1
|
The Primary Antisense Transcriptome of Halobacterium salinarum NRC-1. Genes (Basel) 2019; 10:genes10040280. [PMID: 30959844 PMCID: PMC6523106 DOI: 10.3390/genes10040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3′ ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin–antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.
Collapse
|
2
|
DasSarma S, DasSarma P. Gas Vesicle Nanoparticles for Antigen Display. Vaccines (Basel) 2015; 3:686-702. [PMID: 26350601 PMCID: PMC4586473 DOI: 10.3390/vaccines3030686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| |
Collapse
|
3
|
Haloarchaea and the formation of gas vesicles. Life (Basel) 2015; 5:385-402. [PMID: 25648404 PMCID: PMC4390858 DOI: 10.3390/life5010385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes.
Collapse
|
4
|
Tavlaridou S, Faist K, Weitzel K, Pfeifer F. Effect of an overproduction of accessory Gvp proteins on gas vesicle formation in Haloferax volcanii. Extremophiles 2013; 17:277-87. [PMID: 23338749 DOI: 10.1007/s00792-013-0515-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022]
Abstract
Gas vesicle formation in haloarchaea requires the expression of the p-vac region consisting of 14 genes, gvpACNO and gvpDEFGHIJKLM. Expression of gvpFGHIJKLM leads to essential accessory proteins formed in minor amounts. An overexpression of gvpG, gvpH or gvpM in addition to p-vac inhibited gas vesicle formation, whereas large amounts of all other Gvp proteins did not disturb the synthesis. The unbalanced expression and in particular an aggregation of the overproduced Gvp with other accessory Gvp derived from p-vac could be a reason for the inhibition. Western analyses demonstrated that the hydrophobic GvpM (and GvpJ) indeed form multimers. Fluorescent dots of GvpM-GFP were seen in cells in vivo underlining an aggregation of GvpM. In search for proteins neutralizing the inhibitory effect in case of GvpM, p-vac +pGM(ex), +pHM(ex), +pJM(ex), and +pLM(ex) transformants were constructed. The inhibitory effect of GvpM on gas vesicle formation was suppressed by GvpH, GvpJ or GvpL, but not by GvpG. Western analyses demonstrated that pHM(ex) and pJM(ex) transformants contained additional larger protein bands when probed with an antiserum raised against GvpH or GvpJ, implying interactions. The balanced amount of GvpM-GvpH and GvpM-GvpJ appears to be important during gas vesicle genesis.
Collapse
Affiliation(s)
- Stella Tavlaridou
- Mikrobiologie und Archaea, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstrasse 10, Darmstadt, Germany
| | | | | | | |
Collapse
|
5
|
Life at High Salt and Low Oxygen: How Do the Halobacteriaceae Cope with Low Oxygen Concentrations in Their Environment? CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Oren A. The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life (Basel) 2012; 3:1-20. [PMID: 25371329 PMCID: PMC4187190 DOI: 10.3390/life3010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023] Open
Abstract
A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
7
|
Fröls S, Dyall-Smith M, Pfeifer F. Biofilm formation by haloarchaea. Environ Microbiol 2012; 14:3159-74. [DOI: 10.1111/j.1462-2920.2012.02895.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Fröls
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| | - Mike Dyall-Smith
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2678; Australia
| | - Felicitas Pfeifer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| |
Collapse
|
8
|
Childs TS, Webley WC. In vitro assessment of halobacterial gas vesicles as a Chlamydia vaccine display and delivery system. Vaccine 2012; 30:5942-8. [DOI: 10.1016/j.vaccine.2012.07.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 07/18/2012] [Indexed: 12/30/2022]
|
9
|
Martins LF, Peixoto RS. Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 2012; 43:865-72. [PMID: 24031900 PMCID: PMC3768873 DOI: 10.1590/s1517-83822012000300003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/07/2011] [Accepted: 06/07/2012] [Indexed: 12/03/2022] Open
Abstract
Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.
