1
|
Wang S, Li Q, Ye C, Ma W, Sun Y, Zhao B, Zeng W, Yue Z, Li L, Li D. Effects of mulch films with different thicknesses on the microbial community of tobacco rhizosphere soil in Yunnan laterite. Front Microbiol 2024; 15:1458470. [PMID: 39376702 PMCID: PMC11456438 DOI: 10.3389/fmicb.2024.1458470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
The mulch film (MF) management model of the agricultural field affects the physical and chemical properties of soil (PCPS) and the structure of the microorganism community; however, studies on the relationship between the rhizosphere microorganism community structure and the thickness of MF are still limited. To understand the interactions among the MF thickness, PCPS, and rhizosphere microorganism, a study was conducted by using an integrated metagenomic strategy, where tobacco rhizosphere soil was treated with four commonly representative and used thicknesses of MFs (0.004, 0.006, 0.008, and 0.010 mm) in Yunnan laterite. The results showed that agronomic traits such as the tobacco plant height (TPH), leaf number (LN), fresh leaf weight (FLW), and dry leaf weight (DLW) were significantly (p < 0.01) improved in the field mulched with the thickest film (0.010 mm) compared with the exposed field (CK), and there was a 6.81 and 5.54% increase in the FLW and TPH, separately. The correlation analyses revealed a significant positive correlation of the MF thickness with the soil water content (SWC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP; all p < 0.01), while the MF thickness was negatively correlated with the soil temperature (ST; p < 0.01). In addition, the community structure of the rhizosphere soil bacteria was significantly changed overall by the MF thickness, which also interfered with the function of the rhizosphere soil bacteria. The correlation analyses also showed that the abundance of Bradyrhizobium and Nitrospira was positively correlated with the MF thickness, while the abundance of Sphinsinomonas and Massilia was negatively correlated with it. This indicated that with the increase of the MF thickness, the ability of the rhizosphere soil to utilize N and remove harmful molecules was strengthened, while the capacity of the rhizosphere soil to degrade pollutants was greatly reduced. These findings provide additional insights into the potential risks of the application of different thicknesses of MFs, particularly concerning the PCPS and soil microbial communities.
Collapse
Affiliation(s)
- Shuaibing Wang
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Qiuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Changbing Ye
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Wenqing Ma
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yandong Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Bin Zhao
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
| | - Weiqing Zeng
- Agricultural Environmental Protection and Rural Energy Workstation, Yuxi Agriculture and Rural Bureau, Yuxi, China
| | - Zhiqiang Yue
- Agricultural Environmental Protection and Rural Energy Workstation, Yuxi Agriculture and Rural Bureau, Yuxi, China
| | - Lan Li
- School of Geography and Land Engineering, Yuxi Normal University, Yuxi, China
| | - Dandan Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Wang W, Zheng M, Shen Z, Meng H, Chen L, Li T, Lin F, Hong L, Lin Z, Ye T, Guo Y, He E. Tolerance enhancement of Dendrobium officinale by salicylic acid family-related metabolic pathways under unfavorable temperature. BMC PLANT BIOLOGY 2024; 24:770. [PMID: 39135170 PMCID: PMC11320864 DOI: 10.1186/s12870-024-05499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Unfavorable temperatures significantly constrain the quality formation of Dendrobium officinale, severely limiting its food demand. Salicylic acid (SA) enhances the resistance of D. officinale to stress and possesses various analogs. The impact and mechanism of the SA family on improving the quality of D. officinale under adverse temperature conditions remains unclear. RESULTS Combined with molecular docking analysis, chlorophyll fluorescence and metabolic analysis after treatments with SA analogues or extreme temperatures are performed in this study. The results demonstrate that both heat and cold treatments impede several main parameters of chlorophyll fluorescence of D. officinale, including the ΦPSII parameter, a sensitive growth indicator. However, this inhibition is mitigated by SA or its chemically similar compounds. Comprehensive branch imaging of ΦPSII values revealed position-dependent improvement of tolerance. Molecular docking analysis using a crystal structure model of NPR4 protein reveals that the therapeutic effects of SA analogs are determined by their binding energy and the contact of certain residues. Metabolome analysis identifies 17 compounds are considered participating in the temperature-related SA signaling pathway. Moreover, several natural SA analogs such as 2-hydroxycinnamic acid, benzamide, 2-(formylamino) benzoic acid and 3-o-methylgallic acid, are further found to have high binding ability to NPR4 protein and probably enhance the tolerance of D. officinale against unfavorable temperatures through flavone and guanosine monophosphate degradation pathways. CONCLUSIONS These results reveal that the SA family with a high binding capability of NPR4 could improve the tolerance of D. officinale upon extreme temperature challenges. This study also highlights the collaborative role of SA-related natural compounds present in D. officinale in the mechanism of temperature resistance and offers a potential way to develop protective agents for the cultivation of D. officinale.
