1
|
Sun JC, Tan X, Ge LJ, Xu MJ, Wang WZ. The Release of Nitric Oxide Is Involved in the β-Arrestin1-Induced Antihypertensive Effect in the Rostral Ventrolateral Medulla. Front Physiol 2021; 12:694135. [PMID: 34220554 PMCID: PMC8249856 DOI: 10.3389/fphys.2021.694135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors. We previously reported that overexpression of β-arrestin1 in the rostral ventrolateral medulla (RVLM) decreased blood pressure (BP) and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHRs). Nitric oxide (NO) is widely reported to be involved in central cardiovascular regulation. The goal of this study was to investigate whether NO signaling contributes to the β-arrestin1-mediated antihypertensive effect in the RVLM. It was found that bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of SHRs significantly increased NO production and NO synthase (NOS) activity. Microinjection of the non-selective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME; 10 nmol) into the RVLM prevented the β-arrestin1-induced cardiovascular inhibitory effect. Furthermore, β-arrestin1 overexpression in the RVLM significantly upregulated the expression of phosphorylated neuronal NOS (nNOS) by 3.8-fold and extracellular regulated kinase 1/2 (ERK1/2) by 5.6-fold in SHRs. The β-arrestin1-induced decrease in BP and RSNA was significantly abolished by treatment with ERK1/2 small interfering RNA (ERK1/2 siRNA). Moreover, ERK1/2 siRNA attenuated the β-arrestin1-induced NO production, NOS activity, and nNOS phosphorylation in the RVLM. Taken together, these data demonstrate that the antihypertensive effect of β-arrestin1 in the RVLM is mediated by nNOS-derived NO release, which is associated with ERK1/2 activation.
Collapse
Affiliation(s)
- Jia-Cen Sun
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lian-Jie Ge
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ming-Juan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Yang Y, Chi L, Lai Y, Hsiao YC, Ru H, Lu K. The gut microbiome and arsenic-induced disease-iAs metabolism in mice. Curr Environ Health Rep 2021; 8:89-97. [PMID: 33852125 PMCID: PMC8728881 DOI: 10.1007/s40572-021-00305-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes inorganic arsenic (iAs) metabolism and toxicity in mice and the gut microbiome and how iAs and the gut microbiome interact to induce diseases. RECENT FINDINGS Recently, a variety of studies have started to reveal the interactions between iAs and the gut microbiome. Evidence shows that gut bacteria can influence iAs biotransformation and disease risks. The gut microbiome can directly metabolize iAs, and it can also indirectly be involved in iAs metabolism through the host, such as altering iAs absorption, cofactors, and genes related to iAs metabolism. Many factors, such as iAs metabolism influenced by the gut microbiome, and microbiome metabolites perturbed by iAs can lead to different disease risks. iAs is a widespread toxic metalloid in environment, and iAs toxicity has become a global health issue. iAs is subject to metabolic reactions after entering the host body, including methylation, demethylation, oxidation, reduction, and thiolation. Different arsenic species, including trivalent and pentavalent forms and inorganic and organic forms, determine their toxicity. iAs poisoning is predominately caused by contaminated drinking water and food, and chronic arsenic toxicity can cause various diseases. Therefore, studies of iAs metabolism are important for understanding iAs associated disease risks.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Li J, Guo Y, Duan X, Li B. Tissue- and Region-Specific Accumulation of Arsenic Species, Especially in the Brain of Mice, After Long-term Arsenite Exposure in Drinking Water. Biol Trace Elem Res 2020; 198:168-176. [PMID: 31925743 DOI: 10.1007/s12011-020-02033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Arsenic is identified as a known carcinogen and ubiquitously exists in nature. It appears that accumulation of inorganic arsenic (iAs) and its methylated metabolites in various tissues is closely correlated with the long-term toxicity and carcinogenicity of this metalloid. In this study, various arsenic species in murine tissues, especially in the cerebral cortex, cerebellum, and hippocampus, were determined after long-term exposure to 25, 50, 100, and 200 mg/L sodium arsenite in drinking water for 1 and 12 months. Our data showed that the amount of total arsenic (TAs) increased in an obvious dose-dependent manner in various tissues, and TAs levels were in the order of urinary bladder > brain > lung > liver > kidney > spleen. Furthermore, iAsIII and DMA could be observed in all tissues and brain regions with DMA being the predominant metabolite. The bladder, brain, and lung orderly contained the higher levels of DMA, while the liver, kidney, and spleen accumulated the higher proportion of iAsIII. MMA was preferentially accumulated in the lung and bladder of mice regardless of arsenic exposure doses or duration. What's more, amazingly higher levels of MMA were observed in the hippocampus, which was distinguished from the cerebral cortex and cerebellum. Together with these results, our study clearly demonstrates that the accumulation of iAs and its methylated metabolites is tissue-specific and even not homogeneous among different brain regions in mice by long-term exposure to arsenite. Our study thus provides crucial information for recognizing arsenical neurotoxicity, and reducing the uncertainty in the risk assessment for this toxic metalloid.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No.77 Pu he Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
- Department of Occupational and Environmental Health, Key Laboratory of Occupational Health and Safety for Coal Industry in Hebei Province, School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No.77 Pu he Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No.77 Pu he Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
4
|
Kouznetsova VL, Kim E, Romm EL, Zhu A, Tsigelny IF. Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics 2019; 15:94. [PMID: 31222577 DOI: 10.1007/s11306-019-1555-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Bladder cancer (BCa) is one of the most common and aggressive cancers. It is the sixth most frequently occurring cancer in men and its rate of occurrence increases with age. The current method of BCa diagnosis includes a cystoscopy and biopsy. This process is expensive, unpleasant, and may have severe side effects. Recent growth in the power and accessibility of machine-learning software has allowed for the development of new, non-invasive diagnostic methods whose accuracy and sensitivity are uncompromising to function. OBJECTIVES The goal of this research was to elucidate the biomarkers including metabolites and corresponding genes for different stages of BCa, show their distinguishing and common features, and create a machine-learning model for classification of stages of BCa. METHODS Sets of metabolites for early and late stages, as well as common for both stages were analyzed using MetaboAnalyst and Ingenuity® Pathway Analysis (IPA®) software. Machine-learning methods were utilized in the development of a binary classifier for early- and late-stage metabolites of BCa. Metabolites were quantitatively characterized using EDragon 1.0 software. The two modeling methods used are Multilayer Perceptron (MLP) and Stochastic Gradient Descent (SGD) with a logistic regression loss function. RESULTS We explored metabolic pathways related to early-stage BCa (Galactose metabolism and Starch and sucrose metabolism) and to late-stage BCa (Glycine, serine, and threonine metabolism, Arginine and proline metabolism, Glycerophospholipid metabolism, and Galactose metabolism) as well as those common to both stages pathways. The central metabolite impacting the most cancerogenic genes (AKT, EGFR, MAPK3) in early stage is D-glucose, while late-stage BCa is characterized by significant fold changes in several metabolites: glycerol, choline, 13(S)-hydroxyoctadecadienoic acid, 2'-fucosyllactose. Insulin was also seen to play an important role in late stages of BCa. The best performing model was able to predict metabolite class with an accuracy of 82.54% and the area under precision-recall curve (PRC) of 0.84 on the training set. The same model was applied to three separate sets of metabolites obtained from public sources, one set of the late-stage metabolites and two sets of the early-stage metabolites. The model was better at predicting early-stage metabolites with accuracies of 72% (18/25) and 95% (19/20) on the early sets, and an accuracy of 65.45% (36/55) on the late-stage metabolite set. CONCLUSION By examining the biomarkers present in the urine samples of BCa patients as compared with normal patients, the biomarkers associated with this cancer can be pinpointed and lead to the elucidation of affected metabolic pathways that are specific to different stages of cancer. Development of machine-learning model including metabolites and their chemical descriptors made it possible to achieve considerable accuracy of prediction of stages of BCa.
