Collapse
Affiliation(s)
Number |
Cited by Other Article(s) |
1
|
Küstner MJ, Eckstein D, Brauer D, Mai P, Hampl J, Weise F, Schuhmann B, Hause G, Glahn F, Foth H, Schober A. Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro. Arch Toxicol 2024; 98:1061-1080. [PMID: 38340173 PMCID: PMC10944414 DOI: 10.1007/s00204-023-03673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 105 (BaSO4) and 1.49 × 106 (TiO2) particles/cm3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm2 resulted in mild, reversible damage (~ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.
Collapse
Affiliation(s)
- M J Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - D Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - D Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany.
| | - P Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - J Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - F Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - B Schuhmann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - G Hause
- Biocenter, Department of Electron Microscopy, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - F Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - H Foth
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - A Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| |
Collapse
|
2
|
El Kholy S, Al Naggar Y. Exposure to a sublethal concentration of CdO nanoparticles impairs the vision of the fruit fly (Drosophila melanogaster) by disrupting histamine synthesis and recycling mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27936-27947. [PMID: 36394804 DOI: 10.1007/s11356-022-24034-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
While there is substantial literature on potential risks associated with exposure to emerging nanomaterials, less is known about the potential effects of hazardous metallic nanoparticles on vision, as well as the mechanisms that underpin them. The fruit fly (Drosophila melanogaster) was used as an in vivo model organism to investigate the effects of exposure to a sublethal concentration (0.03 mg CdO NPs/mL, which was 20% of the LC50) on fly vision and compound eye ultrastructure. First, we observed a reduction in phototaxis response in treated flies but no change in locomotor activity. Because histamine (HA) has been linked to arthropod vision, we investigated HA synthesis, uptake, and recycling as a possible underlying mechanism for the observed adverse effect of CdO NPs on fly vision. This was accomplished by measuring the expression of the histamine decarboxylase (hdc) gene, which encodes the enzyme that converts the amino acid histidine to histamine (HA), as well as the expression of some genes involved in HA-recycling pathways (tan, ebony, Balat, CarT, and Lovit). The results showed that CdO NPs changed the expression levels of hdc, Lovit, tan, and eboney, indicating that HA synthesis, transport, and recycling were disrupted. Furthermore, less histamine immunolabeling was found in the head tissues of CdO NP-treated flies, particularly in the optic lobes. We also observed and quantified CdO NP bioaccumulation in compound eye tissues, which resulted in a number of cytological changes. Phenotypic effects (undersized eyes) have also been observed in the compound eyes of F1 flies. Considering the significance of vision in an organism's survival, the findings of this study are extremely crucial, as long-term exposure to CdO NPs may result in blindness.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Wiemann M, Vennemann A, Schuster TB, Nolde J, Krueger N. Surface Treatment With Hydrophobic Coating Reagents (Organosilanes) Strongly Reduces the Bioactivity of Synthetic Amorphous Silica in vitro. Front Public Health 2022; 10:902799. [PMID: 35801234 PMCID: PMC9253389 DOI: 10.3389/fpubh.2022.902799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic amorphous silica (SAS) is industrially relevant material whose bioactivity in vitro is strongly diminished, for example, by protein binding to the particle surface. Here, we investigated the in vitro bioactivity of fourteen SAS (pyrogenic, precipitated, or colloidal), nine of which were surface-treated with organosilanes, using alveolar macrophages as a highly sensitive test system. Dispersion of the hydrophobic SAS required pre-wetting with ethanol and extensive ultrasonic treatment in the presence of 0.05% BSA (Protocol 1). Hydrophilic SAS was suspended by moderate ultrasonic treatment (Protocol 2) and also by Protocol 1. The suspensions were administered to NR8383 alveolar macrophages under serum-free conditions for 16 h, and the release of LDH, GLU, H2O2, and TNFα was measured in cell culture supernatants. While seven surface-treated hydrophobic SAS exhibited virtually no bioactivity, two materials (AEROSIL® R 504 and AEROSIL® R 816) had minimal effects on NR8383 cells. In contrast, non-treated SAS elicited considerable increases in LDH, GLU, and TNFα, while the release of H2O2 was low except for CAB-O-SIL® S17D Fumed Silica. Dispersing hydrophilic SAS with Protocol 1 gradually reduced the bioactivity but did not abolish it. The results show that hydrophobic coating reagents, which bind covalently to the SAS surface, abrogate the bioactivity of SAS even under serum-free in vitro conditions. The results may have implications for the hazard assessment of hydrophobic surface-treated SAS in the lung.