Collapse
Affiliation(s)
- Wenhua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Mingqiong Zheng
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Zhijun Shen
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Hongyan Meng
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Lianghua Chen
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Tiantian Li
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Fucong Lin
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Liping Hong
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Zhikai Lin
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Ting Ye
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China
| | - Enming He
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, Fujian, China.
| |
Collapse
|
3
|
Guo G, Chen S, Zhang D, Wang J, Lei M, Ju T, Wei H. Influence of biochar on the arsenic phytoextraction potential of Pteris vittata in soils from an abandoned arsenic mining site. CHEMOSPHERE 2024; 352:141389. [PMID: 38336043 DOI: 10.1016/j.chemosphere.2024.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Biochar (BC) has a strong potential for activating arsenic (As) in soil; thus, the phytoremediation efficiency of As-polluted soils is enhanced with Pteris vittata L. A pot experiment was conducted to investigate the potential of BC to assist in phytoremediation with P. vittata. The effects of BC on physicochemical properties, available As, enzyme activities, and the bacterial community in the rhizosphere soil were investigated, and the biomass, physiology, and As uptake of P. vittata were analyzed. The results indicated that applying BC facilitated available As in the P. vittata rhizosphere soil, and the phytoremediation efficiency percentage increased in the As-polluted soils, such as 3.80% and 8.01% under the 2% and 5% BC treatments compared to the control, respectively. Phytoremediation with P. vittata and BC significantly improved soil organic matter content, available N, P, and K, enzyme activities, and the bacterial community. BC promoted Streptomyces (26.6-54.2%) and Sphingomonas (12.3-30.8%) abundance which regulated the growth and As uptake by P. vittata. Moreover, applying BC increased the biomass, and As uptake by P. vittata. Overall, BC strengthened the phytoremediation of As-polluted soils by improving soil pH, nutrient concentrations, enzyme activities, bacterial community structure, and soil arsenic activation, growth, and absorption by P. vittata.
Collapse
Affiliation(s)
- Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiqi Chen
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; HongHe University, Mengzi, 661100, Yunnan, China.
| | - Jing Wang
- Kunming University of Science and Technology, Kunming, 650500, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tienan Ju
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Wei
- Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
4
|
Zhao W, Ban Y, Su Z, Li S, Liu X, Guo Q, Ma P. Colonization Ability of Bacillus subtilis NCD-2 in Different Crops and Its Effect on Rhizosphere Microorganisms. Microorganisms 2023; 11:microorganisms11030776. [PMID: 36985349 PMCID: PMC10058285 DOI: 10.3390/microorganisms11030776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Bacillus subtilis strain NCD-2 is a promising biocontrol agent for soil-borne plant diseases and shows potential for promoting the growth of some crops. The purposes of this study were to analyze the colonization ability of strain NCD-2 in different crops and reveal the plant growth promotion mechanism of strain NCD-2 by rhizosphere microbiome analysis. qRT-PCR was used to determine the populations of strain NCD-2, and microbial communities’ structures were analyzed through amplicon sequencing after application of strain NCD-2. Results demonstrated that strain NCD-2 had a good growth promotion effect on tomato, eggplant and pepper, and it was the most abundant in eggplant rhizosphere soil. There were significantly differences in the types of beneficial microorganisms recruited for different crops after application of strain NCD-2. PICRUSt analysis showed that the relative abundances of functional genes for amino acid transport and metabolism, coenzyme transport and metabolism, lipid transport and metabolism, inorganic ion transport and metabolism, and defense mechanisms were enriched in the rhizospheres of pepper and eggplant more than in the rhizospheres of cotton, tomato and maize after application of strain NCD-2. In summary, the colonization ability of strain NCD-2 for five plants was different. There were differences in microbial communities’ structure in rhizosphere of different plants after application of strain NCD-2. Based on the results obtained in this study, it was concluded that the growth promoting ability of strain NCD-2 were correlated with its colonization quantity and the microbial species it recruited.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinggang Guo
- Correspondence: (Q.G.); (P.M.); Tel.: +86-312-5915671 (Q.G.); Tel./Fax: +86-312-5915678 (P.M.)
