1
|
Lettau E, Lorent C, Appel J, Boehm M, Cordero PRF, Lauterbach L. Insights into electron transfer and bifurcation of the Synechocystis sp. PCC6803 hydrogenase reductase module. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149508. [PMID: 39245309 DOI: 10.1016/j.bbabio.2024.149508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The NAD+-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H2) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE. We demonstrated the importance of HoxE for enzyme functionality, suggesting a regulatory role in maintaining enzyme activity and electron supply. Spectroscopic analysis confirmed that HoxE and HoxF each contain one [2Fe2S] cluster with an almost identical electronic structure. Structure predictions, alongside experimental evidence for ferredoxin interactions, revealed a remarkable similarity between SynSH and bifurcating hydrogenases, suggesting a related functional mechanism. Our study unveiled the subunit arrangement and cofactor composition essential for biological electron transfer. These findings enhance our understanding of NAD+-reducing [NiFe] hydrogenases in terms of their physiological function and structural requirements for biotechnologically relevant modifications.
Collapse
Affiliation(s)
- Elisabeth Lettau
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany; Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany.
| | - Christian Lorent
- Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany
| | - Jens Appel
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Marko Boehm
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Paul R F Cordero
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany
| | - Lars Lauterbach
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Romig M, Eberwein M, Deobald D, Schmid A. Reactivation and long-term stabilization of the [NiFe] Hox hydrogenase of Synechocystis sp. PCC6803 by glutathione after oxygen exposure. J Biol Chem 2025; 301:108086. [PMID: 39675701 PMCID: PMC11780932 DOI: 10.1016/j.jbc.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen. Several hydrogenases, such as the oxygen-sensitive bidirectional [NiFe] Hox hydrogenase (Hox) of the unicellular cyanobacterium Synechocystis sp. PCC6803, are reactivated after oxygen-induced deactivation by redox mechanisms. In cyanobacteria, the glutathione (GSH) redox buffer majorly controls intracellular redox potentials. The relationship between Hox turnover rates and the redox potential in its natural reaction environment is not fully understood. We thus determined hydrogen oxidation rates as activities of Hox in cell-free extracts of Synechocystis using benzyl viologen as artificial electron acceptor. We found that GSH modulates Hox hydrogen oxidation rates under oxygen-free conditions. After oxygen exposure, it influences the maximal turnover rate and aids in the reactivation of Hox. Moreover, GSH stabilizes the long-term Hox activity under anoxic conditions and attenuates oxygen-induced deactivation of Hox in a concentration-dependent manner, probably by fostering reactivation. Conversely, oxidized GSH (GSSG) negatively affects Hox activity and oxygen insensitivity. Using Blue Native PAGE followed by mass spectrometry, we showed that oxygen affects Hox complex integrity. The in silico predicted structure of the Hox complex and complexome analyses reveal the formation of various Hox subcomplexes under different conditions. Our findings refine our current classification of oxygen-hydrogenase interactions beyond sensitive and insensitive, which is particularly important for understanding hydrogenase function under physiological conditions in future.
Collapse
Affiliation(s)
- Merle Romig
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Marie Eberwein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Darja Deobald
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| | - Andreas Schmid
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| |
Collapse
|
3
|
Kariyazono R, Osanai T. CyAbrB2 is a nucleoid-associated protein in Synechocystis controlling hydrogenase expression during fermentation. eLife 2024; 13:RP94245. [PMID: 39221912 PMCID: PMC11368403 DOI: 10.7554/elife.94245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The hox operon in Synechocystis sp. PCC 6803, encoding bidirectional hydrogenase responsible for H2 production, is transcriptionally upregulated under microoxic conditions. Although several regulators for hox transcription have been identified, their dynamics and higher-order DNA structure of hox region in microoxic conditions remain elusive. We focused on key regulators for the hox operon: cyAbrB2, a conserved regulator in cyanobacteria, and SigE, an alternative sigma factor. Chromatin immunoprecipitation sequencing revealed that cyAbrB2 binds to the hox promoter region under aerobic conditions, with its binding being flattened in microoxic conditions. Concurrently, SigE exhibited increased localization to the hox promoter under microoxic conditions. Genome-wide analysis revealed that cyAbrB2 binds broadly to AT-rich genome regions and represses gene expression. Moreover, we demonstrated the physical interactions of the hox promoter region with its distal genomic loci. Both the transition to microoxic conditions and the absence of cyAbrB2 influenced the chromosomal interaction. From these results, we propose that cyAbrB2 is a cyanobacterial nucleoid-associated protein (NAP), modulating chromosomal conformation, which blocks RNA polymerase from the hox promoter in aerobic conditions. We further infer that cyAbrB2, with altered localization pattern upon microoxic conditions, modifies chromosomal conformation in microoxic conditions, which allows SigE-containing RNA polymerase to access the hox promoter. The coordinated actions of this NAP and the alternative sigma factor are crucial for the proper hox expression in microoxic conditions. Our results highlight the impact of cyanobacterial chromosome conformation and NAPs on transcription, which have been insufficiently investigated.
Collapse
|
4
|
Akiyama M, Osanai T. Regulation of organic acid and hydrogen production by NADH/NAD + ratio in Synechocystis sp. PCC 6803. Front Microbiol 2024; 14:1332449. [PMID: 38249449 PMCID: PMC10797119 DOI: 10.3389/fmicb.2023.1332449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Cyanobacteria serve as useful hosts in the production of substances to support a low-carbon society. Specifically, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) can produce organic acids, such as acetate, lactate, and succinate, as well as hydrogen, under dark, anaerobic conditions. The efficient production of these compounds appears to be closely linked to the regulation of intracellular redox balance. Notably, alterations in intracellular redox balance have been believed to influence the production of organic acids and hydrogen. To achieve these alterations, genetic manipulations involved overexpressing malate dehydrogenase (MDH), knocking out d-lactate dehydrogenase (DDH), or knocking out acetate kinase (AK), which subsequently modified the quantities and ratios of organic acids and hydrogen under dark, anaerobic conditions. Furthermore, the mutants generated displayed changes in the oxidation of reducing powers and the nicotinamide adenine dinucleotide hydrogen (NADH)/NAD+ ratio when compared to the parental wild-type strain. These findings strongly suggest that intracellular redox balance, especially the NADH/NAD+ ratio, plays a pivotal role in the production of organic acids and hydrogen in Synechocystis 6803.
Collapse
Affiliation(s)
| | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
5
|
Hoover RL, Keffer JL, Polson SW, Chan CS. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms. mSystems 2023; 8:e0003823. [PMID: 37882557 PMCID: PMC10734462 DOI: 10.1128/msystems.00038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Neutrophilic iron-oxidizing bacteria (FeOB) produce copious iron (oxyhydr)oxides that can profoundly influence biogeochemical cycles, notably the fate of carbon and many metals. To fully understand environmental microbial iron oxidation, we need a thorough accounting of iron oxidation mechanisms. In this study, we show the Gallionellaceae FeOB genomes encode both characterized iron oxidases as well as uncharacterized multiheme cytochromes (MHCs). MHCs are predicted to transfer electrons from extracellular substrates and likely confer metabolic capabilities that help Gallionellaceae occupy a range of different iron- and mineral-rich niches. Gallionellaceae appear to specialize in iron oxidation, so it would be advantageous for them to have multiple mechanisms to oxidize various forms of iron, given the many iron minerals on Earth, as well as the physiological and kinetic challenges faced by FeOB. The multiple iron/mineral oxidation mechanisms may help drive the widespread ecological success of Gallionellaceae.