Collapse
Affiliation(s)
- Martin Wiemann
- IBE R&D Institute for Lung Health gGmbH, Münster, Germany
- *Correspondence: Martin Wiemann
| | | | | | | | | |
Collapse
|
4
|
Jeliazkova N, Ma-Hock L, Janer G, Stratmann H, Wohlleben W. Possibilities to group nanomaterials across different substances - A case study on organic pigments. NANOIMPACT 2022; 26:100391. [PMID: 35560297 DOI: 10.1016/j.impact.2022.100391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
Grouping concepts to reduce the testing of NFs have been developed for regulatory purposes for different forms of the same substance. Here we explore possibilities to group nanomaterials across different substances for non-regulatory applications, using the example of 16 organic pigments from six chemical classes. Organic pigments are particles consisting of low-molar-mass organic molecules, and rank by tonnage among the most important substances manufactured in nanoform (NF). Tiered testing strategies relevant to the inhalation route included Tier 1 (deposition, dissolution, reactivity, inflammation) and if available Tier 3 data (in vivo). A similarity assessment of the pigment NF data was conducted in a quantitative (Tier 1 and Tier 3 in vivo potency) or qualitative (Tier 3 in vivo effects) manner. We observed that chemical similarity of organic pigments was predictive for their similarity of reactivity and dissolution, but that additional NF descriptors such as surface area or size, modulate the similarity in inflammation or cytotoxicity. We applied the concept of biologically relevant ranges to crop the values of the Tier 1 data matrix before applying similarity algorithms. The Tier 3 assessment by in vivo inhalation confirmed the IATA methodical choices and IATA assessment criteria as consistent and conservative. We suggested limits of acceptable similarity for Tier 1 data and demonstrated their application to support the grouping of some candidate NFs (subsequently confirmed by Tier 3 data). Four candidate NFs exceeded the limits of acceptability for Tier 1 and were escalated from Tier 1 to Tier 3, but were then included in the group, demonstrating the conservative Tier 1 criteria. The resulting group of low-solubility, low-reactivity materials included both NFs and non-NFs of various substances, and could find use for risk management purposes in the occupational handling of pigment powders.
Collapse
Affiliation(s)
| | - Lan Ma-Hock
- BASF SE, Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | | | - Wendel Wohlleben
- BASF SE, Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany; BASF SE, Dept. Material Physics, Ludwigshafen, Germany.
| |
Collapse
|
5
|
Janer G, Ag-Seleci D, Sergent JA, Landsiedel R, Wohlleben W. Creating sets of similar nanoforms with the ECETOC NanoApp: real-life case studies. Nanotoxicology 2021; 15:1016-1034. [PMID: 34242099 DOI: 10.1080/17435390.2021.1946186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ECETOC NanoApp was developed to support industry in the registration of sets of nanoforms, as well as regulators in the evaluation of these registration dossiers. The ECETOC NanoApp uses a systematic approach to create and justify sets of similar nanoforms, following the ECHA guidance in a transparent and evidence-based manner. The rational and decision rules behind the ECETOC NanoApp are described in detail in "Janer, G., R. Landsiedel, and W. Wohlleben. 2021. [Rationale and Decision Rules Behind the ECETOC NanoApp to Support Registration of Sets of Similar Nanoforms within REACH. Nanotoxicology 15 (2): 145-122. https://doi.org/10.1080/17435390.2020.1842933]". The decision criteria apply to human health and environmental hazards and risks. Here, we focus mostly on human health hazards; the decision rules are applied to a series of case studies, each consisting of real nanoforms: two barium sulfate nanoforms, four colloidal silica nanoforms, eight ceria nanoforms, and four copper phthalocyanine nanoforms. For each of them, we show step by step how the ECETOC NanoApp rules are applied. The cases include nanoforms that are justified as members of the same set of similar nanoforms based on sufficient similarity of their intrinsic properties (Tier 1). They also include other nanoforms with a relatively high (but insufficient) similarity of intrinsic properties; their similarity could be justified by functional properties (Tier 2). The case studies also include nanoforms that are concluded not to belong to the same set of similar nanoforms. These outcomes of the NanoApp were overall consistent (sometimes conservative) with available in vivo data. We also noted that datasets for various nanoforms were limited and use of the NanoApp may require the generation of data relevant to the decision criteria.