Collapse
Affiliation(s)
- Luiz Fernando Martins
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello, Petrobras, Rio de Janeiro, RJ, Brasil
| | - Raquel Silva Peixoto
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal de Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
|
11
|
Abstract
Prokaryotic cells move through liquids or over moist surfaces by swimming, swarming, gliding, twitching or floating. An impressive diversity of motility mechanisms has evolved in prokaryotes. Movement can involve surface appendages, such as flagella that spin, pili that pull and Mycoplasma 'legs' that walk. Internal structures, such as the cytoskeleton and gas vesicles, are involved in some types of motility, whereas the mechanisms of some other types of movement remain mysterious. Regardless of the type of motility machinery that is employed, most motile microorganisms use complex sensory systems to control their movements in response to stimuli, which allows them to migrate to optimal environments.
Collapse
|
12
|
Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl F, Stan-Lotter H. Extremely halophilic archaea and the issue of long-term microbial survival. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2006; 5:203-218. [PMID: 21984879 PMCID: PMC3188376 DOI: 10.1007/s11157-006-0007-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195-250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented.
Collapse
Affiliation(s)
- Sergiu Fendrihan
- Department of Microbiology, University of Salzburg, Billrothstr. 11, A-5020 Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Oren A, Pri-El N, Shapiro O, Siboni N. Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds. SALINE SYSTEMS 2006; 2:4. [PMID: 16613609 PMCID: PMC1459177 DOI: 10.1186/1746-1448-2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 04/14/2006] [Indexed: 01/10/2023]
Abstract
BACKGROUND Possession of gas vesicles is generally considered to be advantageous to halophilic archaea: the vesicles are assumed to enable the cells to float, and thus reach high oxygen concentrations at the surface of the brine. RESULTS We studied the possible ecological advantage of gas vesicles in a dense community of flat square extremely halophilic archaea in the saltern crystallizer ponds of Eilat, Israel. We found that in this environment, the cells' content of gas vesicles was insufficient to provide positive buoyancy. Instead, sinking/floating velocities were too low to permit vertical redistribution. CONCLUSION The hypothesis that the gas vesicles enable the square archaea to float to the surface of the brines in which they live was not supported by experimental evidence. Presence of the vesicles, which are mainly located close to the cell periphery, may provide an advantage as they may aid the cells to position themselves parallel to the surface, thereby increasing the efficiency of light harvesting by the retinal pigments in the membrane.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Nuphar Pri-El
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Orr Shapiro
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachshon Siboni
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
14
|
Gregor D, Pfeifer F. In vivo analyses of constitutive and regulated promoters in halophilic archaea. MICROBIOLOGY-SGM 2005; 151:25-33. [PMID: 15632422 DOI: 10.1099/mic.0.27541-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The two gvpA promoters P(cA) and P(pA) of Halobacterium salinarum, and the P(mcA) promoter of Haloferax mediterranei were investigated with respect to growth-phase-dependent expression and regulation in Haloferax volcanii transformants using the bgaH reading frame encoding BgaH, an enzyme with beta-galactosidase activity, as reporter. For comparison, the P(fdx) promoter of the ferredoxin gene of Hbt. salinarum and the P(bgaH) promoter of Haloferax lucentense (formerly Haloferax alicantei) were analysed. P(fdx), driving the expression of a house-keeping gene, was highly active during the exponential growth phase, whereas P(bgaH) and the three gvpA promoters yielded the largest activities during the stationary growth phase. Compared to P(fdx), the basal promoter activities of P(pA) and P(mcA) were rather low, and larger activities were only detected in the presence of the endogenous transcriptional activator protein GvpE. The P(cA) promoter does not yield a detectable basal promoter activity and is only active in the presence of the homologous cGvpE. To investigate whether the P(cA)-TATA box and the BRE element were the reason for the lack of the basal P(cA) activity, these elements and also sequences further upstream were substituted with the respective sequences of the stronger P(pA) promoter and investigated in Hfx. volcanii transformants. All these promoter chimera did not yield a detectable basal promoter activity. However, whenever the P(pA)-BRE element was substituted for the P(cA)-BRE, an enhanced cGvpE-mediated activation was observed. The promoter chimeras harbouring P(pA)-BRE plus 5 (or more) bp further upstream also gained activation by the heterologous pGvpE and mcGvpE proteins. The sequence required for the GvpE-mediated activation was determined by a 4 bp scanning mutagenesis with the 45 bp region upstream of P(mcA)-BRE. None of these alterations influenced the basal promoter activity, but the sequence TGAAACGG-n4-TGAACCAA was important for the GvpE-mediated activation of P(mcA).