Collapse
Affiliation(s)
- Rene L. Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L. Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Long S, Su M, Chen X, Hu A, Yu F, Zou Q, Cheng G. Proteomic and Mutant Analysis of Hydrogenase Maturation Protein Gene hypE in Symbiotic Nitrogen Fixation of Mesorhizobium huakuii. Int J Mol Sci 2023; 24:12534. [PMID: 37628715 PMCID: PMC10454058 DOI: 10.3390/ijms241612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogenases catalyze the simple yet important redox reaction between protons and electrons and H2, thus mediating symbiotic interactions. The contribution of hydrogenase to this symbiosis and anti-oxidative damage was investigated using the M. huakuii hypE (encoding hydrogenase maturation protein) mutant. The hypE mutant grew a little faster than its parental 7653R and displayed decreased antioxidative capacity under H2O2-induced oxidative damage. Real-time quantitative PCR showed that hypE gene expression is significantly up-regulated in all the detected stages of nodule development. Although the hypE mutant can form nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 47% reduction in nitrogen fixation capacity. This phenotype was linked to the formation of smaller abnormal nodules containing disintegrating and prematurely senescent bacteroids. Proteomics analysis allowed a total of ninety differentially expressed proteins (fold change > 1.5 or <0.67, p < 0.05) to be identified. Of these proteins, 21 are related to stress response and virulence, 21 are involved in transporter activity, and 18 are involved in energy and nitrogen metabolism. Overall, the HypE protein is essential for symbiotic nitrogen fixation, playing independent roles in supplying energy and electrons, in bacterial detoxification, and in the control of bacteroid differentiation and senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
7
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
8
|
Khetkorn W, Raksajit W, Maneeruttanarungroj C, Lindblad P. Photobiohydrogen Production and Strategies for H 2 Yield Improvements in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:253-279. [PMID: 37009974 DOI: 10.1007/10_2023_216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Hydrogen gas (H2) is one of the potential future sustainable and clean energy carriers that may substitute the use of fossil resources including fuels since it has a high energy content (heating value of 141.65 MJ/kg) when compared to traditional hydrocarbon fuels [1]. Water is a primary product of combustion being a most significant advantage of H2 being environmentally friendly with the capacity to reduce global greenhouse gas emissions. H2 is used in various applications. It generates electricity in fuel cells, including applications in transportation, and can be applied as fuel in rocket engines [2]. Moreover, H2 is an important gas and raw material in many industrial applications. However, the high cost of the H2 production processes requiring the use of other energy sources is a significant disadvantage. At present, H2 can be prepared in many conventional ways, such as steam reforming, electrolysis, and biohydrogen production processes. Steam reforming uses high-temperature steam to produce hydrogen gas from fossil resources including natural gas. Electrolysis is an electrolytic process to decompose water molecules into O2 and H2. However, both these two methods are energy-intensive and producing hydrogen from natural gas, which is mostly methane (CH4) and in steam reforming generates CO2 and pollutants as by-products. On the other hand, biological hydrogen production is more environmentally sustainable and less energy intensive than thermochemical and electrochemical processes [3], but most concepts are not yet developed to production scale.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Wuttinun Raksajit
- Faculty of Veterinary Technology, Program of Animal Health Technology, Kasetsart University, Bangkok, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
- Bioenergy Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Spasic J, Oliveira P, Pacheco C, Kourist R, Tamagnini P. Engineering cyanobacterial chassis for improved electron supply toward a heterologous ene-reductase. J Biotechnol 2022; 360:152-159. [PMID: 36370921 DOI: 10.1016/j.jbiotec.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Cyanobacteria are noteworthy hosts for industrially relevant redox reactions, owing to a light-driven cofactor recycling system using water as electron donor. Customizing Synechocystis sp. PCC 6803 chassis by redirecting electron flow offers a particularly interesting approach to further improve light-driven biotransformations. Therefore, different chassis expressing the heterologous ene-reductase YqjM (namely ΔhoxYH, Δflv3, ΔndhD2 and ΔhoxYHΔflv3) were generated/evaluated. The results showed the robustness of the chassis, that exhibited growth and oxygen evolution rates similar to Synechocystis wild-type, even when expressing YqjM. By engineering the electron flow, the YqjM light-driven stereoselective reduction of 2-methylmaleimide to 2-methylsuccinimide was significantly enhanced in all chassis. In the best performing chassis (ΔhoxYH, lacking an active bidirectional hydrogenase) a 39 % increase was observed, reaching an in vivo specific activity of 116 U gDCW-1 and an initial reaction rate of 16.7 mM h-1. In addition, the presence of the heterologous YqjM mitigated substrate toxicity, and the conversion of 2-methylmaleimide increased oxygen evolution rates, in particular at higher light intensity. In conclusion, this work demonstrates that rational engineering of electron transfer pathways is a valid strategy to increase in vivo specific activities and initial reaction rates in cyanobacterial chassis harboring oxidoreductases.
Collapse
Affiliation(s)
- Jelena Spasic
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803. Microorganisms 2022; 10:microorganisms10081617. [PMID: 36014035 PMCID: PMC9414918 DOI: 10.3390/microorganisms10081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
The cyanobacterial bidirectional [NiFe]-hydrogenase is a pentameric enzyme. Apart from the small and large hydrogenase subunits (HoxYH) it contains a diaphorase module (HoxEFU) that interacts with NAD(P)+ and ferredoxin. HoxEFU shows strong similarity to the outermost subunits (NuoEFG) of canonical respiratory complexes I. Photosynthetic complex I (NDH-1) lacks these three subunits. This led to the idea that HoxEFU might interact with NDH-1 instead. HoxEFUYH utilizes excited electrons from PSI for photohydrogen production and it catalyzes the reverse reaction and feeds electrons into the photosynthetic electron transport. We analyzed hydrogenase activity, photohydrogen evolution and hydrogen uptake, the respiration and photosynthetic electron transport of ΔhoxEFUYH, and a knock-out strain with dysfunctional NDH-1 (ΔndhD1/ΔndhD2) of the cyanobacterium Synechocystis sp. PCC 6803. Photohydrogen production was prolonged in ΔndhD1/ΔndhD2 due to diminished hydrogen uptake. Electrons from hydrogen oxidation must follow a different route into the photosynthetic electron transport in this mutant compared to wild type cells. Furthermore, respiration was reduced in ΔhoxEFUYH and the ΔndhD1/ΔndhD2 localization of the hydrogenase to the membrane was impaired. These data indicate that electron transfer from the hydrogenase to the NDH-1 complex is either direct, by the binding of the hydrogenase to the complex, or indirect, via an additional mediator.