Collapse
Affiliation(s)
- Gemma Janer
- Leitat Technological Center, Barcelona, Spain
| | - Didem Ag-Seleci
- BASF SE, Department Material Physics and Analytics, Ludwigshafen am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Department Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Wendel Wohlleben
- BASF SE, Department Material Physics and Analytics, Ludwigshafen am Rhein, Germany.,BASF SE, Department Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| |
Collapse
|
6
|
Stratmann H, Wohlleben W, Wiemann M, Vennemann A, End N, Veith U, Ma-Hock L, Landsiedel R. Classes of organic pigments meet tentative PSLT criteria and lack toxicity in short-term inhalation studies. Regul Toxicol Pharmacol 2021; 124:104988. [PMID: 34224799 DOI: 10.1016/j.yrtph.2021.104988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Here, we present a non-animal testing battery to identify PSLT (poorly soluble, low toxicity) substances based on their solubility in phagolysosomal lung fluid simulant, surface reactivity and effects on alveolar macrophages in vitro. This is exemplified by eleven organic pigments belonging to five chemical classes that cover a significant share of the European market. Three of the pigments were tested as both, nanoform and non-nanoform. The results obtained in this integrated non-animal testing battery qualified two pigments as non PSLT, one pigment as poorly soluble and eight pigments as poorly soluble and low toxicity in vitro. The low toxic potency of the eight PSLT and the one poorly soluble pigment was corroborated by short-term inhalation studies with rats. These pigments did not elicit apparent toxic effects at 10 mg/m3 (systemic and in the respiratory tract). One of the pigments, Diarylide Pigment Yellow 83 transparent, however, caused minimal infiltration of neutrophils; hence its low toxicity is ambiguous and needs further verification or falsification. The present test battery provides an opportunity to identify PSLT-properties of test substances to prioritise particles for further development. Thus, it can help to reduce animal testing and steer product development towards safe applications.
Collapse
Affiliation(s)
- Heidi Stratmann
- Department of Product Safety, BASF Schweiz AG, Basel, Switzerland.
| | - Wendel Wohlleben
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056, Ludwigshafen, Germany.
| | - Martin Wiemann
- IBE R&D Institute for Lung Health GmbH, 48149, Münster, Germany.
| | - Antje Vennemann
- IBE R&D Institute for Lung Health GmbH, 48149, Münster, Germany.
| | - Nicole End
- Department of Product Stewardship, BASF Colors & Effects Switzerland AG, Basel, Switzerland.
| | - Ulrich Veith
- Department of Product Stewardship, BASF Colors & Effects Switzerland AG, Basel, Switzerland.
| | - Lan Ma-Hock
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056, Ludwigshafen, Germany.
| | - Robert Landsiedel
- BASF SE, Dept. Experimental Toxicology and Ecology, Dept. Material Physics, 67056, Ludwigshafen, Germany.
| |
Collapse
|
7
|
Brandão F, Costa C, Bessa MJ, Dumortier E, Debacq-Chainiaux F, Hubaux R, Salmon M, Laloy J, Stan MS, Hermenean A, Gharbia S, Dinischiotu A, Bannuscher A, Hellack B, Haase A, Fraga S, Teixeira JP. Genotoxicity and Gene Expression in the Rat Lung Tissue following Instillation and Inhalation of Different Variants of Amorphous Silica Nanomaterials (aSiO 2 NM). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1502. [PMID: 34200147 PMCID: PMC8228975 DOI: 10.3390/nano11061502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Several reports on amorphous silica nanomaterial (aSiO2 NM) toxicity have been questioning their safety. Herein, we investigated the in vivo pulmonary toxicity of four variants of aSiO2 NM: SiO2_15_Unmod, SiO2_15_Amino, SiO2_7 and SiO2_40. We focused on alterations in lung DNA and protein integrity, and gene expression following single intratracheal instillation in rats. Additionally, a short-term inhalation study (STIS) was carried out for SiO2_7, using TiO2_NM105 as a benchmark NM. In the instillation study, a significant but slight increase in oxidative DNA damage in rats exposed to the highest instilled dose (0.36 mg/rat) of SiO2_15_Amino was observed in the recovery (R) group. Exposure to SiO2_7 or SiO2_40 markedly increased oxidative DNA lesions in rat lung cells of the exposure (E) group at every tested dose. This damage seems to be repaired, since no changes compared to controls were observed in the R groups. In STIS, a significant increase in DNA strand breaks of the lung cells exposed to 0.5 mg/m3 of SiO2_7 or 50 mg/m3 of TiO2_NM105 was observed in both groups. The detected gene expression changes suggest that oxidative stress and/or inflammation pathways are likely implicated in the induction of (oxidative) DNA damage. Overall, all tested aSiO2 NM were not associated with marked in vivo toxicity following instillation or STIS. The genotoxicity findings for SiO2_7 from instillation and STIS are concordant; however, changes in STIS animals were more permanent/difficult to revert.
Collapse
Affiliation(s)
- Fátima Brandão
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - Maria João Bessa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elise Dumortier
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur, 5000 Namur, Belgium; (E.D.); (F.D.-C.)
