1
|
Wong LC, Rodenburg U, Leite RR, Korthals GW, Pover J, Koerten H, Kuramae EE, Bodelier PLE. Exploring microbial diversity and interactions for asbestos modifying properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175577. [PMID: 39155010 DOI: 10.1016/j.scitotenv.2024.175577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Asbestos poses a substantial environmental health risk, and biological treatment offers a promising approach to mitigate its impact by altering its chemical composition. However, the dynamics of microbial co-inoculation in asbestos bioremediation remain poorly understood. This study investigates the effect of microbial single cultures and co-cultures on modifying crocidolite and chrysotile fibers, focusing on the extraction of iron and magnesium. Seventy bacterial and eighty-three fungal strains were isolated from five diverse sites, characterized phylogenetically using the 16S rRNA gene and ITS region, respectively, and assessed for siderophore and organic acid production. Most bacterial strains were identified as Pseudomonas, while Penicillium predominated among fungal strains. Ten bacterial and 25 fungal strains were found to produce both organic compounds. Four microbial co-cultures (one bacterium-bacterium, two fungus-bacterium, and one fungus-fungus) exhibiting synergistic effects in plate assays, alongside their respective single cultures, were incubated with crocidolite and chrysotile. ICP-OES analysis revealed that in crocidolite, the co-culture HRF19-HRB12 removed more iron than their single cultures, while Penicillium TPF36 showed the highest iron removal. The co-culture of two Pseudomonas strains (HRB12-RB5) exhibited the highest magnesium concentration in the supernatant. In chrysotile, the co-culture HRB12-RB5 removed more iron than their individual cultures, with Penicillium TFSF27 exhibiting the highest iron concentration in the solution. Penicillium TFSF27 and the co-culture TFSF27-TPF36 demonstrated the highest magnesium removal. SEM-XRMA analysis showed a significant reduction in iron and magnesium content, confirming elemental extraction from the fibers' structure. This study significantly broadens the range of microbial strains capable of modifying asbestos fibers and underscores the potential of microbial co-cultures in asbestos remediation.
Collapse
Affiliation(s)
- Lina C Wong
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Umi Rodenburg
- Wageningen University and Research, Wageningen, the Netherlands
| | - Raycenne R Leite
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | | | - Judith Pover
- SGI Compliance, Hongkongstraat 5, 3047 BR Rotterdam, the Netherlands
| | - Henk Koerten
- SGI Compliance, Hongkongstraat 5, 3047 BR Rotterdam, the Netherlands
| | - Eiko E Kuramae
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Paul L E Bodelier
- Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Berruto CA, Demirer GS. Engineering agricultural soil microbiomes and predicting plant phenotypes. Trends Microbiol 2024; 32:858-873. [PMID: 38429182 DOI: 10.1016/j.tim.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can improve crop yields, nutrient use efficiency, plant tolerance to stressors, and confer benefits to future generations of crops grown in the same soil. Unlocking the potential of microbial communities in the rhizosphere and endosphere is therefore of great interest for sustainable agriculture advancements. Before plant microbiomes can be engineered to confer desirable phenotypic effects on their plant hosts, a deeper understanding of the interacting factors influencing rhizosphere community structure and function is needed. Dealing with this complexity is becoming more feasible using computational approaches. In this review, we discuss recent advances at the intersection of experimental and computational strategies for the investigation of plant-microbiome interactions and the engineering of desirable soil microbiomes.