Collapse
Affiliation(s)
- Dagmar Gregor
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
15
|
Belenky M, Meyers R, Herzfeld J. Subunit structure of gas vesicles: a MALDI-TOF mass spectrometry study. Biophys J 2004; 86:499-505. [PMID: 14695294 PMCID: PMC1303817 DOI: 10.1016/s0006-3495(04)74128-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many aquatic microorganisms use gas vesicles to regulate their depth in the water column. The molecular basis for the novel physical properties of these floatation organelles remains mysterious due to the inapplicability of either solution or single crystal structural methods. In the present study, some folding constraints for the approximately 7-kDa GvpA building blocks of the vesicles are established via matrix-assisted laser desorption ionization time-of-flight mass spectrometry studies of intact and proteolyzed vesicles from the cyanobacterium Anabaena flos-aquae and the archaea Halobacterium salinarum. The spectra of undigested vesicles show no evidence of posttranslational modification of the GvpA. The extent of carboxypeptidase digestion shows that the alanine rich C-terminal pentapeptide of GvpA is exposed to the surface in both organisms. The bonds that are cleaved by Trypsin and GluC are exclusively in the extended N-terminus of the Anabaena flos-aquae protein and in the extended C-terminus of the Halobacterium salinarum protein. All the potentially cleavable peptide bonds in the central, highly conserved portion of the protein appear to be shielded from protease attack in spite of the fact that some of the corresponding side chains are almost certainly exposed to the aqueous medium.
Collapse
Affiliation(s)
- Marina Belenky
- Department of Chemistry and Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
16
|
Shukla HD, DasSarma S. Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J Bacteriol 2004; 186:3182-6. [PMID: 15126480 PMCID: PMC400621 DOI: 10.1128/jb.186.10.3182-3186.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Halobacterium sp. strain NRC-1 contains a large gene cluster, gvpMLKJIHGFEDACNO, that is both necessary and sufficient for the production of buoyant gas-filled vesicles. Due to the resistance of gas vesicles to solubilization, only the major gas vesicle protein GvpA and a single minor protein, GvpC, were previously detected. Here, we used immunoblotting analysis to probe for the presence of gas vesicle proteins corresponding to five additional gvp gene products. Polyclonal antisera were raised in rabbits against LacZ-GvpF, -GvpJ, and -GvpM fusion proteins and against synthetic 15-amino-acid peptides from GvpG and -L. Immunoblotting analysis was performed on cell lysates of wild-type Halobacterium sp. strain NRC-1, gas vesicle-deficient mutants, and purified gas vesicles, after purification of LacZ fusion antibodies on protein A and beta-galactosidase affinity columns. Our results show the presence of five new gas vesicle proteins (GvpF, GvpG, GvpJ, GvpL, and GvpM), bringing the total number of proteins identified in the organelles to seven. Two of the new gas vesicle proteins are similar to GvpA (GvpJ and GvpM), and two proteins contain predicted coiled-coil domains (GvpF and GvpL). GvpL exhibited a multiplet ladder on sodium dodecyl sulfate-polyacrylamide gels indicative of oligomerization and self-assembly. We discuss the possible functions of the newly discovered gas vesicle proteins in biogenesis of these unique prokaryotic flotation organelles.