Collapse
|
11
|
Burgstaller H, Wang Y, Caliebe J, Hueren V, Appel J, Boehm M, Leitzke S, Theune M, King PW, Gutekunst K. Synechocystis sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions. Front Microbiol 2022; 13:896190. [PMID: 35711753 PMCID: PMC9195167 DOI: 10.3389/fmicb.2022.896190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
The cyanobacterium Synechocystis sp.PCC 6803 possesses a bidirectional NiFe-hydrogenase, HoxEFUYH. It functions to produce hydrogen under dark, fermentative conditions and photoproduces hydrogen when dark-adapted cells are illuminated. Unexpectedly, we found that the deletion of the large subunit of the hydrogenase (HoxH) in Synechocystis leads to an inability to grow on arginine and glucose under continuous light in the presence of oxygen. This is surprising, as the hydrogenase is an oxygen-sensitive enzyme. In wild-type (WT) cells, thylakoid membranes largely disappeared, cyanophycin accumulated, and the plastoquinone (PQ) pool was highly reduced, whereas ΔhoxH cells entered a dormant-like state and neither consumed glucose nor arginine at comparable rates to the WT. Hydrogen production was not traceable in the WT under these conditions. We tested and could show that the hydrogenase does not work as an oxidase on arginine and glucose but has an impact on the redox states of photosynthetic complexes in the presence of oxygen. It acts as an electron valve as an immediate response to the supply of arginine and glucose but supports the input of electrons from arginine and glucose oxidation into the photosynthetic electron chain in the long run, possibly via the NDH-1 complex. Despite the data presented in this study, the latter scenario requires further proof. The exact role of the hydrogenase in the presence of arginine and glucose remains unresolved. In addition, a unique feature of the hydrogenase is its ability to shift electrons between NAD(H), NADP(H), ferredoxin, and flavodoxin, which was recently shown in vitro and might be required for fine-tuning. Taken together, our data show that Synechocystis depends on the hydrogenase to metabolize organic carbon and nitrogen in the presence of oxygen, which might be an explanation for its prevalence in aerobic cyanobacteria.
Collapse
Affiliation(s)
- Heinrich Burgstaller
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany
| | - Yingying Wang
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany
| | - Johanna Caliebe
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Vanessa Hueren
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany
| | - Jens Appel
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Marko Boehm
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Sinje Leitzke
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany
| | - Marius Theune
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| | - Paul W King
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Kirstin Gutekunst
- Plant Cell Physiology and Biotechnology, Botanical Institute, University of Kiel, Kiel, Germany.,Molecular Plant Physiology, Bioenergetics in Photoautotrophs, University of Kassel, Kassel, Germany
| |
Collapse
|
12
|
Smolinski SL, Lubner CE, Guo Z, Artz JH, Brown KA, Mulder DW, King PW. The influence of electron utilization pathways on photosystem I photochemistry in Synechocystis sp. PCC 6803. RSC Adv 2022; 12:14655-14664. [PMID: 35702219 PMCID: PMC9109680 DOI: 10.1039/d2ra01295b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023] Open
Abstract
The capacity of cyanobacteria to adapt to highly dynamic photon flux and nutrient availability conditions results from controlled management and use of reducing power, and is a major contributing factor to the efficiency of photosynthesis in aquatic environments. The response to changing conditions includes modulating gene expression and protein-protein interactions that serve to adjust the use of electron flux and mechanisms that control photosynthetic electron transport (PET). In this regard, the photochemical activity of photosystem I (PSI) reaction centers can support balancing of cyclic (CEF) and linear electron flow (LEF), and the coupling of redox carriers for use by electron utilization pathways. Therefore, changes in the utilization of reducing power might be expected to result in compensating changes at PSI as a means to support balance of electron flux. To understand this functional relationship, we investigated the properties of PSI and its photochemical activity in cells that lack flavodiiron 1 catalyzed oxygen reduction activity (ORR1). In the absence of ORR1, the oxygen evolution and consumption rates declined together with a shift in the oligomeric form of PSI towards monomers. The effect of these changes on PSI energy and electron transfer properties was examined in isolated trimer and monomer fractions of PSI reaction centers. Collectively, the results demonstrate that PSI photochemistry is modulated through coordination with the depletion of electron demand in the absence of ORR1.
Collapse
Affiliation(s)
- Sharon L. Smolinski
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Carolyn E. Lubner
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Zhanjun Guo
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Jacob H. Artz
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Katherine A. Brown
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - David W. Mulder
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| | - Paul W. King
- National Renewable Energy Laboratory15013 Denver West ParkwayGoldenCO80401USA
| |
Collapse
|
13
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|
14
|
Sukkasam N, Incharoensakdi A, Monshupanee T. Disruption of Hydrogen Gas Synthesis Enhances the Cellular Levels of NAD(P)H, Glycogen, Poly(3-hydroxybutyrate) and Photosynthetic Pigments Under Specific Nutrient Condition(s) in Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2022; 63:135-147. [PMID: 34698867 DOI: 10.1093/pcp/pcab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In photoautotrophic Synechocystis sp. PCC 6803, NADPH is generated from photosynthesis and utilized in various metabolism, including the biosynthesis of glyceraldehyde 3-phosphate (the upstream substrate for carbon metabolism), poly(3-hydroxybutyrate) (PHB), photosynthetic pigments, and hydrogen gas (H2). Redirecting NADPH flow from one biosynthesis pathway to another has yet to be studied. Synechocystis's H2 synthesis, one of the pathways consuming NAD(P)H, was disrupted by the inactivation of hoxY and hoxH genes encoding the two catalytic subunits of hydrogenase. Such inactivation with a complete disruption of H2 synthesis led to 1.4-, 1.9-, and 2.1-fold increased cellular NAD(P)H levels when cells were cultured in normal medium (BG11), the medium without nitrate (-N), and the medium without phosphate (-P), respectively. After 49-52 d of cultivation in BG11 (when the nitrogen source in the media was depleted), the cells with disrupted H2 synthesis had 1.3-fold increased glycogen level compared to wild type of 83-85% (w/w dry weight), the highest level reported for cyanobacterial glycogen. The increased glycogen content observed by transmission electron microscopy was correlated with the increased levels of glucose 6-phosphate and glucose 1-phosphate, the two substrates in glycogen synthesis. Disrupted H2 synthesis also enhanced PHB accumulation up to 1.4-fold under -P and 1.6-fold under -N and increased levels of photosynthetic pigments (chlorophyll a, phycocyanin, and allophycocyanin) by 1.3- to 1.5-fold under BG11. Thus, disrupted H2 synthesis increased levels of NAD(P)H, which may be utilized for the biosynthesis of glycogen, PHB, and pigments. This strategy might be applicable for enhancing other biosynthetic pathways that utilize NAD(P)H.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water. Commun Biol 2021; 4:845. [PMID: 34234272 PMCID: PMC8263762 DOI: 10.1038/s42003-021-02365-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
The contribution of oxic methane production to greenhouse gas emissions from lakes is globally relevant, yet uncertainties remain about the levels up to which methanogenesis can counterbalance methanotrophy by leading to CH4 oversaturation in productive surface waters. Here, we explored the biogeochemical and microbial community variation patterns in a meromictic soda lake, in the East African Rift Valley (Kenya), showing an extraordinarily high concentration of methane in oxic waters (up to 156 µmol L−1). Vertical profiles of dissolved gases and their isotopic signature indicated a biogenic origin of CH4. A bloom of Oxyphotobacteria co-occurred with abundant hydrogenotrophic and acetoclastic methanogens, mostly found within suspended aggregates promoting the interactions between Bacteria, Cyanobacteria, and Archaea. Moreover, aggregate sedimentation appeared critical in connecting the lake compartments through biomass and organic matter transfer. Our findings provide insights into understanding how hydrogeochemical features of a meromictic soda lake, the origin of carbon sources, and the microbial community profiles, could promote methane oversaturation and production up to exceptionally high rates. Fazi et al. report on an extraordinarily high biogenic methane concentration detected in the surface water of Lake Sonachi, Kenya. Using gas chromatography and microbiome profiling, they determine that these high concentrations are associated with cyanobacterial blooms and help provide insight to methanogenesis in meromictic soda lakes.