Collapse
Affiliation(s)
- Chiara A Berruto
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Ríos-Ruiz WF, Tarrillo-Chujutalli RE, Rojas-García JC, Tuanama-Reátegui C, Pompa-Vásquez DF, Zumaeta-Arévalo CA. The Biotechnological Potential of Plant Growth-Promoting Rhizobacteria Isolated from Maize ( Zea mays L.) Cultivations in the San Martin Region, Peru. PLANTS (BASEL, SWITZERLAND) 2024; 13:2075. [PMID: 39124194 PMCID: PMC11313924 DOI: 10.3390/plants13152075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Maize (Zea mays L.) is an essential commodity for global food security and the agricultural economy, particularly in regions such as San Martin, Peru. This study investigated the plant growth-promoting characteristics of native rhizobacteria isolated from maize crops in the San Martin region of Peru with the aim of identifying microorganisms with biotechnological potential. Soil and root samples were collected from maize plants in four productive zones in the region: Lamas, El Dorado, Picota, and Bellavista. The potential of twelve bacterial isolates was evaluated through traits, such as biological nitrogen fixation, indole acetic acid (IAA) production, phosphate solubilization, and siderophore production, and a completely randomized design was used for these assays. A completely randomized block design was employed to assess the effects of bacterial strains and nitrogen doses on maize seedlings. The B3, B5, and NSM3 strains, as well as maize seeds of the yellow hard 'Advanta 9139' variety, were used in this experiment. Two of these isolates, B5 and NSM3, exhibited outstanding characteristics as plant growth promoters; these strains were capable of nitrogen fixation, IAA production (35.65 and 26.94 µg mL-1, respectively), phosphate solubilization (233.91 and 193.31 µg mL-1, respectively), and siderophore production (34.05 and 89.19%, respectively). Furthermore, molecular sequencing identified the NSM3 isolate as belonging to Sporosarcina sp. NSM3 OP861656, while the B5 isolate was identified as Peribacillus sp. B5 OP861655. These strains show promising potential for future use as biofertilizers, which could promote more sustainable agricultural practices in the region.
Collapse
Affiliation(s)
- Winston Franz Ríos-Ruiz
- Laboratorio de Microbiología Agrícola “Raúl Ríos Reátegui”, Departamento Académico Agrosilvopastoril, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, Tarapoto 22202, Peru; (R.E.T.-C.); (J.C.R.-G.); (D.F.P.-V.); (C.A.Z.-A.)
| | - Rosslinn Esmith Tarrillo-Chujutalli
- Laboratorio de Microbiología Agrícola “Raúl Ríos Reátegui”, Departamento Académico Agrosilvopastoril, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, Tarapoto 22202, Peru; (R.E.T.-C.); (J.C.R.-G.); (D.F.P.-V.); (C.A.Z.-A.)
| | - Jose Carlos Rojas-García
- Laboratorio de Microbiología Agrícola “Raúl Ríos Reátegui”, Departamento Académico Agrosilvopastoril, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, Tarapoto 22202, Peru; (R.E.T.-C.); (J.C.R.-G.); (D.F.P.-V.); (C.A.Z.-A.)
| | - Cicerón Tuanama-Reátegui
- Departamento Académico de Ingeniería Agroindustrial, Facultad de Ingeniería Agroindustrial, Universidad Nacional de San Martín, Tarapoto 22202, Peru;
| | - Danny Fran Pompa-Vásquez
- Laboratorio de Microbiología Agrícola “Raúl Ríos Reátegui”, Departamento Académico Agrosilvopastoril, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, Tarapoto 22202, Peru; (R.E.T.-C.); (J.C.R.-G.); (D.F.P.-V.); (C.A.Z.-A.)
| | - Carlos Alberto Zumaeta-Arévalo
- Laboratorio de Microbiología Agrícola “Raúl Ríos Reátegui”, Departamento Académico Agrosilvopastoril, Facultad de Ciencias Agrarias, Universidad Nacional de San Martín, Tarapoto 22202, Peru; (R.E.T.-C.); (J.C.R.-G.); (D.F.P.-V.); (C.A.Z.-A.)