Collapse
Affiliation(s)
- Valentina L Kouznetsova
- Moores Cancer Center, UC San Diego, San Diego, USA
- San Diego Supercomputer Center, UC San Diego, San Diego, USA
| | - Elliot Kim
- REHS Program UC San Diego, San Diego, USA
| | | | - Alan Zhu
- REHS Program UC San Diego, San Diego, USA
| | - Igor F Tsigelny
- Moores Cancer Center, UC San Diego, San Diego, USA.
- San Diego Supercomputer Center, UC San Diego, San Diego, USA.
- Department of Neurosciences, UC San Diego, San Diego, USA.
- CureMatch Inc., San Diego, USA.
| |
Collapse
|
5
|
Su CT, Hsieh RL, Chung CJ, Huang PT, Lin YC, Ao PL, Shiue HS, Chen WJ, Huang SR, Lin MI, Mu SC, Hsueh YM. Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. ENVIRONMENTAL RESEARCH 2019; 171:52-59. [PMID: 30654249 DOI: 10.1016/j.envres.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Inefficient arsenic methylation capacity has been associated with developmental delay in preschool children. Selenium has antioxidant and anti-inflammatory properties that protect experimental animals from chemically induced neurotoxicity. The present study was designed to explore whether plasma selenium levels affects arsenic methylation capacity related to developmental delay in preschool children. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 178 children with a developmental delay and 88 children without a delay were recruited. High-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry were used to determine urinary arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV). Plasma selenium levels were measured by inductively coupled plasma mass spectrometry. As results, plasma selenium concentration was significantly inversely associated with the odds ratio (OR) of developmental delay. Plasma selenium concentration was positively associated with arsenic methylation capacity [percentage of inorganic arsenic and percentage of MMAV (MMAV%) decreased, and percentage of DMAV (DMAV%) increased]. High plasma selenium concentration and high DMA% significantly and additively interacted to decrease the OR of developmental delay; the OR and 95% confidence interval were 0.40 (0.18-0.90). This is the first study to show a combined dose-response effect of plasma selenium concentration and that efficient arsenic methylation capacity decreased the OR of developmental delay in preschool children.
Collapse
Affiliation(s)
- Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Pai-Tsang Huang
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shiau-Rung Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Arsenic trioxide mediates HAPI microglia inflammatory response and the secretion of inflammatory cytokine IL-6 via Akt/NF-κB signaling pathway. Regul Toxicol Pharmacol 2016; 81:480-488. [DOI: 10.1016/j.yrtph.2016.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
|
7
|
Ogun M, Ozcan A, Karaman M, Merhan O, Ozen H, Kukurt A, Karapehlivan M. Oleuropein ameliorates arsenic induced oxidative stress in mice. J Trace Elem Med Biol 2016; 36:1-6. [PMID: 27259345 DOI: 10.1016/j.jtemb.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/26/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
The objective of this study is to investigate the potential preventive effect of oleuropein in an experimental arsenic toxicity in mice. For this purpose, mice were exposed to 5mg/kg/day sodium arsenite (NaAsO2) in drinking water and treated with 30mg/kg/day oleuropein for 15 days. At the end of the experiment, animals were sacrificed and selected organs were processed for biochemical and histopahtological investigations. Blood, liver, kidney and brain malondialdehyde (MDA) and nitric oxide (NO) levels were determined by colorimetric methods. Protein carbonyl content is measured by a commercial kit. Liver morphology and immunoreactivity for inducible NOS (iNOS) and endothelial NOS (eNOS) was evaluated microscopically. Level of NO was determined to decrease in blood and tissues whereas MDA increased in arsenic given mice. Tissue protein carbonyl content also increased in this group. Immunoreactivity for iNOS and eNOS was noted to increase with arsenic treatment. Oleuropein treatment had significant effects in normalizing the MDA and NO levels as well as protein carbonyl content. Immunohistochemical staining also showed reduction of the expression of iNOS and eNOS in liver. The results indicate that oleuropein ameliorates oxidative tissue damage by scavenging free radicals.