Collapse
|
16
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
17
|
Artz JH, Tokmina-Lukaszewska M, Mulder DW, Lubner CE, Gutekunst K, Appel J, Bothner B, Boehm M, King PW. The structure and reactivity of the HoxEFU complex from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2020; 295:9445-9454. [PMID: 32409585 PMCID: PMC7363133 DOI: 10.1074/jbc.ra120.013136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H2)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H2, NAD(P)H, and Fdx remain to be resolved. To address these questions, here we analyzed recombinantly produced HoxEFU by electron paramagnetic resonance spectroscopy and kinetic assays with natural substrates. The purified HoxEFU subcomplex catalyzed electron transfer reactions among NAD(P)H, flavodoxin, and several ferredoxins, thus functioning in vitro as a shuttle among different cyanobacterial pools of reducing equivalents. Both Fdx1-dependent reductions of NAD+ and NADP+ were cooperative. HoxEFU also catalyzed the flavodoxin-dependent reduction of NAD(P)+, Fdx2-dependent oxidation of NADH and Fdx4- and Fdx11-dependent reduction of NAD+. MS-based mapping identified an Fdx1-binding site at the junction of HoxE and HoxF, adjacent to iron-sulfur (FeS) clusters in both subunits. Overall, the reactivity of HoxEFU observed here suggests that it functions in managing peripheral electron flow from photosynthetic electron transfer, findings that reveal detailed insights into how ubiquitous cellular components may be used to allocate energy flow into specific bioenergetic products.
Collapse
Affiliation(s)
- Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Jens Appel
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Marko Boehm
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
18
|
Kannchen D, Zabret J, Oworah-Nkruma R, Dyczmons-Nowaczyk N, Wiegand K, Löbbert P, Frank A, Nowaczyk MM, Rexroth S, Rögner M. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148208. [PMID: 32339488 DOI: 10.1016/j.bbabio.2020.148208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Photosynthetic microorganisms such as the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) can be exploited for the light-driven synthesis of valuable compounds. Thermodynamically, it is most beneficial to branch-off photosynthetic electrons at ferredoxin (Fd), which provides electrons for a variety of fundamental metabolic pathways in the cell, with the ferredoxin-NADP+ Oxido-Reductase (FNR, PetH) being the main target. In order to re-direct electrons from Fd to another consumer, the high electron transport rate between Fd and FNR has to be reduced. Based on our previous in vitro experiments, corresponding FNR-mutants at position FNR_K190 (Wiegand, K., et al.: "Rational redesign of the ferredoxin-NADP-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production". Biochim Biophys Acta, 2018) have been generated in Synechocystis cells to study their impact on the cellular metabolism and their potential for a future hydrogen-producing design cell. Out of two promising candidates, mutation FNR_K190D proved to be lethal due to oxidative stress, while FNR_K190A was successfully generated and characterized: The light induced NADPH formation is clearly impaired in this mutant and it shows also major metabolic adaptations like a higher glucose metabolism as evidenced by quantitative mass spectrometric analysis. These results indicate a high potential for the future use of photosynthetic electrons in engineered design cells - for instance for hydrogen production. They also show substantial differences of interacting proteins in an in vitro environment vs. physiological conditions in whole cells.
Collapse
Affiliation(s)
- Daniela Kannchen
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jure Zabret
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Regina Oworah-Nkruma
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nina Dyczmons-Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katrin Wiegand
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Pia Löbbert
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Marc Michael Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Sascha Rexroth
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
19
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Shimakawa G, Murakami A, Niwa K, Matsuda Y, Wada A, Miyake C. Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. PHOTOSYNTHESIS RESEARCH 2019; 139:401-411. [PMID: 29845382 DOI: 10.1007/s11120-018-0522-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/18/2018] [Indexed: 05/24/2023]
Abstract
While subject to illumination, photosystem I (PSI) has the potential to produce reactive oxygen species (ROS) that can cause photo-oxidative damage in oxygenic photoautotrophs. The reaction center chlorophyll in PSI (P700) is kept oxidized in excess light conditions to limit over-excitation of PSI and alleviate the production of ROS. Oxidation of P700 requires a sufficient electron sink for PSI, which is responsible for flavodiiron proteins (FLV) safely dissipating electrons to O2 in cyanobacteria, green algae, and land plants except for angiosperms during short-pulse light (SP) illumination under which photosynthesis and photorespiration do not occur. This fact implies that O2 usage is essential for P700 oxidation but also raises the question why angiosperms lost FLV. Here, we first found that aquatic photoautotrophs in red plastid lineage, in which no gene for FLV has been found, could keep P700 oxidized during SP illumination alleviating the photo-oxidative damage in PSI even without O2 usage. We comprehensively assessed P700 oxidation during SP illumination in the presence and absence of O2 in cyanobacteria (Cyanophyta), green algae (Chlorophyta), angiosperms (Streptophyta), red algae (Rhodophyta), and secondary algae (Cryptophyta, Haptophyta, and Heterokontophyta). A variety of dependencies of P700 oxidation on O2 among these photoautotrophs clearly suggest that O2 usage and FLV are not universally required to oxidize P700 for protecting PSI against ROS damage. Our results expand the understanding of the diverse strategies taken by oxygenic photoautotrophs to oxidize P700 and mitigate the risks of ROS.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, 2746 Iwaya, Awaji, Hyogo, 656-2401, Japan
| | - Kyosuke Niwa
- Fisheries Technology Institute, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Akashi, Hyogo, 674-0093, Japan
- Department of Marine Biosciences, Faculty of Marine Life Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Yusuke Matsuda
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ayumi Wada
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Goban, Chiyoda, Tokyo, 102-0076, Japan.