| |
Collapse
|
4
|
de Oliveira-Paiva CA, Bini D, de Sousa SM, Ribeiro VP, Dos Santos FC, de Paula Lana UG, de Souza FF, Gomes EA, Marriel IE. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Front Microbiol 2024; 15:1426166. [PMID: 38989019 PMCID: PMC11233657 DOI: 10.3389/fmicb.2024.1426166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Phosphorus (P) is a critical nutrient for plant growth, yet its uptake is often hindered by soil factors like clay minerals and metal oxides such as aluminum (Al), iron (Fe), and calcium (Ca), which bind P and limit its availability. Phosphate-solubilizing bacteria (PSB) have the unique ability to convert insoluble P into a soluble form, thereby fostering plant growth. This study aimed to assess the efficacy of inoculation of Bacillus megaterium B119 (rhizospheric) and B. subtilis B2084 (endophytic) via seed treatment in enhancing maize yield, grain P content, and enzyme activities across two distinct soil types in field conditions. Additionally, we investigated various mechanisms contributing to plant growth promotion, compatibility with commercial inoculants, and the maize root adhesion profile of these strains. During five crop seasons in two experimental areas in Brazil, Sete Lagoas-MG and Santo Antônio de Goiás-GO, single inoculations with either B119 or B2084 were implemented in three seasons, while a co-inoculation with both strains was applied in two seasons. All treatments received P fertilizer according to plot recommendations, except for control. Both the Bacillus strains exhibited plant growth-promoting properties relevant to P dynamics, including phosphate solubilization and mineralization, production of indole-3-acetic acid (IAA)-like molecules, siderophores, exopolysaccharides (EPS), biofilms, and phosphatases, with no antagonism observed with Azospirillum and Bradyrizhobium. Strain B2084 displayed superior maize root adhesion compared to B119. In field trials, single inoculations with either B119 or B2084 resulted in increased maize grain yield, with relative average productivities of 22 and 16% in Sete Lagoas and 6 and 3% in Santo Antônio de Goiás, respectively. Co-inoculation proved more effective, with an average yield increase of 24% in Sete Lagoas and 11% in Santo Antônio de Goiás compared to the non-inoculated control. Across all seasons, accumulated grain P content correlated with yield, and soil P availability in the rhizosphere increased after co-inoculation in Santo Antônio de Goiás. These findings complement previous research efforts and have led to the validation and registration of the first Brazilian inoculant formulated with Bacillus strains for maize, effectively enhancing and P grain content.
Collapse
Affiliation(s)
| | - Daniel Bini
- Microbiology Laboratory, Embrapa Milho e Sorgo, Sete Lagoas, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Galindo FS, Pagliari PH, da Silva EC, de Lima BH, Fernandes GC, Thiengo CC, Bernardes JVS, Jalal A, Oliveira CES, de Sousa Vilela L, Furlani Junior E, Nogueira TAR, do Nascimento V, Teixeira Filho MCM, Lavres J. Impact of nitrogen fertilizer sustainability on corn crop yield: the role of beneficial microbial inoculation interactions. BMC PLANT BIOLOGY 2024; 24:268. [PMID: 38605320 PMCID: PMC11008049 DOI: 10.1186/s12870-024-04971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.
Collapse
Affiliation(s)
- Fernando Shintate Galindo
- College of Agricultural and Technological Sciences, Department of Crop Production, São Paulo State University, Dracena, 17900-000, Brazil.
| | - Paulo Humberto Pagliari
- Southwest Research and Outreach Center, Department of Soil, Water, and Climate, University of Minnesota, Lamberton, MN, 56152, USA
| | - Edson Cabral da Silva
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Guilherme Carlos Fernandes
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Cassio Carlette Thiengo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| | | | - Arshad Jalal
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Eduardo Silva Oliveira
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Lucila de Sousa Vilela
- College of Agricultural and Technological Sciences, Department of Crop Production, São Paulo State University, Dracena, 17900-000, Brazil
| | - Enes Furlani Junior
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | | | - Vagner do Nascimento
- College of Agricultural and Technological Sciences, Department of Crop Production, São Paulo State University, Dracena, 17900-000, Brazil
| | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| |
Collapse
|
6
|
Jalal A, Júnior EF, Teixeira Filho MCM. Interaction of Zinc Mineral Nutrition and Plant Growth-Promoting Bacteria in Tropical Agricultural Systems: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:571. [PMID: 38475420 DOI: 10.3390/plants13050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The relationship between zinc mineral nutrition and plant growth-promoting bacteria (PGPB) is pivotal in enhancing agricultural productivity, especially in tropical regions characterized by diverse climatic conditions and soil variability. This review synthesizes and critically evaluates current knowledge regarding the synergistic interaction between zinc mineral nutrition and PGPB in tropical agricultural systems. Zinc is an essential and fundamental micronutrient for various physiological and biochemical processes in plants. Its deficiency affects plant growth and development, decreasing yields and nutritional quality. In tropical regions, where soil zinc availability is often limited or imbalanced, the PGPB, through different mechanisms such as Zn solubilization; siderophore production; and phytohormone synthesis, supports Zn uptake and assimilation, thereby facilitating the adverse effects of zinc deficiency in plants. This review outlines the impacts of Zn-PGPB interactions on plant growth, root architecture, and productivity in tropical agricultural systems. The positive relationship between PGPB and plants facilitates Zn uptake and improves nutrient use efficiency, overall crop performance, and agronomic biofortification. In addition, this review highlights the importance of considering indigenous PGPB strains for specific tropical agroecosystems, acknowledging their adaptability to local conditions and their potential in sustainable agricultural practices. It is concluded that Zn fertilizer and PGPBs have synergistic interactions and can offer promising avenues for sustainable agriculture, addressing nutritional deficiencies, improving crop resilience, and ensuring food security.