| | - Ping Ma
- Correspondence: (Q.G.); (P.M.); Tel.: +86-312-5915671 (Q.G.); Tel./Fax: +86-312-5915678 (P.M.)
| |
Collapse
|
5
|
Du Y, Zhang Q, Yu M, Jiao B, Chen F, Yin M. Sodium alginate-based composite microspheres for controlled release of pesticides and reduction of adverse effects of copper in agricultural soils. CHEMOSPHERE 2023; 313:137539. [PMID: 36521750 DOI: 10.1016/j.chemosphere.2022.137539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Excessive copper (Cu) concentrations pose significant health risks to both plants and humans. In this study, sodium alginate (SA)-gelatin (GEL)-polyvinyl pyrrolidone (PVP)- embedded dinotefuran (DIN) microspheres were prepared using spray-drying technology. The loading content and encapsulation efficiency of optimal microspheres determined by physical modifications were 19.77% and 99.32%, respectively. In addition, the microspheres showed variable stimuli-responsive controlled release capacities in different temperatures and types of soil, as well as showed better control efficiency of larvae of Protaetia brevitarsis at pesticide application in the early stage, with the potential ability to control pest outbreaks at high temperatures. In addition, blank microspheres improved the growth and physiological activity of cucumber seedlings, reduced copper content in leaves, increased soil nutrient content, and prevented soil acidification. Further, the use of blank microspheres increased the relative abundance of soil beneficial functional bacteria communities, which mediate heavy metal (HM) immobilization/tolerance and promote plant growth. Redundancy analysis (RDA) and Spearman correlation analysis showed that these beneficial functional bacteria were mainly positively correlated with soil EC, A-N, and N-N. In summary, this study showed that the technique of combining physically modified carrier materials with pesticides has the potential to reduce Cu contamination in the surrounding agricultural soil during pesticide application, thereby reducing Cu uptake by crops.
Collapse
Affiliation(s)
- Yu Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qizhen Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Manli Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Jiao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuliang Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingming Yin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang Y, Yang Y, Yu L, Wang A, Xue C, Zhang J, Duan A, Zhao M. Composition and characteristics of soil microbial communities in cotton fields with different incidences of Verticillium wilt. PLANT SIGNALING & BEHAVIOR 2022; 17:2034271. [PMID: 35175867 PMCID: PMC9746606 DOI: 10.1080/15592324.2022.2034271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/13/2023]
Abstract
Soil microorganisms could affect the growth of plants and play an important role in indicating the change of soil environment. Cotton Verticillium wilt is a serious soil borne disease. This study aimed to analyze the community characteristics of soil microorganisms in cotton fields with different incidences of Verticillium wilt, so as to provide theoretical guidance for the prevention and control of soil borne diseases of cotton. Through the analysis of soil microbial communities in six fields, the results showed that there was no difference in fungal and bacterial alpha-diversity index before cotton planting, while there were differences in rhizosphere of diseased plants. For fungal beta diversity indexes, there were significant differences in these six fields. There was no significant difference for bacterial beta diversity indexes before cotton planting, while there was a certain difference in the rhizosphere of diseased cotton plants. The composition of fungi and bacteria in different fields was roughly the same at the genus level, but the abundances of the same genus varied greatly between different fields. Before cotton planting, there were 61 fungi (genera) and 126 bacteria (genera) with different abundances in the six fields. Pseudomonas, Sphingomonas and Burkholderia had higher abundances in the fields with less incidence. This study will provide a theoretical basis for microbial control of Cotton Verticillium wilt.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lang Yu
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ailing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
7
|
