (PGPT-Pred), which supports the different lifestyles of the two new species and the plant growth-promoting performance of M. onobrychidis in the greenhouse trial. IMPORTANCE The intensive use of chemical fertilizers has a variety of negative effects on the environment. Increased utilization of biological nitrogen fixation (BNF) is one way to mitigate those negative impacts. In order to optimize BNF, suitable candidates for different legume species are required. Despite intensive search for new rhizobial bacteria associated with legumes, no new rhizobia have recently been identified from sainfoin (Onobrychis viciifolia). Here, we report on the discovery of two new rhizobial species associated with sainfoin, which are of high importance for the host and may help to increase sustainability in agricultural practices. We employed the combination of in silico prediction and in planta experiments, which is an effective way to detect promising plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Samad Ashrafi
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Nemanja Kuzmanović
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany
| | - Sascha Patz
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, Algorithms in Bioinformatics, Tübingen, Germany
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Genebank Department, Seeland, Germany
| | - Boyke Bunk
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Maria Lorenz
- Technische Universität Braunschweig, Braunschweig, Germany
| | - Ahmed Elhady
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Anja Frühling
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Matthias Becker
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Torsten Thünen
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| |
Collapse
|
8
|
Mafakheri H, Taghavi SM, Khezerpour K, Kuzmanović N, Osdaghi E. Genomic Analyses of Rose Crown Gall-Associated Bacteria Revealed Two New Agrobacterium Species: Agrobacterium burrii sp. nov. and Agrobacterium shirazense sp. nov. PHYTOPATHOLOGY 2022; 112:1208-1213. [PMID: 34856816 DOI: 10.1094/phyto-11-21-0463-sc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Agrobacterium tumefaciens species complex contains a set of diverse bacterial strains, most of which are well known for their pathogenicity on agricultural plants causing crown gall diseases. Members of A. tumefaciens species complex are classified into several taxonomically distinct lineages called "genomospecies" (13 genomospecies until early 2021). Recently, two genomospecies, G19 (strains RnrT, Rew, and Rnw) and G20 (strains OT33T and R13) infecting Rosa sp. plants in Iran, were described based on biochemical and molecular-phylogenetic data. Whole genome sequence-based core-genome phylogeny followed by average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) calculations performed in this study suggested that genomospecies G19 and G20 could be described as two novel and standalone species. In the phylogenetic tree, these two new genomospecies were clustered separately from other genomospecies/species of A. tumefaciens species complex. Moreover, both ANI and dDDH indices between the G19/G20 strains and other Rhizobiaceae members are clearly below the accepted thresholds for prokaryotic species description. Hence, Agrobacterium burrii sp. nov. is proposed to encompass the G19 strains, with RnrT = CFBP 8705T = DSM 112541T as type strain. Agrobacterium shirazense sp. nov. is also proposed to include G20 strains, with OT33T = CFBP 8901T = DSM 112540T as type strain.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Hamzeh Mafakheri
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Kamran Khezerpour
- Division of Plant Pathology, Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Nemanja Kuzmanović
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants (JKI), Institute for Plant Protection in Horticulture and Forests, 38104 Braunschweig, Germany
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
9
|
Zhu D, Niu Y, Fan K, Zhang F, Wang Y, Wang G, Zheng S. Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148294. [PMID: 34126490 DOI: 10.1016/j.scitotenv.2021.148294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) deficiency in soil is linked to its low content in edible crops, resulting in adverse impacts on the health of 15% of the global population. The crop mainly absorbs oxidized selenate and selenite from soil, then converts them into organic Se. However, the role of Se-oxidizing bacteria in soil Se oxidation, Se bioavailability and Se absorption into plants remains unclear. The strain Agrobacterium sp. T3F4, isolated from seleniferous soil, was able to oxidize elemental Se into selenite under pure culture conditions. The green fluorescent protein (gfp)-gene-marked strain (T3F4-GFP) and elemental Se or selenite (5 mg·kg-1) were added to pak choi (Brassica campestris ssp. chinensis) pot cultures. Observation of the fluorescence and viable counting indicated that GFP-expressing bacterial cells steadily colonized the soil in the pots and the leaves of the pak choi, reaching up to 6.6 × 106 and 2.0 × 105 CFU g-1 at 21 days post cultivation, respectively. Moreover, the total Se content (mostly organic Se) was significantly increased in the pak choi under T3F4 inoculated pot culture, with elemental Se(0) being oxidized into Se(IV), and soil Se(IV) being dissolved before being absorbed by the crop. After strain T3F4 was inoculated, no significant differences in microbial diversity were observed in the soils and roots, whereas the abundance of Rhizobium spp. was significantly increased. To our knowledge, this is the first time that Se-oxidizing Agrobacterium sp. T3F4 has been found to steadily colonize soil and plant tissues, and that its addition to soil increases the absorption of Se in plants. This study provides a potential strategy for Se biofortification.