| |
Collapse
|
21
|
Identification of Different Putative Outer Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide, or Electrode Reduction by Geobacter sulfurreducens. J Bacteriol 2018; 200:JB.00347-18. [PMID: 30038047 PMCID: PMC6148476 DOI: 10.1128/jb.00347-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Gram-negative metal-reducing bacteria utilize electron conduits, chains of redox proteins spanning the outer membrane, to transfer electrons to the extracellular surface. Only one pathway for electron transfer across the outer membrane of Geobacter sulfurreducens has been linked to Fe(III) reduction. However, G. sulfurreducens is able to respire a wide array of extracellular substrates. Here we present the first combinatorial genetic analysis of five different electron conduits via creation of new markerless deletion strains and complementation vectors. Multiple conduit gene clusters appear to have overlapping roles, including two that have never been linked to metal reduction. Another recently described cluster (ExtABCD) was the only electron conduit essential during electrode reduction, a substrate of special importance to biotechnological applications of this organism. At least five gene clusters in the Geobacter sulfurreducens genome encode putative “electron conduits” implicated in electron transfer across the outer membrane, each containing a periplasmic multiheme c-type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single-gene-cluster deletions and all possible multiple-deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III) and Mn(IV) oxides, and graphite electrodes poised at +0.24 V and −0.1 V versus the standard hydrogen electrode (SHE). Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously described omcBC cluster caused defects, but deletion of additional components in an ΔomcBC background, such as extEFG, were needed to produce defects greater than 50% compared to findings with the wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the ΔextABCD mutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III) oxide, Mn(IV) oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than the wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth conditions showed all of these ext clusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing only extABCD detected no significant changes in expression of genes encoding known redox proteins or pilus components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth of G. sulfurreducens, depending on the available extracellular electron acceptor. IMPORTANCE Gram-negative metal-reducing bacteria utilize electron conduits, chains of redox proteins spanning the outer membrane, to transfer electrons to the extracellular surface. Only one pathway for electron transfer across the outer membrane of Geobacter sulfurreducens has been linked to Fe(III) reduction. However, G. sulfurreducens is able to respire a wide array of extracellular substrates. Here we present the first combinatorial genetic analysis of five different electron conduits via creation of new markerless deletion strains and complementation vectors. Multiple conduit gene clusters appear to have overlapping roles, including two that have never been linked to metal reduction. Another recently described cluster (ExtABCD) was the only electron conduit essential during electrode reduction, a substrate of special importance to biotechnological applications of this organism.
Collapse
|
22
|
Gutekunst K. Hypothesis on the Synchronistic Evolution of Autotrophy and Heterotrophy. Trends Biochem Sci 2018; 43:402-411. [DOI: 10.1016/j.tibs.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
23
|
Chang D, Sakuma S, Kera K, Uozumi N, Arai F. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip. LAB ON A CHIP 2018; 18:1241-1249. [PMID: 29568834 DOI: 10.1039/c7lc01245d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synechocystis sp. strain PCC6803 (Synechocystis) is a model microorganism and its mechanosensitive (MS) channels play important roles in its osmoadaptation mechanism. When the osmotic concentration of the culture environment changes, the inner pressure of the cell also changes due to the transportation of water through ion channels. Because the tension in the cell membrane relates to the inner pressure, we expect that the response of the MS channels to an osmotic concentration change could be evaluated by measuring their mechanical properties. Here, we propose a system for the measurement of the mechanical properties of a single Synechocystis cell. We developed a robot-integrated microfluidic chip combined with optical tweezers. The chip has an external actuated pushing probe and a force sensor probe. A single cell was located between the tip of both probes using the optical tweezers and was then deformed using the probes. As a result, we could measure the force and deformation and compare the Young's moduli of two groups: a group of wild type cells and a group of mutant (genetically modified) cells with a defect in the MS channels, at three different osmotic concentrations. The results showed that the Young's modulus of each group changed according to the osmotic concentration, while changes in cell size were too small to be detected. These results confirmed that the proposed evaluation method provides an understanding of the physiological function of MS channels for keeping the cell integrity of microorganisms when the cells are exposed to different external osmotic changes.
Collapse
Affiliation(s)
- Di Chang
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Shinya Sakuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Kota Kera
- Department of Biomolecular Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
24
|
Gutekunst K, Hoffmann D, Westernströer U, Schulz R, Garbe-Schönberg D, Appel J. In-vivo turnover frequency of the cyanobacterial NiFe-hydrogenase during photohydrogen production outperforms in-vitro systems. Sci Rep 2018; 8:6083. [PMID: 29666458 PMCID: PMC5904137 DOI: 10.1038/s41598-018-24430-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
Cyanobacteria provide all components for sunlight driven biohydrogen production. Their bidirectional NiFe-hydrogenase is resistant against low levels of oxygen with a preference for hydrogen evolution. However, until now it was unclear if its catalytic efficiency can keep pace with the photosynthetic electron transfer rate. We identified NikKLMQO (sll0381-sll0385) as a nickel transporter, which is required for hydrogen production. ICP-MS measurements were used to quantify hydrogenase molecules per cell. We found 400 to 2000 hydrogenase molecules per cell depending on the conditions. In-vivo turnover frequencies of the enzyme ranged from 62 H2/s in the wild type to 120 H2/s in a mutant during photohydrogen production. These frequencies are above maximum in-vivo photosynthetic electron transfer rates of 47 e-/s (equivalent to 24 H2/s). They are also above those of existing in-vitro systems working with unlimited electron supply and show that in-vivo photohydrogen production is limited by electron delivery to the enzyme.
Collapse
Affiliation(s)
- Kirstin Gutekunst
- Botanical Institute, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Dörte Hoffmann
- Botanical Institute, Christian-Albrechts-University, 24118, Kiel, Germany
| | | | - Rüdiger Schulz
- Botanical Institute, Christian-Albrechts-University, 24118, Kiel, Germany
| | | | - Jens Appel
- Botanical Institute, Christian-Albrechts-University, 24118, Kiel, Germany.
| |
Collapse
|
25
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
26
|
Zang SS, Jiang HB, Song WY, Chen M, Qiu BS. Characterization of the sulfur-formation (suf) genes in Synechocystis sp. PCC 6803 under photoautotrophic and heterotrophic growth conditions. PLANTA 2017; 246:927-938. [PMID: 28710587 DOI: 10.1007/s00425-017-2738-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The sulfur-formation ( suf ) genes play important roles in both photosynthesis and respiration of cyanobacteria, but the organism prioritizes Fe-S clusters for respiration at the expense of photosynthesis. Iron-sulfur (Fe-S) clusters are important to all living organisms, but their assembly mechanism is poorly understood in photosynthetic organisms. Unlike non-photosynthetic bacteria that rely on the iron-sulfur cluster system, Synechocystis sp. PCC 6803 uses the Sulfur-Formation (SUF) system as its major Fe-S cluster assembly pathway. The co-expression of suf genes and the direct interactions among SUF subunits indicate that Fe-S assembly is a complex process in which no suf genes can be knocked out completely. In this study, we developed a condition-controlled SUF Knockdown mutant by inserting the petE promoter, which is regulated by Cu2+ concentration, in front of the suf operon. Limited amount of the SUF system resulted in decreased chlorophyll contents and photosystem activities, and a lower PSI/PSII ratio. Unexpectedly, increased cyclic electron transport and a decreased dark respiration rate were only observed under photoautotrophic growth conditions. No visible effects on the phenotype of SUF Knockdown mutant were observed under heterotrophic culture conditions. The phylogenetic distribution of the SUF system indicates that it has a co-evolutionary relationship with photosynthetic energy storing pathways.