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur, 5000 Namur, Belgium; (E.D.); (F.D.-C.)
| | - Roland Hubaux
- StratiCELL Laboratories, Research and Development, 5032 Les Isnes, Belgium; (R.H.); (M.S.)
| | - Michel Salmon
- StratiCELL Laboratories, Research and Development, 5032 Les Isnes, Belgium; (R.H.); (M.S.)
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (Narilis), University of Namur, 5000 Namur, Belgium;
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania
| | - Sami Gharbia
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
| | - Anne Bannuscher
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.B.); (A.H.)
- Adolphe Merkle Institute (AMI), University of Fribourg, 1700 Fribourg, Switzerland
| | - Bryan Hellack
- Institute of Energy and Environmental Technology (IUTA) e.V., 47229 Duisburg, Germany;
- German Environment Agency (UBA), 06844 Dessau-Roβlau, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.B.); (A.H.)
| | - Sónia Fraga
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| |
Collapse
|
8
|
Olejnik M, Kersting M, Rosenkranz N, Loza K, Breisch M, Rostek A, Prymak O, Schürmeyer L, Westphal G, Köller M, Bünger J, Epple M, Sengstock C. Cell-biological effects of zinc oxide spheres and rods from the nano- to the microscale at sub-toxic levels. Cell Biol Toxicol 2020; 37:573-593. [PMID: 33205376 PMCID: PMC8384809 DOI: 10.1007/s10565-020-09571-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Zinc oxide particles were synthesized in various sizes and shapes, i.e., spheres of 40-nm, 200-nm, and 500-nm diameter and rods of 40∙100 nm2 and 100∙400 nm2 (all PVP-stabilized and well dispersed in water and cell culture medium). Crystallographically, the particles consisted of the hexagonal wurtzite phase with a primary crystallite size of 20 to 100 nm. The particles showed a slow dissolution in water and cell culture medium (both neutral; about 10% after 5 days) but dissolved within about 1 h in two different simulated lysosomal media (pH 4.5 to 4.8). Cells relevant for respiratory exposure (NR8383 rat alveolar macrophages) were exposed to these particles in vitro. Viability, apoptosis, and cell activation (generation of reactive oxygen species, ROS, release of cytokines) were investigated in an in vitro lung cell model with respect to the migration of inflammatory cells. All particle types were rapidly taken up by the cells, leading to an increased intracellular zinc ion concentration. The nanoparticles were more cytotoxic than the microparticles and comparable with dissolved zinc acetate. All particles induced cell apoptosis, unlike dissolved zinc acetate, indicating a particle-related mechanism. Microparticles induced a stronger formation of reactive oxygen species than smaller particles probably due to higher sedimentation (cell-to-particle contact) of microparticles in contrast to nanoparticles. The effect of particle types on the cytokine release was weak and mainly resulted in a decrease as shown by a protein microarray. In the particle-induced cell migration assay (PICMA), all particles had a lower effect than dissolved zinc acetate. In conclusion, the biological effects of zinc oxide particles in the sub-toxic range are caused by zinc ions after intracellular dissolution, by cell-to-particle contacts, and by the uptake of zinc oxide particles into cells.
|
Graphical headlights
• The cytotoxicity of zinc oxide particles is mainly due to the intracellular release of zinc ions.
• The size and shape of zinc oxide micro- and nanoparticles has only small effects on lung cells in the sub-toxic range.
• Zinc oxide particles are rapidly taken up by cells, regardless of their size and shape.
• Zinc oxide particles rapidly dissolve after cellular uptake in endolysosomes.
- M Olejnik
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
- M Kersting
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum, Bochum, Germany
| |
- N Rosenkranz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| |
- K Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
- M Breisch
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum, Bochum, Germany
| |
- A Rostek
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
- O Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
- L Schürmeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| |
- G Westphal
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| |
- M Köller
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum, Bochum, Germany
| |
- J Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| |
- M Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
- C Sengstock
- Bergmannsheil University Hospital/Surgical Research, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
9
Koltermann-Jülly J, Ma-Hock L, Gröters S, Landsiedel R. Appearance of Alveolar Macrophage Subpopulations in Correlation With Histopathological Effects in Short-Term Inhalation Studies With Biopersistent (Nano)Materials.