Collapse
Affiliation(s)
- Dahui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yaxin Niu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Keke Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fujun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Hernández I, Taulé C, Pérez-Pérez R, Battistoni F, Fabiano E, Rivero D, Nápoles MC. Endophytic rhizobia promote the growth of Cuban rice cultivar. Symbiosis 2021. [DOI: 10.1007/s13199-021-00803-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Youseif SH, Abd El-Megeed FH, Abu Zeid AZA, Abd-Elrahman RA, Mohamed AH, Khalifa MA, Saleh SA. Alleviating the deleterious effects of soil salinity and alkalinity on faba bean ( Vicia faba L.) production using Rhizobium/Agrobacterium inoculants. ARCHIVES OF AGRONOMY AND SOIL SCIENCE 2021; 67:577-593. [DOI: 10.1080/03650340.2020.1849626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/07/2020] [Indexed: 09/02/2023]
Affiliation(s)
- Sameh H. Youseif
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Fayrouz H. Abd El-Megeed
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Abu Zeid A. Abu Zeid
- Food Legumes Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Rehab A.M. Abd-Elrahman
- Food Legumes Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Akram H. Mohamed
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed A. Khalifa
- Maize Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Saleh A. Saleh
- Agricultural Microbiology Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
12
|
Flores-Félix JD, Menéndez E, Ramírez-Bahena MH, Peix A, García-Fraile P, Velázquez E. Agrobacterium cavarae sp. nov., isolated from maize ( Zea mays L.) roots. Int J Syst Evol Microbiol 2020; 70:5512-5519. [PMID: 32910749 DOI: 10.1099/ijsem.0.004441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).
Collapse
Affiliation(s)
- José David Flores-Félix
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Esther Menéndez
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), University of Évora, Évora, Portugal
| | | | - Alvaro Peix
- Unidad Asociada Grupo de Interacción planta-microorganismo Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.,Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Encarna Velázquez
- Unidad Asociada Grupo de Interacción planta-microorganismo Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.,Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. Int J Syst Evol Microbiol 2020; 70:4233-4244. [PMID: 32568030 DOI: 10.1099/ijsem.0.004278] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium strains are associated with soil, plants and animals, and known mainly by their pathogenicity. We studied 14 strains isolated from nodules of healthy soybean and common bean plants in Brazil, Mexico, Ecuador and Mozambique. Sequence analysis of the 16S rRNA gene positioned the strains as Agrobacterium, but with low phylogenetic resolution. Multilocus sequence analysis (MLSA) of three partial housekeeping genes (glnII, gyrB and recA) positioned the strains in four distinct clades, with Agrobacterium pusense, Agrobacterium deltaense, Agrobacterium radiobacter and Agrobacterium sp. genomospecies G1. Analysis by BOX-PCR revealed high intraspecies diversity. Genomic analysis of representative strains of the three clades indicated that they carry the protelomerase telA gene, and MLSA analysis with six complete housekeeping genes (atpD, glnII, gyrB, recA, rpoB and thrC), as well as average nucleotide identity (less than 90 % with closest species) and digital DNA-DNA hybridization (less than 41 % with closest species) revealed that strain CNPSo 675T and Agrobacterium sp. genomospecies G1 compose a new species. Other phenotypic and genotypic characteristics were determined for the new clade. Although not able to re-nodulate the host, we hypothesize that several strains of Agrobacterium are endophytes in legume nodules, where they might contribute to plant growth. Our data support the description of the CNPSo 675T and Agrobacterium sp. genomospecies G1 strains as a new species, for which the name Agrobacterium fabacearum is proposed. The type strain is CNPSo 675T (=UMR 1457T=LMG 31642T) and is also deposited in other culture collections.