Mei YH, Li X, Zhou JY, Kong FL, Qi SS, Zhu B, Naz M, Dai ZC, Du DL. Both Adaptability and Endophytic Bacteria Are Linked to the Functional Traits in the Invasive Clonal Plant Wedelia trilobata. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233369. [PMID: 36501409 PMCID: PMC9738965 DOI: 10.3390/plants11233369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
The role of the interactions between endophytes and host plants is unclear in invasive plants from different geographical latitudes. In this study, we aimed to explore the relationship between endophytic microbes and the functional traits of the invasive plant Wedelia trilobata. We explored the relationship between endophytes and the clonal growth traits of the invasive clonal plant Wedelia trilobata from different geographical latitudes using high-throughput sequencing technology and a common garden-planting experiment. We found that: (1) Different W. trilobata populations had similar endophytic fungi but different endophytic bacteria. However, no latitudinal variation pattern of the overall microbial community was found; (2) plant clonal growth performance (i.e., spacer length) was significantly correlated with endophytic bacterial diversity but not fungal diversity; and (3) the latitudinal variation pattern of the plant clonal growth performance of W. trilobata populations was found in pre-cultivated (i.e., wild) individuals but disappeared in post-cultivated W. trilobata. Our results suggest both environmental adaptability and the endophytic bacterial community are linked to the functional traits of the invasive clonal plant W. trilobata, and these functional traits tend to increase its invasiveness, which may enhance its invasion success.
Collapse
Affiliation(s)
- Ying-Hao Mei
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xu Li
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Yu Zhou
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang-Li Kong
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- School of the Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhu
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Misbah Naz
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dao-Lin Du
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Jiao N, Song X, Song R, Yin D, Deng X. Diversity and structure of the microbial community in rhizosphere soil of Fritillaria ussuriensis at different health levels. PeerJ 2022; 10:e12778. [PMID: 35127284 PMCID: PMC8796711 DOI: 10.7717/peerj.12778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Fritillaria wilt is a kind of soil-borne disease that causes a large reduction in the yield of Fritillaria ussuriensis. The diversity and structure of the soil microbial community are important factors affecting the health of Fritillaria ussuriensis. The analysis of the microbial community in the diseased and healthy soils provided a theoretical basis for revealing the pathological mechanism and prevention of Fritillaria wilt disease. In the present study, we sequenced the soil microorganisms from healthy (H), pathology (P) and blank (B) soil samples by Illumina MiSeq. Determined the soil physicochemical properties respectively, analyzed the soil microbial diversity and structure, and constructed single factor co-correlation networks among microbial genera. The results showed that Ascomycota (48.36%), Mortierellomycota (23.06%), Basidiomycota (19.00%), Proteobacteria (31.74%), and Acidobacteria (20.95%) were dominant in the soil. The diversity of healthy soil was significantly greater than that of diseased soil samples (P and B) (P < 0.05). The populations of Fusarium and Humicola significantly increased in the diseased soil sample (P and B) (P < 0.05). RB41 (4.74%) and Arthrobacter (3.30%) were the most abundant genera in the healthy soil. Total nitrogen (TN), available nitrogen (AN), total potassium (TK), available potassium (AK), and inorganic salt (salt) were significantly correlated with soil microbial communities (P < 0.05). The relationship between fungi and the plant was mostly positive, whereas bacteria showed the opposite trend. In conclusion, the diversity and structure of the soil microbial community were closely related to the health level of Fritillaria ussuriensis. Fusarium and Humicola affect the severity of Fritillaria wilt disease, while RB41 and Arthrobacter are the important indicators for maintaining the health of Fritillaria ussuriensis. Moreover, environmental factors greatly affect the abundance and formation of soil microbial community. The interactions in microbial communities also influence the healthy growth of Fritillaria ussuriensis.