Collapse
Affiliation(s)
- Hem Dutt Shukla
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
17
|
Mlouka A, Comte K, Castets AM, Bouchier C, Tandeau de Marsac N. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 2004; 186:2355-65. [PMID: 15060038 PMCID: PMC412153 DOI: 10.1128/jb.186.8.2355-2365.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcystis aeruginosa is a planktonic unicellular cyanobacterium often responsible for seasonal mass occurrences at the surface of freshwater environments. An abundant production of intracellular structures, the gas vesicles, provides cells with buoyancy. A 8.7-kb gene cluster that comprises twelve genes involved in gas vesicle synthesis was identified. Ten of these are organized in two operons, gvpA(I)A(II)A(III)CNJX and gvpKFG, and two, gvpV and gvpW, are individually expressed. In an attempt to elucidate the basis for the frequent occurrence of nonbuoyant mutants in laboratory cultures, four gas vesicle-deficient mutants from two strains of M. aeruginosa, PCC 7806 and PCC 9354, were isolated and characterized. Their molecular analysis unveiled DNA rearrangements due to four different insertion elements that interrupted gvpN, gvpV, or gvpW or led to the deletion of the gvpA(I)-A(III) region. While gvpA, encoding the major gas vesicle structural protein, was expressed in the gvpN, gvpV, and gvpW mutants, immunodetection revealed no corresponding GvpA protein. Moreover, the absence of a gas vesicle structure was confirmed by electron microscopy. This study brings out clues concerning the process driving loss of buoyancy in M. aeruginosa and reveals the requirement for gas vesicle synthesis of two newly described genes, gvpV and gvpW.
Collapse
Affiliation(s)
- Alyssa Mlouka
- Unité des Cyanobactéries (URA-CNRS 2172), Département de Microbiologie fondamentale et médicale, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
18
|
Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbø CL, Case RJ, Doolittle WF. Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 2004; 37:283-328. [PMID: 14616063 DOI: 10.1146/annurev.genet.37.050503.084247] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lateral gene transfer (LGT) is now known to be a major force in the evolution of prokaryotic genomes. To date, most analyses have focused on either (a) verifying phylogenies of individual genes thought to have been transferred, or (b) estimating the fraction of individual genomes likely to have been introduced by transfer. Neither approach does justice to the ability of LGT to effect massive and complex transformations in basic biology. In some cases, such transformation will be manifested as the patchy distribution of a seemingly fundamental property (such as aerobiosis or nitrogen fixation) among the members of a group classically defined by the sharing of other properties (metabolic, morphological, or molecular, such as small subunit ribosomal RNA sequence). In other cases, the lineage of recipients so transformed may be seen to comprise a new group of high taxonomic rank ("class" or even "phylum"). Here we review evidence for an important role of LGT in the evolution of photosynthesis, aerobic respiration, nitrogen fixation, sulfate reduction, methylotrophy, isoprenoid biosynthesis, quorum sensing, flotation (gas vesicles), thermophily, and halophily. Sometimes transfer of complex gene clusters may have been involved, whereas other times separate exchanges of many genes must be invoked.
Collapse
Affiliation(s)
- Yan Boucher
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry, Sir Charles Tupper Medical Building, 5859 University Avenue, Halifax, Nova Scotia, Canada, B3H 4H7
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Albouy D, Castets AM, De Marsac NT. The gas vesicle gene (gvp) cluster of the cyanobacterium Pseudanabaena sp. strain PCC 6901. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:337-44. [PMID: 11913779 DOI: 10.3109/10425170109084457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A gene cluster located downstream from gvpA in the cyanobacterium Pseudanabaena sp. strain PCC 6901 has been cloned and sequenced. The three genes, orf1, gvpN and gvpJ, are consecutive with no intergenic region. In contrast to GvpN and GvpJ, which share high similarity at the amino acid level with their counterparts in other cyanobacteria and halophilic archaea, Orf1 is only 29% identical to the C-terminal part of GvpC from Anabaena flos-aquae and its sequence organization is reminiscent of the halophilic archaeal GvpC.