Collapse
Affiliation(s)
- Metin Ogun
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Turkey.
| | - Ayla Ozcan
- Department of Biochemistry, Faculty of Medicine, Kafkas University, 36100 Kars, Turkey
| | - Musa Karaman
- Department of Pathology, Faculty of Veterinary Medicine, Balıkesir University, 36100 Balıkesir, Turkey
| | - Oguz Merhan
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Turkey
| | - Hasan Ozen
- Department of Pathology, Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Turkey
| | - Abdulsamed Kukurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Turkey
| | - Mahmut Karapehlivan
- Department of Biochemistry, Faculty of Medicine, Kafkas University, 36100 Kars, Turkey
| |
Collapse
|
8
|
Mao J, Yang J, Zhang Y, Li T, Wang C, Xu L, Hu Q, Wang X, Jiang S, Nie X, Chen G. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicol Appl Pharmacol 2016; 303:79-89. [DOI: 10.1016/j.taap.2016.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/18/2016] [Accepted: 05/05/2016] [Indexed: 01/12/2023]
|
9
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Wang YL, Chen M, Huo TG, Zhang YH, Fang Y, Feng C, Wang SY, Jiang H. Effects of Glycyrrhetinic Acid on GSH Synthesis Induced by Realgar in the Mouse Hippocampus: Involvement of System X AG - $$ {\mathbf{X}}_{{\mathbf{AG}}^{-}} $$ , System X C - $$ {\mathbf{X}}_{{\mathbf{C}}^{-}} $$ , MRP-1, and Nrf2. Mol Neurobiol 2016; 54:3102-3116. [DOI: 10.1007/s12035-016-9859-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
11
|
Qu L, Gao Y, Sun H, Wang H, Liu X, Sun D. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. Biol Trace Elem Res 2016; 170:366-72. [PMID: 26296331 DOI: 10.1007/s12011-015-0478-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
Abstract
The nervous system is a target of arsenic toxicity. Phosphatase and tensin homologue deleted on chromosome 10/protein kinase B/cAMP-response element binding protein (PTEN/Akt/CREB) signaling pathway has been reported to be involved in maintaining normal function of the nervous system, modulating growth and proliferation of neurocyte, regulating neuron synaptic plasticity, and long-term memory. And many studies have demonstrated that expressions of PTEN, Akt, and CREB protein were influenced by arsenic, but it is not clear whether this signaling pathway is involved in the nervous system impairment of rats induced by chronic arsenite exposure, and we have addressed this in this study. Eighty male Sprague-Dawley (SD) rats were randomly divided into eight groups (n = 10 each), four groups exposed to NaAsO2 (0, 5, 10, and 50 mg/L NaAsO2 in drinking water) for 3 months, the other four groups exposed to NaAsO2 (0, 5, 10, 50 mg/L NaAsO2 in drinking water) for 6 months. Hematoxylin and eosin (HE) staining showed that chronic arsenite exposure induced varying degrees of damage in cerebral neurons. And arsenite exposure increased arsenic amount in serum and brain samples in a dose- and time-dependent manner. Moreover, the protein levels of PTEN and Akt in brain tissue were not significantly changed compared with the control group, but p-Akt, CREB, and p-CREB were all significantly downregulated in arsenite-exposed groups with a dose-dependent pattern. These results suggested that chronic arsenite exposure negatively regulated the PTEN-Akt-CREB signaling pathway, and dysfunction of the signaling pathway might be one of the mechanisms of nervous system impairment induced by chronic arsenite exposure.