Collapse
Affiliation(s)
- Arshad Jalal
- School of Engineering, Department of Plant Health, Soils and Rural Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Enes Furlani Júnior
- School of Engineering, Department of Plant Health, Soils and Rural Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | |
Collapse
|
7
|
de Souza AES, Filla VA, da Silva JPM, Barbosa Júnior MR, de Oliveira-Paiva CA, Coelho AP, Lemos LB. Application of Bacillus spp. Phosphate-Solubilizing Bacteria Improves Common Bean Production Compared to Conventional Fertilization. PLANTS (BASEL, SWITZERLAND) 2023; 12:3827. [PMID: 38005724 PMCID: PMC10675661 DOI: 10.3390/plants12223827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023]
Abstract
The use of phosphate-solubilizing bacteria (PSB) can be a sustainable strategy to increase phosphorus availability and promote satisfactory crop yields. The objective of this study was to evaluate whether inoculation with PSB in common bean increases (i) growth, (ii) nutrition, (iii) yield, and (iv) grain quality, and (v) reduces the chemical phosphorus application dose to obtain maximum yields. The experiment was conducted in an Oxisol using a randomized block design in a 4 × 4 factorial scheme, with four replicates, using the cultivar IAC 2051. The first factor was four doses of P2O5 (0, 20, 40 and 60 kg ha-1), and the second factor was four doses of PSB (0, 100, 200 and 300 mL ha-1). For leaf area and leaf chlorophyll content, the association of PSB inoculation with a P2O5 dose of 40 kg ha-1 promoted the best conditions for the common bean. P2O5 application increased yield by 79 kg ha-1 for each 10 kg ha-1 added. PSB inoculation at a dose of 192 mL ha-1 promoted P export of 15.3 kg ha-1, and the PSB dose of 159 mL ha-1 increased yield by 389 kg ha-1 (12%) compared to the control. Grain quality remained within the standards required by the consumer market, being little affected by the treatments. Improvements in common bean growth and nutritional and physiological status promoted by P2O5 application and PSB were essential in increasing yield, so these are sustainable production strategies.
Collapse
Affiliation(s)
- Antonia Erica Santos de Souza
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (A.E.S.d.S.); (V.A.F.); (J.P.M.d.S.); (M.R.B.J.); (L.B.L.)
| | - Vinicius Augusto Filla
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (A.E.S.d.S.); (V.A.F.); (J.P.M.d.S.); (M.R.B.J.); (L.B.L.)
| | - João Paulo Morais da Silva
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (A.E.S.d.S.); (V.A.F.); (J.P.M.d.S.); (M.R.B.J.); (L.B.L.)
| | - Marcelo Rodrigues Barbosa Júnior
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (A.E.S.d.S.); (V.A.F.); (J.P.M.d.S.); (M.R.B.J.); (L.B.L.)
| | | | - Anderson Prates Coelho
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (A.E.S.d.S.); (V.A.F.); (J.P.M.d.S.); (M.R.B.J.); (L.B.L.)
| | - Leandro Borges Lemos
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (A.E.S.d.S.); (V.A.F.); (J.P.M.d.S.); (M.R.B.J.); (L.B.L.)