Toxicol Pathol 2020;
48:446-464. [PMID:
32162596 DOI:
10.1177/0192623319896347]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following inhalation and deposition in the alveolar region at sufficient dose, biopersistent (nano)materials generally provoke pulmonary inflammation. Alveolar macrophages (AMs) are mediators of pulmonary immune responses and were broadly categorized in pro-inflammatory M1 and anti-inflammatory M2 macrophages. This study aimed at identifying AM phenotype as M1 or M2 upon short-term inhalation exposure to different (nano)materials followed by a postexposure period. Phenotyping of AM was retrospectively performed using immunohistochemistry. M1 (CD68+iNOS+) and M2 (CD68+CD206+ and CD68+ArgI+) AMs were characterized in formalin-fixed, paraffin-embedded lung tissue of rats exposed for 6 hours/day for 5 days to air, 100 mg/m3 nano-TiO2, 25 mg/m3 nano-CeO2, 32 mg/m3 multiwalled carbon nanotubes, or 100 mg/m3 micron-sized quartz. During acute inflammation, relative numbers of M1 AMs were markedly increased, whereas relative numbers of M2 were generally decreased compared to control. Following an exposure-free period, changes in iNOS or CD206 expression correlated with persistence, regression, or progression of inflammation, suggesting a role of M1/M2 AMs in the pathogenesis of pulmonary inflammation. However, no clear correlation of AM subpopulations with qualitatively distinct histopathological findings caused by different (nano)materials was found. A more detailed understanding of the processes underlaying these morphological changes is needed to identify biomarkers for different histopathological outcomes.
Collapse
Affiliation(s)
- Johanna Koltermann-Jülly
- Experimental Toxicology and Ecology, BASF, Ludwigshafen, Germany.,Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| |
- Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen, Germany
| |
- Sibylle Gröters
- Experimental Toxicology and Ecology, BASF, Ludwigshafen, Germany
| |
| |
Collapse
10
Molecular Responses in THP-1 Macrophage-Like Cells Exposed to Diverse Nanoparticles.
NANOMATERIALS 2019;
9:nano9050687. [PMID:
31052583 PMCID:
PMC6567235 DOI:
10.3390/nano9050687]
[Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022]
Abstract
In the body, engineered nanoparticles (NPs) may be recognized and processed by immune cells, among which macrophages play a crucial role. We evaluated the effects of selected NPs [NM-100 (TiO2), NM-110 (ZnO), NM-200 (SiO2), and NM-300 K (Ag)] on THP-1 macrophage-like cells. The cells were exposed to subcytotoxic concentrations of NPs (1-25 µg/mL) and the expression of immunologically relevant genes (VCAM1, TNFA, CXCL8, ICAM1, CD86, CD192, and IL1B) was analyzed by RT-qPCR. The expression of selected cytokines, growth factors and surface molecules was assessed by flow cytometry or ELISA. Generation of reactive oxygen species and induction of DNA breaks were also analyzed. Exposure to diverse NPs caused substantially different molecular responses. No significant effects were detected for NM-100 treatment. NM-200 induced production of IL-8, a potent attractor and activator of neutrophils, growth factors (VEGF and IGF-1) and superoxide. NM-110 triggered a proinflammatory response, characterized by the activation of transcription factor NF-κB, an enhanced production of proinflammatory cytokines (TNF-α) and chemokines (IL-8). Furthermore, the expression of cell adhesion molecules VCAM-1 and ICAM-1 and hepatocyte growth factor (HGF), as well as superoxide production and DNA breaks, were affected. NM-300 K enhanced IL-8 production and induced DNA breaks, however, it decreased the expression of chemokine receptor (CCR2) and CD86 molecule, indicating potential immunosuppressive activity. The toxicity of ZnO and Ag NPs was probably caused by their intracellular dissolution, as indicated by transmission electron microscopy imaging. The observed effects in macrophages might further influence both innate and adaptive immune responses by promoting neutrophil recruitment via IL-8 release and enhancing the adhesion and stimulation of T cells by VCAM-1 and ICAM-1 expression.
Collapse
11
The Short-Term Inhalation Study (STIS) as a Range Finder and Screening Tool in a Tiered Grouping Strategy.
CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2019. [DOI:
10.1007/978-981-13-8433-2_2]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
12
Effects of Ultrasonic Dispersion Energy on the Preparation of Amorphous SiO₂ Nanomaterials for In Vitro Toxicity Testing.
