1
|
Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L. Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120321. [PMID: 23479751 DOI: 10.1098/rstb.2012.0321] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dehalococcoides mccartyi strains are strictly anaerobic organisms specialized to grow with halogenated compounds as electron acceptor via a respiratory process. Their genomes are among the smallest known for free-living organisms, and the embedded gene set reflects their strong specialization. Here, we briefly review main characteristics of published Dehalococcoides genomes and show how genome information together with cultivation and biochemical experiments have contributed to our understanding of Dehalococcoides physiology and biochemistry. We extend this approach by the detailed analysis of cofactor metabolism in Dehalococcoides strain CBDB1. Dehalococcoides genomes were screened for encoded proteins annotated to contain or interact with organic cofactors, and the expression of these proteins was analysed by shotgun proteomics to shed light on cofactor requirements. In parallel, cultivation experiments testing for vitamin requirements showed that cyanocobalamin (vitamin B12), thiamine and biotin were essential supplements and that cyanocobalamin could be substituted by dicyanocobinamide and dimethylbenzimidazole. Dehalococcoides genome analysis, detection of single enzymes by shotgun proteomics and inhibition studies confirmed the expression of the biosynthetic pathways for pyridoxal-5-phosphate, flavin nucleotides, folate, S-adenosylmethionine, pantothenate and nicotinic acids in strain CBDB1. Haem/cytochromes, quinones and lipoic acids were not necessary for cultivation or dechlorination activity and no biosynthetic pathways were identified in the genomes.
Collapse
Affiliation(s)
- Christian J Schipp
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
2
|
Abstract
Dissimilatory sulfate and sulfur reduction evolved billions of years ago and while the bacteria and archaea that use this unique metabolism employ a variety of electron donors, H(2) is most commonly used as the energy source. These prokaryotes use multiheme c-type proteins to shuttle electrons from electron donors, and electron transport complexes presumed to contain b-type hemoproteins contribute to proton charging of the membrane. Numerous sulfate and sulfur reducers use an alternate pathway for heme synthesis and, frequently, uniquely specific axial ligands are used to secure c-type heme to the protein. This review presents some of the types and functional activities of hemoproteins involved in these two dissimilatory reduction pathways.
Collapse
|
3
|
Identification of two catalases in Azotobacter vinelandii: a KatG homologue and a novel bacterial cytochrome c catalase, CCCAv. J Bacteriol 2007; 190:954-62. [PMID: 18055590 DOI: 10.1128/jb.01572-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Azotobacter vinelandii produces two detectable catalases during growth on minimal medium. The heat-labile catalase expressed during exponential growth phase was identified as a KatG homologue by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a mixed protein sample. The second catalase was heat resistant and had substantial residual activity after treatment at 90 degrees C. This enzyme was purified by anion-exchange and size exclusion chromatography and was found to exhibit strong absorption at 407 nm, which is often indicative of associated heme moieties. The purified protein was fragmented by proteinase K and identified by LC-MS/MS. Some identity was shared with the MauG/bacterial cytochrome c peroxidase (BCCP) protein family, but the enzyme exhibited a strong catalase activity never before observed in this family. Because two putative c-type heme sites (CXXCH) were predicted in the peptide sequence and were demonstrated experimentally, the enzyme was designated a cytochrome c catalase (CCC(Av)). However, the local organization of the CCC(Av) heme motifs differed significantly from that of the BCCPs as the sites were confined to the C-terminal half of the catalase. A possible Ca2+ binding motif, previously described in the BCCPs, is also present in the CCC(Av) peptide sequence. Some instability in the presence of EGTA was observed. Expression of the catalase was abolished in cccA mutants, resulting in a nearly 8,700-fold reduction in peroxide resistance in stationary phase.
Collapse
|
4
|
|
5
|
Paulino LC, de Mello MP, Ottoboni LMM. Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Electrophoresis 2002; 23:520-7. [PMID: 11870759 DOI: 10.1002/1522-2683(200202)23:4<520::aid-elps520>3.0.co;2-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemoautotrophic bacterium that plays an important role in metal bioleaching processes. Despite the high level of tolerance to heavy metals shown by A. ferrooxidans, the genetic basis of copper resistance in this species remains unknown. We investigated the gene expression in response to copper in A. ferrooxidans LR using RNA arbitrarily primed polymerase chain reaction (RAP-PCR). One hundred and four differentially expressed genes were identified using eight arbitrary primers. Differential gene expression was confirmed by DNA slot blot hybridization, and approximately 70% of the RAP-PCR products were positive. The RAP-PCR products that presented the highest levels of induction or repression were cloned, sequenced and the sequences were compared with those in databases using the BLAST search algorithm. Seventeen sequences were obtained. The RAP-PCR product with the highest induction ratio showed similarity with the A. ferrooxidans cytochrome c. A high similarity with the thiamin biosynthesis gene thiC from Caulobacter crescentus was observed for another RAP-PCR product induced by copper. An RAP-PCR product repressed by copper showed significant similarity with the carboxysome operon that includes the ribulose-1,5-bisphosphate carboxylase/oxygenase complex from A. ferrooxidans and another copper-repressed product was significantly similar to the XyIN outer membrane protein from Pseudomonas putida. Finally, RAP-PCR products of unknown similarities were also present.