Collapse
Affiliation(s)
- Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Hai-Bo Jiang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Maegaard K, Nielsen LP, Revsbech NP. Hydrogen Dynamics in Cyanobacteria Dominated Microbial Mats Measured by Novel Combined H 2/H 2S and H 2/O 2 Microsensors. Front Microbiol 2017; 8:2022. [PMID: 29093704 PMCID: PMC5651244 DOI: 10.3389/fmicb.2017.02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Hydrogen may accumulate to micromolar concentrations in cyanobacterial mat communities from various environments, but the governing factors for this accumulation are poorly described. We used newly developed sensors allowing for simultaneous measurement of H2S and H2 or O2 and H2 within the same point to elucidate the interactions between oxygen, sulfate reducing bacteria, and H2 producing microbes. After onset of darkness and subsequent change from oxic to anoxic conditions within the uppermost ∼1 mm of the mat, H2 accumulated to concentrations of up to 40 μmol L-1 in the formerly oxic layer, but with high variability among sites and sampling dates. The immediate onset of H2 production after darkening points to fermentation as the main H2 producing process in this mat. The measured profiles indicate that a gradual disappearance of the H2 peak was mainly due to the activity of sulfate reducing bacteria that invaded the formerly oxic surface layer from below, or persisted in an inactive state in the oxic mat during illumination. The absence of significant H2 consumption in the formerly oxic mat during the first ∼30 min after onset of anoxic conditions indicated absence of active sulfate reducers in this layer during the oxic period. Addition of the methanogenesis inhibitor BES led to increase in H2, indicating that methanogens contributed to the consumption of H2. Both H2 formation and consumption seemed unaffected by the presence/absence of H2S.
Collapse
Affiliation(s)
| | | | - Niels P. Revsbech
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Touloupakis E, Benavides AMS, Cicchi B, Torzillo G. Growth and hydrogen production of outdoor cultures of Synechocystis PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Iijima H, Shirai T, Okamoto M, Pinto F, Tamagnini P, Hasunuma T, Kondo A, Hirai MY, Osanai T. Metabolomics-based analysis revealing the alteration of primary carbon metabolism by the genetic manipulation of a hydrogenase HoxH in Synechocystis sp. PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Ueda S, Kawamura Y, Iijima H, Nakajima M, Shirai T, Okamoto M, Kondo A, Hirai MY, Osanai T. Anionic metabolite biosynthesis enhanced by potassium under dark, anaerobic conditions in cyanobacteria. Sci Rep 2016; 6:32354. [PMID: 27576448 PMCID: PMC5006033 DOI: 10.1038/srep32354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/08/2016] [Indexed: 11/09/2022] Open
Abstract
Potassium (K(+)) is an essential macronutrient for all living organisms including cyanobacteria. Cyanobacteria are a group of bacteria performing oxygenic photosynthesis, widely studied in basic and applied sciences. The primary metabolism of the unicellular cyanobacterium Synechocystis sp. PCC 6803 is altered by environmental conditions, and it excretes organic acids and hydrogen under dark, anaerobic conditions. Here we demonstrated that K(+) widely changes the primary carbon metabolism of this cyanobacterium. Succinate and lactate excretion from the cells incubated under dark, anaerobic conditions was enhanced in the presence of K(+), while hydrogen production was repressed. The addition of K(+) and the genetic manipulation of acetate kinase AckA and an RNA polymerase sigma factor SigE additively increased succinate and lactate production to 141.0 and 217.6 mg/L, which are 11 and 46 times, compared to the wild-type strain without K(+), respectively. Intracellular levels of 2-oxoglutarate, succinate, fumarate, and malate increased by K(+) under dark, anaerobic conditions. This study provides the evidence of the considerable effect of K(+) on the biosynthesis of anionic metabolites in a unicellular cyanobacterium.
Collapse
Affiliation(s)
- Sakiko Ueda
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yuhki Kawamura
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hiroko Iijima
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Mitsuharu Nakajima
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mami Okamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akihiko Kondo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
31
|
Everroad RC, Stuart RK, Bebout BM, Detweiler AM, Lee JZ, Woebken D, Prufert-Bebout L, Pett-Ridge J. Permanent draft genome of strain ESFC-1: ecological genomics of a newly discovered lineage of filamentous diazotrophic cyanobacteria. Stand Genomic Sci 2016; 11:53. [PMID: 27559430 PMCID: PMC4995827 DOI: 10.1186/s40793-016-0174-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/15/2016] [Indexed: 11/10/2022] Open
Abstract
The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.
Collapse
Affiliation(s)
- R. Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Rhona K. Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
| | - Angela M. Detweiler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Jackson Z. Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Current address: Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
32
|
Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:247-55. [PMID: 26498190 DOI: 10.1016/j.bbabio.2015.10.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
Cyanobacteria have evolved elaborate electron transport pathways to carry out photosynthesis and respiration, and to dissipate excess energy in order to limit cellular damage. Our understanding of the complexity of these systems and their role in allowing cyanobacteria to cope with varying environmental conditions is rapidly improving, but many questions remain. We summarize current knowledge of cyanobacterial electron transport pathways, including the possible roles of alternative pathways in photoprotection. We describe extracellular electron transport, which is as yet poorly understood. Biological photovoltaic devices, which measure electron output from cells, and which have been proposed as possible means of renewable energy generation, may be valuable tools in understanding cyanobacterial electron transfer pathways, and enhanced understanding of electron transfer may allow improvements in the efficiency of power output. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
|
33
|
Badri H, Monsieurs P, Coninx I, Nauts R, Wattiez R, Leys N. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays. PLoS One 2015; 10:e0135565. [PMID: 26308624 PMCID: PMC4550399 DOI: 10.1371/journal.pone.0135565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of microbial cells, in particularly for photosynthetic organisms as the cyanobacterium Arthrospira.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Robin Nauts
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Groups for Molecular and Cellular Biology and Biosphere Impact Studies, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| |
Collapse
|
34
|
Nielsen M, Revsbech NP, Kühl M. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Front Microbiol 2015; 6:726. [PMID: 26257714 PMCID: PMC4508582 DOI: 10.3389/fmicb.2015.00726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022] Open
Abstract
We used a novel amperometric microsensor for measuring hydrogen gas production and consumption at high spatio-temporal resolution in cyanobacterial biofilms and mats dominated by non-heterocystous filamentous cyanobacteria (Microcoleus chtonoplastes and Oscillatoria sp.). The new microsensor is based on the use of an organic electrolyte and a stable internal reference system and can be equipped with a chemical sulfide trap in the measuring tip; it exhibits very stable and sulfide-insensitive measuring signals and a high sensitivity (1.5–5 pA per μmol L-1 H2). Hydrogen gas measurements were done in combination with microsensor measurements of scalar irradiance, O2, pH, and H2S and showed a pronounced H2 accumulation (of up to 8–10% H2 saturation) within the upper mm of cyanobacterial mats after onset of darkness and O2 depletion. The peak concentration of H2 increased with the irradiance level prior to darkening. After an initial build-up over the first 1–2 h in darkness, H2 was depleted over several hours due to efflux to the overlaying water, and due to biogeochemical processes in the uppermost oxic layers and the anoxic layers of the mats. Depletion could be prevented by addition of molybdate pointing to sulfate reduction as a major sink for H2. Immediately after onset of illumination, a short burst of presumably photo-produced H2 due to direct biophotolysis was observed in the illuminated but anoxic mat layers. As soon as O2 from photosynthesis started to accumulate, the H2 was consumed rapidly and production ceased. Our data give detailed insights into the microscale distribution and dynamics of H2 in cyanobacterial biofilms and mats, and further support that cyanobacterial H2 production can play a significant role in fueling anaerobic processes like e.g., sulfate reduction or anoxygenic photosynthesis in microbial mats.