Collapse
Affiliation(s)
- D Albouy
- Departement de Biochimie et Génétique Moléculaire, Unité des Cyanobactéries Microbienne, Paris, France
| | | | | |
Collapse
|
20
|
Offner S, Hofacker A, Wanner G, Pfeifer F. Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 2000; 182:4328-36. [PMID: 10894744 PMCID: PMC101952 DOI: 10.1128/jb.182.15.4328-4336.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minimal number of genes required for the formation of gas vesicles in halophilic archaea has been determined. Single genes of the 14 gvp genes present in the p-vac region on plasmid pHH1 of Halobacterium salinarum (p-gvpACNO and p-gvpDEFGHIJKLM) were deleted, and the remaining genes were tested for the formation of gas vesicles in Haloferax volcanii transformants. The deletion of six gvp genes (p-gvpCN, p-gvpDE, and p-gvpHI) still enabled the production of gas vesicles in H. volcanii. The gas vesicles formed in some of these gvp gene deletion transformants were altered in shape (Delta I, Delta C) or strength (Delta H) but still functioned as flotation devices. A minimal p-vac region (minvac) containing the eight remaining genes (gvpFGJKLM-gvpAO) was constructed and tested for gas vesicle formation in H. volcanii. The minvac transformants did not form gas vesicles; however, minvac/gvpJKLM double transformants contained gas vesicles seen as light refractile bodies by phase-contrast microscopy. Transcript analyses demonstrated that minvac transformants synthesized regular amounts of gvpA mRNA, but the transcripts derived from gvpFGJKLM were mainly short and encompassed only gvpFG(J), suggesting that the gvpJKLM genes were not sufficiently expressed. Since gvpAO and gvpFGJKLM are the only gvp genes present in minvac/JKLM transformants containing gas vesicles, these gvp genes represent the minimal set required for gas vesicle formation in halophilic archaea. Homologs of six of these gvp genes are found in Anabaena flos-aquae, and homologs of all eight minimal halobacterial gvp genes are present in Bacillus megaterium and in the genome of Streptomyces coelicolor.
Collapse
Affiliation(s)
- S Offner
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
21
|
Gelfand MS, Koonin EV, Mironov AA. Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Res 2000; 28:695-705. [PMID: 10637320 PMCID: PMC102549 DOI: 10.1093/nar/28.3.695] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intragenomic and intergenomic comparisons of upstream nucleotide sequences of archaeal genes were performed with the goal of predicting transcription regulatory sites (operators) and identifying likely regulons. Learning sets for the detection of regulatory sites were constructed using the available experimental data on archaeal transcription regulation or by analogy with known bacterial regulons, and further analysis was performed using iterative profile searches. The information content of the candidate signals detected by this method is insufficient for reliable predictions to be made. Therefore, this approach has to be complemented by examination of evolutionary conservation in different archaeal genomes. This combined strategy resulted in the prediction of a conserved heat shock regulon in all euryarchaea, a nitrogen fixation regulon in the methanogens Methanococcus jannaschii and Methanobacterium thermoautotrophicum and an aromatic amino acid regulon in M.thermoautotrophicum. Unexpectedly, the heat shock regulatory site was detected not only for genes that encode known chaperone proteins but also for archaeal histone genes. This suggests a possible function for archaeal histones in stress-related changes in DNA condensation. In addition, comparative analysis of the genomes of three Pyrococcus species resulted in the prediction of their purine metabolism and transport regulon. The results demonstrate the feasibility of prediction of at least some transcription regulatory sites by comparing poorly characterized prokaryotic genomes, particularly when several closely related genome sequences are available.
Collapse
Affiliation(s)
- M S Gelfand
- State Scientific Center for Biotechnology NIIGenetika, Moscow 113545, Russia.
| | | | | |
Collapse
|
22
|
Peck RF, DasSarma S, Krebs MP. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 2000; 35:667-76. [PMID: 10672188 DOI: 10.1046/j.1365-2958.2000.01739.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To facilitate the functional genomic analysis of an archaeon, we have developed a homologous gene replacement strategy for Halobacterium salinarum based on ura3, which encodes the pyrimidine biosynthetic enzyme orotidine-5'-monophosphate decarboxylase. H. salinarum was shown to be sensitive to 5-fluoroorotic acid (5-FOA), which can select for mutations in ura3. A spontaneous 5-FOA-resistant mutant was found to contain an insertion in ura3 and was a uracil auxotroph. Integration of ura3 at the bacterioopsin locus (bop ) of this mutant restored 5-FOA sensitivity and uracil prototrophy. Parallel results were obtained with a Deltaura3 strain constructed by gene replacement and with derivatives of this strain in which ura3 replaced bop. These results show that H. salinarum ura3 encodes functional orotidine-5'-monophosphate decarboxylase. To demonstrate ura3-based gene replacement, a Deltabop strain was constructed by transforming a Deltaura3 host with a bop deletion plasmid containing a mevinolin resistance marker. In one approach, the host contained intact ura3 at the chromosomal bop locus; in another, ura3 was included in the plasmid. Plasmid integrants selected with mevinolin were resolved with 5-FOA, yielding Deltabop recombinants at a frequency of > 10-2 in both approaches. These studies establish an efficient new genetic strategy towards the systematic knockout of genes in an archaeon.