Collapse
Affiliation(s)
- Luciana Campos Paulino
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | |
Collapse
|
6
|
Kerschen EJ, Irani VR, Hassett DJ, Rowe JJ. snr-1 gene is required for nitrate reduction in Pseudomonas aeruginosa PAO1. J Bacteriol 2001; 183:2125-31. [PMID: 11222615 PMCID: PMC95112 DOI: 10.1128/jb.183.6.2125-2131.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is able to use nitrate for both assimilation and anaerobic respiration. One set of genes, designated snr (for "shared nitrate reduction"), have been recently cloned and partially characterized. In this study, we demonstrate that the snr-1 gene encodes a predicted 52.5-kDa protein that is 82% similar to a unique cytochrome c of Desulfomonile tiedjei DCB-1. Importantly, the Snr-1 protein sequence of P. aeruginosa differed from that of the cytochrome c of D. tiedjei primarily in the first 25 amino acids, which are required for membrane attachment in D. tiedjei. In P. aeruginosa, the Snr-1 protein hydropathy profile indicates that it is a soluble protein. An isogenic snr-1::Gm insertional mutant was unable to grow aerobically with nitrate as a sole nitrogen source or anaerobically with nitrate as an electron acceptor. Complementation of the snr-1::Gm mutant with the snr-1 gene restored the wild-type phenotypes. Interestingly, anaerobic growth rates were significantly higher in the snr-1 mutant harboring a multicopy plasmid containing snr-1. In contrast, aerobic growth rates of the restored mutant using nitrate as the sole nitrogen source were similar to those of the wild type. Transcriptional lacZ fusions demonstrated that snr-1 was not regulated by molybdate, oxygen, or nitrate.
Collapse
Affiliation(s)
- E J Kerschen
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Tetrachloroethene is a frequent groundwater contaminant often persisting in the subsurface environments. It is recalcitrant under aerobic conditions because it is in a highly oxidized state and is not readily susceptible to oxidation. Nevertheless, at least 15 organisms from different metabolic groups, viz. halorespirators (9), acetogens (2), methanogens (3) and facultative anaerobes (2), that are able to metabolize tetrachloroethene have been isolated as axenic cultures to-date. Some of these organisms couple dehalo-genation to energy conservation and utilize tetrachloroethene as the only source of energy while others dehalogenate tetrachloroethene fortuitously. Halorespiring organisms (halorespirators) utilize halogenated organic compounds as electron acceptors in an anaerobic respiratory process. Different organisms exhibit differences in the final products of tetrachloroethene dehalogenation, some strains convert tetrachloroethene to trichloroethene only, while others also carry out consecutive dehalogenation to dichloroethenes and vinyl chloride. Thus far, only a single organism, 'Dehalococcoides ethenogenes' strain 195, has been isolated which dechlorinates tetrachloroethene all the way down to ethylene. The majority of tetrachloroethene-dehalogenating organisms have been isolated only in the past few years and several of them, i.e., Dehalobacter restrictus, Desulfitobacterium dehalogenans, 'Dehalococcoides ethenogenes', 'Dehalospirillum multivorans', Desulfuromonas chloroethenica, and Desulfomonile tiedjei, are representatives of new taxonomic groups. This contribution summarizes the available information regarding the axenic cultures of the tetrachloroethene-dehalogenating bacteria. The present knowledge about the isolation of these organisms, their physiological characteristics, morphology, taxonomy and their ability to dechlorinate tetrachloroethene is presented to facilitate a comprehensive comparison.
Collapse
Affiliation(s)
- J Damborský
- Laboratory of Biomolecular Structure and Dynamics, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 1999; 65:5212-21. [PMID: 10583967 PMCID: PMC91707 DOI: 10.1128/aem.65.12.5212-5221.1999] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 microm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 degrees C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H(2), formate, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H(2)) are oxidized to acetate and CO(2). When L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 micromol of chloride released. min(-1). mg of protein(-1)). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate.
Collapse
Affiliation(s)
- J Gerritse
- TNO Institute of Environmental Sciences, Energy Research and Process Innovation, Department of Environmental Biotechnology, 7300 AH Apeldoorn, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Louie TM, Mohn WW. Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J Bacteriol 1999; 181:40-6. [PMID: 9864310 PMCID: PMC103529 DOI: 10.1128/jb.181.1.40-46.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 10/19/1998] [Indexed: 11/20/2022] Open
Abstract
Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1, 4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism.
Collapse
Affiliation(s)
- T M Louie
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
10
|
Holliger C, Wohlfarth G, Diekert G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 1998. [DOI: 10.1111/j.1574-6976.1998.tb00377.x] [Citation(s) in RCA: 299] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|