Collapse
Affiliation(s)
- Lisha Qu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hui Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
12
|
Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease. PARKINSON'S DISEASE 2015; 2015:931058. [PMID: 26664824 PMCID: PMC4667061 DOI: 10.1155/2015/931058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment.
Collapse
|
13
|
Uptake, Metabolic Effects and Toxicity of Arsenate and Arsenite in Astrocytes. Neurochem Res 2015; 41:465-75. [DOI: 10.1007/s11064-015-1570-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
|
14
|
Hohnholt MC, Blumrich EM, Koehler Y, Dringen R. Arsenate stimulates glutathione export from viable cultured rat cerebellar granule neurons. Neurochem Res 2014; 40:561-71. [PMID: 25503647 DOI: 10.1007/s11064-014-1501-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022]
Abstract
Arsenate is an environmental pollutant which contaminates the drinking water of millions of people worldwide. Numerous in vitro studies have investigated the toxicity of arsenate for a large number of different cell types. However, despite the known neurotoxic potential of arsenicals, little is known so far about the consequences of an exposure of neurons to arsenate. To investigate acute effects of arsenate on the viability and the glutathione (GSH) metabolism of neurons, we have exposed primary rat cerebellar granule neuron cultures to arsenate. Incubation of neurons for up to 6 h with arsenate in concentrations of up to 10 mM did not acutely compromise the cell viability, although the cells accumulated substantial amounts of arsenate. However, exposure to arsenate caused a time- and concentration-dependent increase in the export of GSH from viable neurons with significant effects observed for arsenate in concentrations above 0.3 mM. The arsenate-induced stimulation of GSH export was abolished upon removal of arsenate and completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. These results demonstrate that arsenate is not acutely toxic to neurons but can affect the neuronal GSH metabolism by stimulating GSH export.
Collapse
Affiliation(s)
- Michaela C Hohnholt
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany,
| | | | | | | |
Collapse
|
15
|
Koehler Y, Luther EM, Meyer S, Schwerdtle T, Dringen R. Uptake and toxicity of arsenite and arsenate in cultured brain astrocytes. J Trace Elem Med Biol 2014; 28:328-37. [PMID: 24894442 DOI: 10.1016/j.jtemb.2014.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/10/2023]
Abstract
Inorganic arsenicals are environmental toxins that have been connected with neuropathies and impaired cognitive functions. To investigate whether such substances accumulate in brain astrocytes and affect their viability and glutathione metabolism, we have exposed cultured primary astrocytes to arsenite or arsenate. Both arsenicals compromised the cell viability of astrocytes in a time- and concentration-dependent manner. However, the early onset of cell toxicity in arsenite-treated astrocytes revealed the higher toxic potential of arsenite compared with arsenate. The concentrations of arsenite and arsenate that caused within 24h half-maximal release of the cytosolic enzyme lactate dehydrogenase were around 0.3mM and 10mM, respectively. The cellular arsenic contents of astrocytes increased rapidly upon exposure to arsenite or arsenate and reached after 4h of incubation almost constant steady state levels. These levels were about 3-times higher in astrocytes that had been exposed to a given concentration of arsenite compared with the respective arsenate condition. Analysis of the intracellular arsenic species revealed that almost exclusively arsenite was present in viable astrocytes that had been exposed to either arsenate or arsenite. The emerging toxicity of arsenite 4h after exposure was accompanied by a loss in cellular total glutathione and by an increase in the cellular glutathione disulfide content. These data suggest that the high arsenite content of astrocytes that had been exposed to inorganic arsenicals causes an increase in the ratio of glutathione disulfide to glutathione which contributes to the toxic potential of these substances.