Collapse
Affiliation(s)
- R F Peck
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
23
|
Jarrell KF, Bayley DP, Correia JD, Thomas NA. Recent Excitement about the Archaea. Bioscience 1999. [DOI: 10.2307/1313474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Offner S, Ziese U, Wanner G, Typke D, Pfeifer F. Structural characteristics of halobacterial gas vesicles. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1331-1342. [PMID: 9611808 DOI: 10.1099/00221287-144-5-1331] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gas vesicle formation in halophilic archaea is encoded by a DNA region (the vac region) containing 14 different genes: gvpACNO and gvpDEFGHIJKLM. In Halobacterium salinarum PHH1 (which expresses the p-vac region from plasmid pHH1), gas vesicles are spindle shaped, whereas predominantly cylindrical gas vesicles are synthesized by the chromosomal c-vac region of H. salinarum PHH4 and the single chromosomal mc-vac region of Haloferax mediterranei. Homologous complementation of gvp gene clusters derived from the chromosomal c-vac region led to cylindrical gas vesicles in transformants and proved that the activity of the c-gvpA promoter depended on a gene product from the c-gvpE-M DNA region. Heterologous complementation experiments with transcription units of different vac regions demonstrated that the formation of chimeric gas vesicles was possible. Comparison of micrographs of wild-type and chimeric gas vesicles indicated that the shape was not exclusively determined by GvpA, the major structural protein of the gas vesicle wall. More likely, a dynamic equilibrium of several gvp gene products was responsible for determination of the shape. Transmission electron microscopy of frozen hydrated, wild-type gas vesicles showed moiré patterns due to the superposition of the front and back parts of the ribbed gas vesicle envelope. Comparison of projections of model helices with the moiré pattern seen on the cylindrical part of the gas vesicles provided evidence that the ribs formed a helix of low pitch and not a stack of hoops.
Collapse
Affiliation(s)
- Sonja Offner
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| | - Ulrike Ziese
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Gerhard Wanner
- Institut für Botanik, Ludwig-Maximilians-Universität München, D-80992 München, Germany
| | - Dieter Typke
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287 Darmstadt, Germany
| |
Collapse
|
25
|
Li N, Cannon MC. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 1998; 180:2450-8. [PMID: 9573198 PMCID: PMC107188 DOI: 10.1128/jb.180.9.2450-2458.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gas vesicles are intracellular, protein-coated, and hollow organelles found in cyanobacteria and halophilic archaea. They are permeable to ambient gases by diffusion and provide buoyancy, enabling cells to move upwards in liquid to access oxygen and/or light. In halobacteria, gas vesicle production is encoded in a 9-kb cluster of 14 genes (4 of known function). In cyanobacteria, the number of genes involved has not been determined. We now report the cloning and sequence analysis of an 8,142-bp cluster of 15 putative gas vesicle genes (gvp) from Bacillus megaterium VT1660 and their functional expression in Escherichia coli. Evidence includes homologies by sequence analysis to known gas vesicle genes, the buoyancy phenotype of E. coli strains that carry this gvp gene cluster, the presence of pressure-sensitive, refractile bodies in phase-contrast microscopy, structural details in phase-contrast microscopy, structural details in direct interference-contrast microscopy, and shape and size revealed by transmission electron microscopy. In B. megaterium, the gvp region carries a cluster of 15 putative genes arranged in one orientation; they are open reading frame 1 and gvpA, -P, -Q, -B, -R, -N, -F, -G, -L, -S, -K, -J, -T, and -U, of which the last 11 genes, in a 5.7-kb gene cluster, are the maximum required for gas vesicle synthesis and function in E. coli. To our knowledge, this is the first example of a functional gas vesicle gene cluster in nonaquatic bacteria and the first example of the interspecies transfer of genes resulting in the synthesis of a functional organelle.
Collapse
Affiliation(s)
- N Li
- Department of Microbiology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|