Collapse
Affiliation(s)
- Ning Jiao
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiaoshuang Song
- Institute of Forestry Protection, Heilongjiang Forestry Academy, Harbin, China
| | - Ruiqing Song
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Dachuan Yin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xun Deng
- Institute of Forestry Protection, Heilongjiang Forestry Academy, Harbin, China
| |
Collapse
|
9
|
Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius. Sci Rep 2021; 11:10803. [PMID: 34031502 PMCID: PMC8144622 DOI: 10.1038/s41598-021-90309-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-associated bacteria can establish mutualistic relationships with plants to support plant health. Plant tissues represent heterogeneous niches with distinct characteristics and may thus host distinct microbial populations. The objectives of this study are to investigate the bacterial communities associated with two medicinally and commercially important plant species; Ginkgo biloba and Panax quinquefolius using high Throughput Sequencing (HTS) of 16S rRNA gene, and to evaluate the extent of heterogeneity in bacterial communities associated with different plant niches. Alpha diversity showed that number of operational taxonomic units (OTUs) varied significantly by tissue type. Beta diversity revealed that the composition of bacterial communities varied between tissue types. In Ginkgo biloba and Panax quinquefolius, 13% and 49% of OTUs, respectively, were ubiquitous in leaf, stem and root. Proteobacteria, Bacteroidetes, Actinobacteria and Acidobacteria were the most abundant phyla in Ginkgo biloba while Proteobacteria, Bacteroidetes, Actinobacteria, Plantomycetes and Acidobacteria were the most abundant phyla in Panax quinquefolius. Functional prediction of these bacterial communities using MicrobiomeAnalyst revealed 5843 and 6251 KEGG orthologs in Ginkgo biloba and Panax quinquefolius, respectively. A number of these KEGG pathways were predicted at significantly different levels between tissues. These findings demonstrate the heterogeneity, niche specificity and functional diversity of plant-associated bacteria.
Collapse
|
10
|
Fernández-González AJ, Cardoni M, Gómez-Lama Cabanás C, Valverde-Corredor A, Villadas PJ, Fernández-López M, Mercado-Blanco J. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive. MICROBIOME 2020; 8:11. [PMID: 32007096 PMCID: PMC6995654 DOI: 10.1186/s40168-020-0787-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Verticillium wilt of olive (VWO) is caused by the soilborne fungal pathogen Verticillium dahliae. One of the best VWO management measures is the use of tolerant/resistant olive cultivars. Knowledge on the olive-associated microbiome and its potential relationship with tolerance to biotic constraints is almost null. The aims of this work are (1) to describe the structure, functionality, and co-occurrence interactions of the belowground (root endosphere and rhizosphere) microbial communities of two olive cultivars qualified as tolerant (Frantoio) and susceptible (Picual) to VWO, and (2) to assess whether these communities contribute to their differential disease susceptibility level. RESULTS Minor differences in alpha and beta diversities of root-associated microbiota were detected between olive cultivars regardless of whether they were inoculated or not with the defoliating pathotype of V. dahliae. Nevertheless, significant differences were found in taxonomic composition of non-inoculated plants' communities, "Frantoio" showing a higher abundance of beneficial genera in contrast to "Picual" that exhibited major abundance of potential deleterious genera. Upon inoculation with V. dahliae, significant changes at taxonomic level were found mostly in Picual plants. Relevant topological alterations were observed in microbial communities' co-occurrence interactions after inoculation, both at structural and functional level, and in the positive/negative edges ratio. In the root endosphere, Frantoio communities switched to highly connected and low modularized networks, while Picual communities showed a sharply different behavior. In the rhizosphere, V. dahliae only irrupted in the microbial networks of Picual plants. CONCLUSIONS The belowground microbial communities of the two olive cultivars are very similar and pathogen introduction did not provoke significant alterations in their structure and functionality. However, notable differences were found in their networks in response to the inoculation. This phenomenon was more evident in the root endosphere communities. Thus, a correlation between modifications in the microbial networks of this microhabitat and susceptibility/tolerance to a soilborne pathogen was found. Moreover, V. dahliae irruption in the Picual microbial networks suggests a stronger impact on the belowground microbial communities of this cultivar upon inoculation. Our results suggest that changes in the co-occurrence interactions may explain, at least partially, the differential VWO susceptibility of the tested olive cultivars. Video abstract.
Collapse
Affiliation(s)
- Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Pablo J. Villadas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, CSIC, Campus ‘Alameda del Obispo’ s/n, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|