Collapse
Affiliation(s)
- Yvonne Koehler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Eva Maria Luther
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Soeren Meyer
- Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany; Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
16
|
Tadepalle N, Koehler Y, Brandmann M, Meyer N, Dringen R. Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 2014; 76:1-11. [PMID: 24995390 DOI: 10.1016/j.neuint.2014.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/30/2023]
Abstract
Intoxication with inorganic arsenicals leads to neuropathies and impaired cognitive functions. However, little is known so far on the cellular targets that are involved in the adverse effects of arsenite to brain cells. To test whether arsenite may affect neural glucose and glutathione (GSH) metabolism, primary astrocyte cultures from rat brain were used as a model system. Exposure of cultured astrocytes to arsenite in concentrations of up to 0.3mM did not compromise cell viability during incubations for up to 6h, while 1mM arsenite damaged the cells already within 2h after application. Determination of cellular arsenic contents of astrocytes that had been incubated for 2h with arsenite revealed an almost linear concentration-dependent increase in the specific cellular arsenic content. Exposure of astrocytes to arsenite stimulated the export of GSH and accelerated the cellular glucose consumption and lactate production in a time- and concentration-dependent manner. Half-maximal stimulation of GSH export and glycolytic flux were observed for arsenite in concentrations of 0.1mM and 0.3mM, respectively. The arsenite-induced stimulation of both processes was abolished upon removal of extracellular arsenite. The strong stimulation of GSH export by arsenite was prevented by MK571, an inhibitor of the multidrug resistance protein 1, suggesting that this transporter mediates the accelerated GSH export. In addition, presence of MK571 significantly increased the specific cellular arsenic content, suggesting that Mrp1 may also be involved in arsenic export from astrocytes. The data observed suggest that alterations in glucose and GSH metabolism may contribute to the reported adverse neural consequences of intoxication with arsenite.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Yvonne Koehler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Maria Brandmann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Nils Meyer
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
17
|
Meyer N, Koehler Y, Tulpule K, Dringen R. Arsenate accumulation and arsenate-induced glutathione export in astrocyte-rich primary cultures. Neurochem Int 2013; 62:1012-9. [DOI: 10.1016/j.neuint.2013.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/06/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022]
|
18
|
|
19
|
Currás-Collazo MC. Nitric oxide signaling as a common target of organohalogens and other neuroendocrine disruptors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:495-536. [PMID: 21790323 DOI: 10.1080/10937404.2011.578564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Organohalogen compounds such as polychlorinated biphenyls (PCB) and polybrominated diphenyl ethers (PBDE) are global environmental pollutants and highly persistent, bioaccumulative chemicals that produce adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination is a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. Toxicological studies on organohalogen pollutants primarily focused on sex steroid and thyroid hormone actions, and findings have largely shaped the way one envisions their disruptive effects occurring. Organohalogens exert additional effects on other systems including other complex endocrine systems that may be disregulated at various levels of organization. Over the last 20 years evidence has mounted in favor of a critical role of nitric oxide (NO) in numerous functions ranging from neuroendocrine functions to learning and memory. With its participation in multiple systems and action at several levels of integration, NO signaling has a pervasive influence on nervous and endocrine functions. Like blockers of NO synthesis, PCBs and PBDEs produce multifaceted effects on physiological systems. Based on this unique set of converging information it is proposed that organohalogen actions occur, in part, by hijacking processes associated with this ubiquitous bioactive molecule. The current review examines the emerging evidence for NO involvement in selected organohalogen actions and includes recent progress from our laboratory that adds to our current understanding of the actions of organohalogens within hypothalamic neuroendocrine circuits. The thyroid, vasopressin, and reproductive systems as well as processes associated with long-term potentiation were selected as sample targets of organohalogens that rely on regulation by NO. Information is provided about other toxicants with demonstrated interference of NO signaling. Our focus on the convergence between NO system and organohalogen toxicity offers a novel approach to understanding endocrine and neuroendocrine disruption that is particularly problematic for developing organisms. This new working model is proposed as a way to encourage future study in elucidating common mechanisms of action that are selected with a better operational understanding of the systems affected.
Collapse
Affiliation(s)
- Margarita C Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|