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Anderson José Scherer
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- CNPq, SHIS QI 1 Conjunto B, Blocos A, B, C and D, Lago Sul, 71605-001, Brasília, Federal District, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Chibeba AM, Pereira CS, Antunes JEL, Ribeiro RA, de Almeida Lopes AC, Gomes RLF, Hungria M, Araujo ASF. Polyphasic characterization of nitrogen-fixing and co-resident bacteria in nodules of Phaseolus lunatus inoculated with soils from Piauí State, Northeast Brazil. Symbiosis 2020. [DOI: 10.1007/s13199-020-00672-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Flores-Félix JD, Menéndez E, Peix A, García-Fraile P, Velázquez E. History and current taxonomic status of genus Agrobacterium. Syst Appl Microbiol 2020; 43:126046. [DOI: 10.1016/j.syapm.2019.126046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
16
|
Liu KA, Gai Y, Fayyaz A, Zhang G, Liu M, Wang Z. Genomic and morphological characteristics of the cold-adapted bacteria Mycetocola saprophilus provide insights into the pathogenesis of soft rot in Flammulina velutipes. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1808068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Kun-ang Liu
- Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
- Department of Edible Fungi, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, P. R. China
| | - Yunpeng Gai
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Amna Fayyaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Genwei Zhang
- Department of Edible Fungi, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, P. R. China
| | - Meng Liu
- Department of Edible Fungi, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, P. R. China
| | - Zhenzhong Wang
- Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
17
|
Mafakheri H, Taghavi SM, Puławska J, de Lajudie P, Lassalle F, Osdaghi E. Two Novel Genomospecies in the Agrobacterium tumefaciens Species Complex Associated with Rose Crown Gall. PHYTOPATHOLOGY 2019; 109:1859-1868. [PMID: 31298994 DOI: 10.1094/phyto-05-19-0178-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we explored the pathogenicity and phylogenetic position of Agrobacterium spp. strains isolated from crown gall tissues on annual, perennial, and ornamental plants in Iran. Of the 43 strains studied, 10 strains were identified as Allorhizobium vitis (formerly Agrobacterium vitis) using the species-specific primer pair PGF/PGR. Thirty-three remaining strains were studied using multilocus sequence analysis of four housekeeping genes (i.e., atpD, gyrB, recA, and rpoB), from which seven strains were identified as A. larrymoorei and one strain was identified as A. rubi (Rer); the remaining 25 strains were scattered within the A. tumefaciens species complex. Two strains were identified as genomospecies 1 (G1), seven strains were identified as A. radiobacter (G4), seven strains were identified as A. deltaense (G7), two strains were identified as A. nepotum (G14), and one strain was identified as "A. viscosum" (G15). The strains Rnr, Rnw, and Rew as well as the two strains OT33 and R13 all isolated from rose and the strain Ap1 isolated from apple were clustered in three atypical clades within the A. tumefaciens species complex. All but eight strains (i.e., Nec10, Ph38, Ph49, fic9, Fic72, R13, OT33, and Ap1) were pathogenic on tomato and sunflower seedlings in greenhouse conditions, whereas all but three strains (i.e., fic9, Fic72, and OT33) showed tumorigenicity on carrot root discs. The phylogenetic analysis and nucleotide diversity statistics suggested the existence of two novel genomospecies within the A. tumefaciens species complex, which we named "G19" and "G20." Hence, we propose the strains Rew, Rnw, and Rnr as the members of "G19" and the strains R13 and OT33 as the members of G20, whereas the phylogenetic status of the atypical strain Ap1 remains undetermined.