| |
Collapse
|
8
|
Gaspareto RN, Jalal A, Ito WCN, Oliveira CEDS, Garcia CMDP, Boleta EHM, Rosa PAL, Galindo FS, Buzetti S, Ghaley BB, Filho MCMT. Inoculation with Plant Growth-Promoting Bacteria and Nitrogen Doses Improves Wheat Productivity and Nitrogen Use Efficiency. Microorganisms 2023; 11:microorganisms11041046. [PMID: 37110469 PMCID: PMC10142644 DOI: 10.3390/microorganisms11041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat is one of the staple foods of the global population due to its adaptability to a wide range of environments. Nitrogen is one of the crucial limiting factors in wheat production and is considered a challenge to food security. Therefore, sustainable agricultural technologies such as seed inoculation with plant growth-promoting bacteria (PGPBs) can be adopted to promote biological nitrogen fixation (BNF) for higher crop productivity. In this context, the objective of the current study was to evaluate the effects of nitrogen fertilization and seed inoculations with Azospirillum brasilense, Bacillus subtilis and A. brasilense + B. subtilis on agronomic and yield attributes, grain yield, grain N accumulation, N use efficiency and applied N recovery in Brazilian Cerrado, which consists of gramineous woody savanna. The experiment was carried out in two cropping seasons in Rhodic Haplustox soil under a no-tillage system. The experiment was designed in a randomized complete block in a 4 × 5 factorial scheme, with four replications. The treatments consisted of four seed inoculations (control-without inoculation, inoculation with A. brasilense, B. subtilis and A. brasilense + B. subtilis) under five N doses (0, 40, 80, 120 and 160 kg ha-1, applied from urea) at the wheat tillering stage. Seed co-inoculation with A. brasilense + B. subtilis increased grain N accumulation, number of spikes m-1, grains spike-1 and grain yield of wheat in an irrigated no-tillage system of tropical savannah, regardless of the applied N doses. Nitrogen fertilization at a dose of 80 kg ha-1 significantly increased grain N accumulation and number of grains spikes-1 and nitrogen use efficiency. Recovery of applied N was increased with inoculation of B. subtilis and co-inoculation of A. brasilense + B. subtilis at increasing N doses. Therefore, N fertilization can be reduced by the inclusion of co-inoculation with A. brasilense + B. subtilis in the cultivation of winter wheat under a no-tillage system of Brazilian Cerrado.
Collapse
Affiliation(s)
- Rafaela Neris Gaspareto
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - William Cesar Nishimoto Ito
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Cássia Maria de Paula Garcia
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | | - Poliana Aparecida Leonel Rosa
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Department of Crop Production, College of Agricultural and Technology Sciences, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Salatiér Buzetti
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630 Taastrup, Denmark
| | | |
Collapse
|
9
|
Yaadesh S, Tomar GS, Kaushik R, Prasanna R, Grover M. Azospirillum-Bacillus associations: synergistic effects on in vitro PGP traits and growth of pearl millet at early seedling stage under limited moisture conditions. 3 Biotech 2023; 13:90. [PMID: 36825258 PMCID: PMC9941397 DOI: 10.1007/s13205-023-03503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
The association of plant beneficial Azospirillum and Bacillus spp. strains expressing different sets of PGP traits may have complementary or supplementary effects on host plants. In the present investigation, A. formosense and Bacillus spp. strains showing diverse PGP traits (IAA production, nitrogenase activity, phosphate, zinc and potassium solubilization, siderophores, antagonism against phytopathogens, osmotic stress tolerance, etc.) were assessed for compatibility by cross-streaking and co-culturing. Under co-culture (Azospirillum + Bacillus), a significant increase in the expression of PGP traits, nitrogenase activity (up to 89%), phosphate solubilization (upto 236%), siderophore production (upto 20%) was observed as compared to individual Azospirillum culture, indicating synergistic effect of co-culture. IAA production was higher in Azospirillum sp. strains as compared to Bacillus spp. strains, when cultured individually; however, when co-cultured, the IAA levels were in the mid-range indicating the contributory effects of compatible strains. The effect of individual Azospirillum and Bacillus strains and their co-inoculation was also assessed on the growth of pearl millet at early stages under moisture-deficit stress imposed using PEG6000 (0, 10, and 20%). Co-inoculation enhanced seed germination (up to 10, 3, and 6% increase under 0, 10, and 20% PEG, respectively, over individual Azospirillum treatment), root traits (increased root hair density and lateral branches), and seedling vigor indices (up to 22, 32, 43% increase in seed vigor index I and 8, 14, and 10% increase in seed vigor index II under 0, 10, 20% PEG, respectively, over individual Azospirillum treatment) under normal as well as moisture-deficit conditions suggesting the role of Bacillus spp. strains in better adaptation of the plants to stress and higher yield potential. The synergistic effect of co-cultured Azospirillum and Bacillus strains on PGP traits indicated metabolic interplay between the two strains which needs to be further understood. The positive effect of co-inoculation on plant growth under moisture-deficit stress indicated the promise of Azospirillum and Bacillus as a synergistic bioformulation for combating nutrient and drought stress in pearl millet, particularly in nutrient-poor dryland agricultural systems. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03503-4.