Collapse
Affiliation(s)
- Michael Nielsen
- Section of Microbiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Niels P Revsbech
- Section of Microbiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark ; Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Ultimo NSW, Australia
| |
Collapse
|
35
|
[NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark. Sci Rep 2015. [PMID: 26215212 PMCID: PMC4517062 DOI: 10.1038/srep12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases.
Collapse
|
36
|
Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 2015; 16:10537-61. [PMID: 26006225 PMCID: PMC4463661 DOI: 10.3390/ijms160510537] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review.
Collapse
Affiliation(s)
- Namita Khanna
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| |
Collapse
|
37
|
Hoffmann D, Maldonado J, Wojciechowski MF, Garcia-Pichel F. Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Environ Microbiol 2015; 17:3738-53. [DOI: 10.1111/1462-2920.12769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dörte Hoffmann
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| | - Juan Maldonado
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| | | | | |
Collapse
|
38
|
Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C. FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. PLANT PHYSIOLOGY 2015; 167:472-80. [PMID: 25540330 PMCID: PMC4326736 DOI: 10.1104/pp.114.249987] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/23/2014] [Indexed: 05/22/2023]
Abstract
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Akiko Nishi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Ryosuke Hayashi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Hiroshi Yamamoto
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Katsuhiko Sakamoto
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Amane Makino
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| |
Collapse
|
39
|
Karstens K, Wahlefeld S, Horch M, Grunzel M, Lauterbach L, Lendzian F, Zebger I, Lenz O. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Biochemistry 2015; 54:389-403. [PMID: 25517969 DOI: 10.1021/bi501347u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The soluble NAD(+)-reducing hydrogenase (SH) from Ralstonia eutropha H16 belongs to the O2-tolerant subtype of pyridine nucleotide-dependent [NiFe]-hydrogenases. To identify molecular determinants for the O2 tolerance of this enzyme, we introduced single amino acids exchanges in the SH small hydrogenase subunit. The resulting mutant strains and proteins were investigated with respect to their physiological, biochemical, and spectroscopic properties. Replacement of the four invariant conserved cysteine residues, Cys41, Cys44, Cys113, and Cys179, led to unstable protein, strongly supporting their involvement in the coordination of the iron-sulfur cluster proximal to the catalytic [NiFe] center. The Cys41Ser exchange, however, resulted in an SH variant that displayed up to 10% of wild-type activity, suggesting that the coordinating role of Cys41 might be partly substituted by the nearby Cys39 residue, which is present only in O2-tolerant pyridine nucleotide-dependent [NiFe]-hydrogenases. Indeed, SH variants carrying glycine, alanine, or serine in place of Cys39 showed increased O2 sensitivity compared to that of the wild-type enzyme. Substitution of further amino acids typical for O2-tolerant SH representatives did not greatly affect the H2-oxidizing activity in the presence of O2. Remarkably, all mutant enzymes investigated by electron paramagnetic resonance spectroscopy did not reveal significant spectral changes in relation to wild-type SH, showing that the proximal iron-sulfur cluster does not contribute to the wild-type spectrum. Interestingly, exchange of Trp42 by serine resulted in a completely redox-inactive [NiFe] site, as revealed by infrared spectroscopy and H2/D(+) exchange experiments. The possible role of this residue in electron and/or proton transfer is discussed.
Collapse
Affiliation(s)
- Katja Karstens
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin , Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kothari A, Parameswaran P, Garcia-Pichel F. Powerful fermentative hydrogen evolution of photosynthate in the cyanobacterium Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase. Front Microbiol 2014; 5:680. [PMID: 25540642 PMCID: PMC4261827 DOI: 10.3389/fmicb.2014.00680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/20/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and Microcoleus chthonoplastes obtained from marine intertidal cyanobacterial mats were recently found to display much better H2 production potential. Because of their ecological origin in environments that become quickly anoxic in the dark, we hypothesized that this differential ability may have evolved to serve a role in the fermentation of the photosynthate. Here we show that, when forced to ferment internal substrate, these cyanobacteria display desirable characteristics of physiological H2 production. Among them, the strain L. aestuarii BL J had the fastest specific rates and attained the highest H2 concentrations during fermentation of photosynthate, which proceeded via a mixed acid fermentation pathway to yield acetate, ethanol, lactate, H2, CO2, and pyruvate. Contrary to expectations, the H2 yield per mole of glucose was only average compared to that of other cyanobacteria. Thermodynamic analyses point to the use of electron donors more electronegative than NAD(P)H in Lyngbya hydrogenases as the basis for its strong H2 production ability. In any event, the high specific rates and H2 concentrations coupled with the lack of reversibility of the enzyme, at the expense of internal, photosynthetically generated reductants, makes L. aestuarii BL J and/or its enzymes, a potentially feasible platform for large-scale H2 production.
Collapse
Affiliation(s)
- Ankita Kothari
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | | | | |
Collapse
|
41
|
Burroughs NJ, Boehm M, Eckert C, Mastroianni G, Spence EM, Yu J, Nixon PJ, Appel J, Mullineaux CW, Bryan SJ. Solar powered biohydrogen production requires specific localization of the hydrogenase. ENERGY & ENVIRONMENTAL SCIENCE 2014; 7:3791-3800. [PMID: 26339289 PMCID: PMC4535174 DOI: 10.1039/c4ee02502d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/04/2014] [Indexed: 05/15/2023]
Abstract
Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon exposure of anoxic cells to light, potentially acting as a "valve" releasing excess electrons from the electron transport chain. However, its interaction with the photosynthetic electron transport chain remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a subpopulation localized to discrete puncta in the distal thylakoid. Thylakoid localisation of both the HoxH and HoxY hydrogenase subunits is confirmed by immunogold electron microscopy. The diaphorase HoxE subunit is essential for recruitment to the dispersed thylakoid population, potentially anchoring the hydrogenase to the membrane, but aggregation to puncta occurs through a distinct HoxE-independent mechanism. Membrane association does not require NDH-1. Localization is dynamic on a scale of minutes, with anoxia and high light inducing a significant redistribution between these populations in favour of puncta. Since HoxE is essential for access to its electron donor, electron supply to the hydrogenase depends on a physiologically controlled localization, potentially offering a new avenue to enhance photosynthetic hydrogen production by exploiting localization/aggregation signals.