NANOMATERIALS 2018;
9:nano9010011. [PMID:
30583541 PMCID:
PMC6359325 DOI:
10.3390/nano9010011]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Synthetic amorphous silica (SAS) constitute a large group of industrial nanomaterials (NM). Based on their different production processes, SAS can be distinguished as precipitated, fumed, gel and colloidal. The biological activity of SAS, e.g., cytotoxicity or inflammatory potential in the lungs is low but has been shown to depend on the particle size, at least for colloidal silica. Therefore, the preparation of suspensions from highly aggregated or agglomerated SAS powder materials is critical. Here we analyzed the influence of ultrasonic dispersion energy on the biologic activity of SAS using NR8383 alveolar macrophage (AM) assay. Fully characterized SAS (7 precipitated, 3 fumed, 3 gel, and 1 colloidal) were dispersed in H2O by stirring and filtering through a 5 µm filter. Aqueous suspensions were sonicated with low or high ultrasonic dispersion (USD) energy of 18 or 270 kJ/mL, respectively. A dose range of 11.25–90 µg/mL was administered to the AM under protein-free conditions to detect particle-cell interactions without the attenuating effect of proteins that typically occur in vivo. The release of lactate dehydrogenase (LDH), glucuronidase (GLU), and tumor necrosis factor α (TNF) were measured after 16 h. Hydrogen peroxide (H2O2) production was assayed after 90 min. The overall pattern of the in vitro response to SAS (12/14) was clearly dose-dependent, except for two SAS which showed very low bioactivity. High USD energy gradually decreased the particle size of precipitated, fumed, and gel SAS whereas the low adverse effect concentrations (LOECs) remained unchanged. Nevertheless, the comparison of dose-response curves revealed slight, but uniform shifts in EC50 values (LDH, and partially GLU) for precipitated SAS (6/7), gel SAS (2/3), and fumed SAS (3/3). Release of TNF changed inconsistently with higher ultrasonic dispersion (USD) energy whereas the induction of H2O2 was diminished in all cases. Electron microscopy and energy dispersive X-ray analysis showed an uptake of SAS into endosomes, lysosomes, endoplasmic reticulum, and different types of phagosomes. The possible effects of different uptake routes are discussed. The study shows that the effect of increased USD energy on the in vitro bioactivity of SAS is surprisingly small. As the in vitro response of AM to different SAS is highly uniform, the production process per se is of minor relevance for toxicity.
Collapse
13
Ang HY, Toong D, Chow WS, Seisilya W, Wu W, Wong P, Venkatraman SS, Foin N, Huang Y. Radiopaque Fully Degradable Nanocomposites for Coronary Stents.
Sci Rep 2018;
8:17409. [PMID:
30479353 PMCID:
PMC6258706 DOI:
10.1038/s41598-018-35663-2]
[Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Bioresorbable scaffolds (BRS) were introduced to overcome limitations of current metallic drug-eluting stents and poly-L-lactide (PLLA) has been used in the fabrication of BRS due to its biodegradability and biocompatibility. However, such polymers have weaker mechanical properties as compared to metals, limiting their use in BRS. We hypothesized that nanofillers can be used to enhance the mechanical properties considerably in PLLA. To this end, polymer-matrix composites consisting of PLLA reinforced with 5-20 wt% barium sulfate (BaSO4) nanofillers as a potential BRS material was evaluated. Stearic-acid (SA) modified BaSO4 nanofillers were used to examine the effect of functionalization. Rigid nanofillers improved the tensile modulus and strength of PLLA (60% and 110% respectively), while the use of SA-BaSO4 caused a significant increase (~110%) in the elongation at break. Enhancement in mechanical properties is attributed to functionalization which decreased the agglomeration of the nanofillers and improved dispersion. The nanocomposites were also radiopaque. Finite element analysis (FEA) showed that scaffold fabricated from the novel nanocomposite material has improved scaffolding ability, specifically that the strut thickness could be decreased compared to the conventional PLLA scaffold. In conclusion, BaSO4/PLLA-based nanocomposites could potentially be used as materials for BRS with improved mechanical and radiopaque properties.
Collapse
Affiliation(s)
- Hui Ying Ang
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
| |
- Daniel Toong
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| |
- Wei Shoon Chow
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| |
- Welly Seisilya
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| |
- Wei Wu
- Department of Mechanical Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| |
- Philip Wong
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
| |
- Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore
| |
- Nicolas Foin
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| |
- Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore.
| |
Collapse
14
De Jong WH, De Rijk E, Bonetto A, Wohlleben W, Stone V, Brunelli A, Badetti E, Marcomini A, Gosens I, Cassee FR. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats.
Nanotoxicology 2018;
13:50-72. [DOI:
10.1080/17435390.2018.1530390]
[Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wim H. De Jong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
| |
- Alessandro Bonetto
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| |
- Wendel Wohlleben
- Department of Material Physics and Dept. of Experimental Toxicology, BASF SE, Ludwigshafen am Rhein, Germany
| |
- Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
- Andrea Brunelli
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| |
- Elena Badetti
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| |
- Antonio Marcomini
- DAIS – Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| |
- Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
- Flemming R. Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Studies, Utrecht University, Utrecht, Netherlands
| |
Collapse
15
Ventura C, Sousa-Uva A, Lavinha J, Silva MJ. Conventional and novel "omics"-based approaches to the study of carbon nanotubes pulmonary toxicity.