Collapse
Affiliation(s)
- Sivakumar Yaadesh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Govind singh Tomar
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Minakshi Grover
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
10
|
Jalal A, Oliveira CEDS, Bastos ADC, Fernandes GC, de Lima BH, Furlani Junior E, de Carvalho PHG, Galindo FS, Gato IMB, Teixeira Filho MCM. Nanozinc and plant growth-promoting bacteria improve biochemical and metabolic attributes of maize in tropical Cerrado. FRONTIERS IN PLANT SCIENCE 2023; 13:1046642. [PMID: 36714773 PMCID: PMC9878843 DOI: 10.3389/fpls.2022.1046642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
Introduction Plant growth-promoting bacteria (PGPBs) could be developed as a sustainable strategy to promote plant growth and yield to feed the ever-growing global population with nutritious food. Foliar application of nano-zinc oxide (ZnO) is an environmentally safe strategy that alleviates zinc (Zn) malnutrition by improving biochemical attributes and storage proteins of grain. Methods In this context, the current study aimed to investigate the combined effect of seed inoculation with PGPBs and foliar nano-ZnO application on the growth, biochemical attributes, nutrient metabolism, and yield of maize in the tropical savannah of Brazil. The treatments consisted of four PGPB inoculations [i.e., without inoculation, Azospirillum brasilense (A. brasilense), Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens), which was applied on the seeds] and two doses of Zn (i.e., 0 and 3 kg ha-1, applied from nano-ZnO in two splits on the leaf). Results Inoculation of B. subtilis with foliar ZnO application increased shoot dry matter (7.3 and 9.8%) and grain yield (17.1 and 16.7%) in 2019-20 and 2020-2021 crop seasons respectively. Inoculation with A. brasilense increased 100-grains weight by 9.5% in both crop seasons. Shoot Zn accumulation was improved by 30 and 51% with inoculation of P. fluorescens in 2019-20 and 2020-2021 crop seasons. Whereas grain Zn accumulation was improved by 49 and 50.7% with inoculation of B. subtilis and P. fluorescens respectively. In addition, biochemical attributes (chlorophyll a, b and total, carotenoids, total soluble sugar and amino acids) were improved with inoculation of B. subtilis along with foliar nano ZnO application as compared to other treatments. Co-application of P. fluorescens with foliar ZnO improved concentration of grains albumin (20 and 13%) and globulin (39 and 30%). Also, co-application of B. subtilis and foliar ZnO improved concentration of grains glutelin (8.8 and 8.7%) and prolamin (15 and 21%) in first and second seasons. Discussion Therefore, inoculation of B. subtilis and P. fluorescens with foliar nano-ZnO application is considered a sustainable and environmentally safe strategy for improving the biochemical, metabolic, nutritional, and productivity attributes of maize in tropical Savannah regions.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | | - Andréa de Castro Bastos
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Guilherme Carlos Fernandes
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Enes Furlani Junior
- Department of Plant Science, Food Technology and Socio-Economics, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | | | | - Isabela Martins Bueno Gato
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | |
Collapse
|
11
|
Duré LMM, Galeano RMS, Viana TFC, Roque CG, Matias R, Paggi GM, Corrêa BO, da Silva Brasil M. Bacillus strains with potential for growth promotion and control of white mold in soybean. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|