Collapse
Affiliation(s)
- Nigel J Burroughs
- Systems Biology Centre , Coventry House , University of Warwick , Coventry , CV4 7AL , UK
| | - Marko Boehm
- Imperial College London , South Kensington Campus , London , SW7 2AZ , UK
| | - Carrie Eckert
- Biosciences Centre , National Renewable Energy Laboratory , Golden , Colorado 80401 , USA ; Renewable and Sustainable Energy Institute, University of Colorado Boulder , Boulder , CO 80309 , USA
| | - Giulia Mastroianni
- School of Biological and Chemical Sciences , Queen Mary University of London , Mile End Road , London , E1 4NS , UK .
| | - Edward M Spence
- Pharmaceutical Science Division , King's College London , Franklin-Wilkins Building, 150 Stamford Street , London , SE1 9NH , UK
| | - Jianfeng Yu
- Imperial College London , South Kensington Campus , London , SW7 2AZ , UK
| | - Peter J Nixon
- Imperial College London , South Kensington Campus , London , SW7 2AZ , UK
| | - Jens Appel
- Botanical Institute , University of Kiel , Am Botanischen Garten 1-9 , 24118 Kiel , Germany
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences , Queen Mary University of London , Mile End Road , London , E1 4NS , UK .
| | - Samantha J Bryan
- School of Biological and Chemical Sciences , Queen Mary University of London , Mile End Road , London , E1 4NS , UK .
| |
Collapse
|
42
|
Hydrogen photoproduction by immobilized n2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process. Appl Environ Microbiol 2014; 80:5807-17. [PMID: 25015894 DOI: 10.1128/aem.01776-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. Our results demonstrated that alginate-entrapped ΔhupL cells were considerably more sensitive to high light intensity, N deficiency, and imbalances in C/N ratios than wild-type cells. In the second approach, Anabaena strain PCC 7120, its ΔhupL mutant, and Calothrix strain 336/3 films were supplemented with N2 by periodic treatments of air, or air plus CO2. These treatments restored the photosynthetic activity of the cells and led to a high level of H2 production in Calothrix 336/3 and ΔhupL cells (except for the treatment air plus CO2) but not in the Anabaena PCC 7120 strain (for which H2 yields did not change after air treatments). The highest H2 yield was obtained by the air treatment of ΔhupL cells. Notably, the supplementation of CO2 under an air atmosphere led to prominent symptoms of N deficiency in the ΔhupL strain but not in the wild-type strain. We propose that uptake hydrogenase activity in heterocystous cyanobacteria not only supports nitrogenase activity by removing excess O2 from heterocysts but also indirectly protects the photosynthetic apparatus of vegetative cells from photoinhibition, especially under stressful conditions that cause an imbalance in the C/N ratio in cells.
Collapse
|
43
|
Proteomic analysis of Synechocystis sp. PCC6803 responses to low-temperature and high light conditions. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol 2014; 18:30-8. [PMID: 24607643 DOI: 10.1016/j.mib.2014.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
Hydrogenases are ubiquitous in ecosystems and widespread in microorganisms. In bacteria, hydrogen metabolism is a facultative trait that is tightly regulated in response to both external factors (e.g. gas concentrations) and internal factors (e.g. redox state). Here we consider how environmental and pathogenic bacteria regulate [NiFe]-hydrogenases to adapt to chemical changes and meet physiological needs. We introduce this concept by exploring how Ralstonia eutropha switches between heterotrophic and lithotrophic growth modes by sensing hydrogen and electron availability. The regulation and integration of hydrogen metabolism in the virulence of Salmonella enterica and Helicobacter pylori, persistence of mycobacteria and streptomycetes, and differentiation of filamentous cyanobacteria are subsequently discussed. We also consider how these findings are extendable to other systems.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
46
|
Mullineaux CW. Electron transport and light-harvesting switches in cyanobacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:7. [PMID: 24478787 PMCID: PMC3896814 DOI: 10.3389/fpls.2014.00007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/06/2014] [Indexed: 05/19/2023]
Abstract
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- *Correspondence: ConradW. Mullineaux, School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK e-mail:
| |
Collapse
|
47
|
Tsygankov A, Kosourov S. Immobilization of Photosynthetic Microorganisms for Efficient Hydrogen Production. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Mullineaux CW. Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:503-11. [PMID: 24316145 DOI: 10.1016/j.bbabio.2013.11.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/15/2013] [Accepted: 11/24/2013] [Indexed: 01/10/2023]
Abstract
The thylakoid membranes of cyanobacteria are the major sites of respiratory electron transport as well as photosynthetic light reactions. The photosynthetic and respiratory electron transport chains share some components, and their presence in the same membrane opens up the possibility for a variety of "unorthodox" electron transport routes. Many of the theoretically possible electron transport pathways have indeed been detected in particular species and circumstances. Electron transport has a crucial impact on the redox balance of the cell and therefore the pathways of electron flow in the cyanobacterial thylakoid membrane must be tightly regulated. This review summarises what is known of cyanobacterial electron transport components, their interactions and their sub-cellular location. The role of thylakoid membrane organisation in controlling electron transport pathways is discussed with respect to recent evidence that the larger-scale distribution of complexes in the membrane is important for controlling electron exchange between the photosynthetic and respiratory complexes. The distribution of complexes on scales of 100nm or more is under physiological control, showing that larger-scale thylakoid membrane re-arrangement is a key factor in controlling the crosstalk between photosynthetic and respiratory electron transport. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
49
|
Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem 2013; 289:1930-7. [PMID: 24311779 DOI: 10.1074/jbc.m113.526376] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria are able to use solar energy for the production of hydrogen. It is generally accepted that cyanobacterial NiFe-hydrogenases are reduced by NAD(P)H. This is in conflict with thermodynamic considerations, as the midpoint potentials of NAD(P)H do not suffice to support the measured hydrogen production under physiological conditions. We show that flavodoxin and ferredoxin directly reduce the bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 in vitro. A merodiploid ferredoxin-NADP reductase mutant produced correspondingly more photohydrogen. We furthermore found that the hydrogenase receives its electrons via pyruvate:flavodoxin/ferredoxin oxidoreductase (PFOR)-flavodoxin/ferredoxin under fermentative conditions, enabling the cells to gain ATP. These results strongly support that the bidirectional NiFe-hydrogenases in cyanobacteria function as electron sinks for low potential electrons from photosystem I and as a redox balancing device under fermentative conditions. However, the selective advantage of this enzyme is not known. No strong phenotype of mutants lacking the hydrogenase has been found. Because bidirectional hydrogenases are widespread in aquatic nutrient-rich environments that are capable of triggering phytoplankton blooms, we mimicked those conditions by growing cells in the presence of increased amounts of dissolved organic carbon and dissolved organic nitrogen. Under these conditions the hydrogenase was found to be essential. As these conditions close the two most important sinks for reduced flavodoxin/ferredoxin (CO2-fixation and nitrate reduction), this discovery further substantiates the connection between flavodoxin/ferredoxin and the NiFe-hydrogenase.
Collapse
Affiliation(s)
- Kirstin Gutekunst
- From the Botanical Institute, Christian-Albrechts-University, 24118 Kiel, Germany and
| | | | | | | | | | | |
Collapse
|
50
|
Photobiological hydrogen production: Bioenergetics and challenges for its practical application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2013. [DOI: 10.1016/j.jphotochemrev.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|