1
|
Ercole TG, Kava VM, Petters-Vandresen DAL, Ribeiro RA, Hungria M, Galli LV. Unveiling Agricultural Biotechnological Prospects: The Draft Genome Sequence of Stenotrophomonas geniculata LGMB417. Curr Microbiol 2024; 81:247. [PMID: 38951210 DOI: 10.1007/s00284-024-03784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.
Collapse
Affiliation(s)
- Tairine Graziella Ercole
- Postgraduate Program in Genetics, Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| | - Vanessa Merlo Kava
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Desirrê Alexia Lourenço Petters-Vandresen
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | | | - Lygia Vitoria Galli
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
2
|
Bajpai S, Shukla PS, Prithiviraj B, Critchley AT, Nivetha N. Editorial: Development of next generation bio stimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1383749. [PMID: 38650704 PMCID: PMC11034610 DOI: 10.3389/fpls.2024.1383749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sruti Bajpai
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Pushp Sheel Shukla
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, India
| | - Balakrishnan Prithiviraj
- Marine Bio-Products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and Environment, Cape Breton, NS, Canada
| | - Nagarajan Nivetha
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
3
|
Campos EVR, Pereira ADES, Aleksieienko I, do Carmo GC, Gohari G, Santaella C, Fraceto LF, Oliveira HC. Encapsulated plant growth regulators and associative microorganisms: Nature-based solutions to mitigate the effects of climate change on plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111688. [PMID: 36963636 DOI: 10.1016/j.plantsci.2023.111688] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Over the past decades, the atmospheric CO2 concentration and global average temperature have been increasing, and this trend is projected to soon become more severe. This scenario of climate change intensifies abiotic stress factors (such as drought, flooding, salinity, and ultraviolet radiation) that threaten forest and associated ecosystems as well as crop production. These factors can negatively affect plant growth and development with a consequent reduction in plant biomass accumulation and yield, in addition to increasing plant susceptibility to biotic stresses. Recently, biostimulants have become a hotspot as an effective and sustainable alternative to alleviate the negative effects of stresses on plants. However, the majority of biostimulants have poor stability under environmental conditions, which leads to premature degradation, shortening their biological activity. To solve these bottlenecks, micro- and nano-based formulations containing biostimulant molecules and/or microorganisms are gaining attention, as they demonstrate several advantages over their conventional formulations. In this review, we focus on the encapsulation of plant growth regulators and plant associative microorganisms as a strategy to boost their application for plant protection against abiotic stresses. We also address the potential limitations and challenges faced for the implementation of this technology, as well as possibilities regarding future research.
Collapse
Affiliation(s)
- Estefânia V R Campos
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil; B.Nano Soluções Tecnológicas Ltda, Rua Dr. Júlio Prestes, 355,18230-000 São Miguel Arcanjo, São Paulo, Brazil.
| | - Anderson do E S Pereira
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil; B.Nano Soluções Tecnológicas Ltda, Rua Dr. Júlio Prestes, 355,18230-000 São Miguel Arcanjo, São Paulo, Brazil
| | - Ivan Aleksieienko
- Aix Marseille University, CEA, CNRS, BIAM, LEMiRE, Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Giovanna C do Carmo
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil
| | - Gholamreza Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Catherine Santaella
- Aix Marseille University, CEA, CNRS, BIAM, LEMiRE, Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 Saint Paul Lez Durance, France
| | - Leonardo F Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março 511, 18087-180 Sorocaba, São Paulo, Brazil
| | - Halley C Oliveira
- Department of Animal and Plant Biology, State University of Londrina (UEL), PR 445, Km 380, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
5
|
Cataldo E, Fucile M, Mattii GB. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:162. [PMID: 35050049 PMCID: PMC8777853 DOI: 10.3390/plants11020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs' implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.
Collapse
Affiliation(s)
- Eleonora Cataldo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (M.F.); (G.B.M.)
| | | | | |
Collapse
|