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018;
59:334-362. [PMID:
29481700 DOI:
10.1002/em.22177]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 02/05/2023]
Abstract
The widespread application of carbon nanotubes (CNT) on industrial, biomedical, and consumer products can represent an emerging respiratory occupational hazard. Particularly, their similarity with the fiber-like shape of asbestos have raised a strong concern about their carcinogenic potential. Several in vitro and in vivo studies have been supporting this view by pointing to immunotoxic, cytotoxic and genotoxic effects of some CNT that may conduct to pulmonary inflammation, fibrosis, and bronchioloalveolar hyperplasia in rodents. Recently, high throughput molecular methodologies have been applied to obtain more insightful information on CNT toxicity, through the identification of the affected biological and molecular pathways. Toxicogenomic approaches are expected to identify unique gene expression profiles that, besides providing mechanistic information and guiding new research, have also the potential to be used as biomarkers for biomonitoring purposes. In this review, the potential of genomic data analysis is illustrated by gene network and gene ontology enrichment analysis of a set of 41 differentially expressed genes selected from a literature search focused on studies of C57BL/6 mice exposed to the multiwalled CNT Mitsui-7. The majority of the biological processes annotated in the network are regulatory processes and the molecular functions are related to receptor-binding signalling. Accordingly, the network-annotated pathways are cell receptor-induced pathways. A single enriched molecular function and one biological process were identified. The relevance of specific epigenomic effects triggered by CNT exposure, for example, alteration of the miRNA expression profile is also discussed in light of its use as biomarkers in occupational health studies. Environ. Mol. Mutagen. 59:334-362, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Célia Ventura
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
- Departamento de Saúde Ocupacional e Ambiental, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisboa, Portugal
| |
- António Sousa-Uva
- Departamento de Saúde Ocupacional e Ambiental, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
- CISP - Public Health Research Center, Lisboa, Portugal
| |
- João Lavinha
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
| |
- Maria João Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Lisboa, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisboa, Portugal
| |
Collapse
16
Wiemann M, Sauer UG, Vennemann A, Bäcker S, Keller JG, Ma-Hock L, Wohlleben W, Landsiedel R. In Vitro and In Vivo Short-Term Pulmonary Toxicity of Differently Sized Colloidal Amorphous SiO₂.
NANOMATERIALS 2018. [PMID:
29534009 PMCID:
PMC5869651 DOI:
10.3390/nano8030160]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro prediction of inflammatory lung effects of well-dispersed nanomaterials is challenging. Here, the in vitro effects of four colloidal amorphous SiO2 nanomaterials that differed only by their primary particle size (9, 15, 30, and 55 nm) were analyzed using the rat NR8383 alveolar macrophage (AM) assay. Data were compared to effects of single doses of 15 nm and 55 nm SiO2 intratracheally instilled in rat lungs. In vitro, all four elicited the release of concentration-dependent lactate dehydrogenase, β-glucuronidase, and tumor necrosis factor alpha, and the two smaller materials also released H2O2. All effects were size-dependent. Since the colloidal SiO2 remained well-dispersed in serum-free in vitro conditions, effective particle concentrations reaching the cells were estimated using different models. Evaluating the effective concentration–based in vitro effects using the Decision-making framework for the grouping and testing of nanomaterials, all four nanomaterials were assigned as “active.” This assignment and the size dependency of effects were consistent with the outcomes of intratracheal instillation studies and available short-term rat inhalation data for 15 nm SiO2. The study confirms the applicability of the NR8383 AM assay to assessing colloidal SiO2 but underlines the need to estimate and consider the effective concentration of such well-dispersed test materials.
Collapse
Affiliation(s)
- Martin Wiemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstr. 11, 48149 Münster, Germany.
| |
- Ursula G Sauer
- Scientific Consultancy-Animal Welfare, 85579 Neubiberg, Germany.
| |
- Antje Vennemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstr. 11, 48149 Münster, Germany.
| |
- Sandra Bäcker
- BASF SE, Human Biomonitoring and Industrial Hygiene, 67056 Ludwigshafen, Germany.
| |
| |
- Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| |
- Wendel Wohlleben
- BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany.
| |
- Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| |
Collapse
17
Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, Luch A, Irfan MA, Landsiedel R, van der Zande M, Bouwmeester H. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme.