Collapse
Affiliation(s)
- Hamzeh Mafakheri
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Joanna Puławska
- Research Institute of Horticulture, 96-100 Skierniewice, Poland
| | - Philippe de Lajudie
- IRD (Institut de recherche pour le développement), Campus de Baillarguet TA A-82/J, Laboratoire des Symbioses Tropicales et Méditerranéennes, 34398 Montpellier Cédex 5, France
| | - Florent Lassalle
- Department of Infectious Disease Epidemiology, St. Mary's Hospital Campus, Imperial College London, London W2 1NY, United Kingdom
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
18
|
International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the meeting by video conference, 11 July 2018. Int J Syst Evol Microbiol 2019; 69:1835-1840. [DOI: 10.1099/ijsem.0.003335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Draft Genome Sequence of Agrobacterium deltaense Strain CNPSo 3391, Isolated from a Soybean Nodule in Mozambique. Microbiol Resour Announc 2019; 8:MRA01675-18. [PMID: 30863827 PMCID: PMC6406117 DOI: 10.1128/mra.01675-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium deltaense strain CNPSo 3391 was isolated from a soybean nodule in Mozambique. Its genome size was estimated at 4,926,588 bp. Agrobacterium deltaense strain CNPSo 3391 was isolated from a soybean nodule in Mozambique. Its genome size was estimated at 4,926,588 bp. This isolate carries several coding sequences for stress tolerance, but no identifiable nodulation or virulence genes. Possible ecological roles of bacteria isolated from legume nodules and closely related to Agrobacterium are discussed.
Collapse
|
20
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363-3368. [DOI: 10.1099/ijsem.0.002974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
21
|
Zahradník J, Nunvar J, Pařízková H, Kolářová L, Palyzová A, Marešová H, Grulich M, Kyslíková E, Kyslík P. Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst Appl Microbiol 2018; 41:184-190. [PMID: 29402492 DOI: 10.1016/j.syapm.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
Two non-pathogenic strains R89-1 and R90T isolated from poppy seed (Papaver somniferum L.) wastes were phenotypically and genotypically characterized. Multilocus sequence analysis (MLSA) was conducted with six genes (atpD, glnA, gyrB, recA, rpoB, 16S rRNA). The strains represented a new species which clustered with Agrobacterium rubi NBRC 13261T and Agrobacterium skierniewicense Ch11T type strains. MLSA was further accompanied by whole-genome phylogeny, in silico DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses for both strains. ANI and dDDH values were deep below the species delineation threshold. Phenotypic features of the novel strains unequivocally allowed their differentiation from all other Agrobacterium species. Unlike other agrobacteria, the strains were salt sensitive and were able to biotransform morphine alkaloids. The dominant cellular fatty acids are 18:1 w7c, 16:0 and 12:0 aldehyde/16:1 iso I/14:0 3OH summed in feature 2 and the major respiratory quinine is Q-10 (87%). The DNA G+C content is 56mol%. Microbial community analysis indicated probable association with P. somniferum plant material. Altogether, these characteristics showed that strains R90T and R89-1 represent a new species of the genus Agrobacterium which we propose to name Agrobacterium bohemicum. The type strain of A. bohemicum is R90T (=CCM 8736T=DSM 104667T).
Collapse
Affiliation(s)
- Jiří Zahradník
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic; Laboratory of Biomolecular Recognition, Institute of Biotechnology, v.v.i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic; Faculty of Science, Charles University Prague, Viničná 5, CZ-128 44 Prague 2, Czech Republic.
| | - Jaroslav Nunvar
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University Prague, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Hana Pařízková
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, v.v.i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Lucie Kolářová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, v.v.i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Helena Marešová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Michal Grulich
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Eva Kyslíková
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Pavel Kyslík
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| |
Collapse
|