Nanotoxicology 2017;
12:1-17. [DOI:
10.1080/17435390.2017.1415388]
[Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
- Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
- Katarzyna Odziomek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
- Piotr Urbaszek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
- Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
- Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
- Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
- Muhammad A. Irfan
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| |
- Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| |
| |
- Hans Bouwmeester
- RIKILT – Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
18
Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J. siRNA-nanoparticle conjugate in gene silencing: A future cure to deadly diseases?
MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;
76:1378-1400. [DOI:
10.1016/j.msec.2017.03.009]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
19
Movia D, Di Cristo L, Alnemari R, McCarthy JE, Moustaoui H, Lamy de la Chapelle M, Spadavecchia J, Volkov Y, Prina-Mello A. The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles.
ACTA ACUST UNITED AC 2017. [DOI:
10.1002/jin2.25]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| |
- Luisana Di Cristo
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| |
- Roaa Alnemari
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
| |
| |
- Hanane Moustaoui
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| |
- Marc Lamy de la Chapelle
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| |
- Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| |
- Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
- Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
Collapse
20
Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping.
JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017;
19:171. [PMID:
28553159 PMCID:
PMC5423989 DOI:
10.1007/s11051-017-3850-6]
[Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/10/2017] [Indexed: 05/14/2023]
Abstract
As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as 'qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| |
- Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| |
- Karin Wiench
- Regulatory Toxicology, BASF SE, 67056 Ludwigshafen, Germany
| |
- Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
- Advanced Materials Research, BASF SE, 67056 Ludwigshafen, Germany
| |
- Ursula G. Sauer
- Scientific Consultancy—Animal Welfare, Hallstattfeld 16, 85579 Neubiberg, Germany
| |
Collapse
21
Schremmer I, Brik A, Weber D, Rosenkranz N, Rostek A, Loza K, Brüning T, Johnen G, Epple M, Bünger J, Westphal G. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles.
Toxicol Lett 2016;
263:68-75. [DOI:
10.1016/j.toxlet.2016.08.014]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/24/2023]
22
Landsiedel R. Concern-driven integrated approaches for the grouping, testing and assessment of nanomaterials.
ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016;
218:1376-1380. [PMID:
26586635 DOI:
10.1016/j.envpol.2015.10.060]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
NM's potential to induce adverse effects in humans or the environment is being addressed in numerous research projects, and methods and tools for NM hazard identification and risk assessment are advancing. This article describes how integrated approaches for the testing and assessment of NMs can ensure the safety of nanomaterials, while adhering to the 3Rs principle.
Collapse
Affiliation(s)
- Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
| |
Collapse
23
Hristozov D, Gottardo S, Semenzin E, Oomen A, Bos P, Peijnenburg W, van Tongeren M, Nowack B, Hunt N, Brunelli A, Scott-Fordsmand JJ, Tran L, Marcomini A. Frameworks and tools for risk assessment of manufactured nanomaterials.
ENVIRONMENT INTERNATIONAL 2016;
95:36-53. [PMID:
27523267 DOI:
10.1016/j.envint.2016.07.016]
[Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Commercialization of nanotechnologies entails a regulatory requirement for understanding their environmental, health and safety (EHS) risks. Today we face challenges to assess these risks, which emerge from uncertainties around the interactions of manufactured nanomaterials (MNs) with humans and the environment. In order to reduce these uncertainties, it is necessary to generate sound scientific data on hazard and exposure by means of relevant frameworks and tools. The development of such approaches to facilitate the risk assessment (RA) of MNs has become a dynamic area of research. The aim of this paper was to review and critically analyse these approaches against a set of relevant criteria. The analysis concluded that none of the reviewed frameworks were able to fulfill all evaluation criteria. Many of the existing modelling tools are designed to provide screening-level assessments rather than to support regulatory RA and risk management. Nevertheless, there is a tendency towards developing more quantitative, higher-tier models, capable of incorporating uncertainty into their analyses. There is also a trend towards developing validated experimental protocols for material identification and hazard testing, reproducible across laboratories. These tools could enable a shift from a costly case-by-case RA of MNs towards a targeted, flexible and efficient process, based on grouping and read-across strategies and compliant with the 3R (Replacement, Reduction, Refinement) principles. In order to facilitate this process, it is important to transform the current efforts on developing databases and computational models into creating an integrated data and tools infrastructure to support the risk assessment and management of MNs.
Collapse
Affiliation(s)
- Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, c/o PST Vega di Venezia - Via della Libertà 12, 30175 Marghera (VE), Italy.
| |
- Stefania Gottardo
- European Commission's Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy.
| |
- Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, c/o PST Vega di Venezia - Via della Libertà 12, 30175 Marghera (VE), Italy.
| |
- Agnes Oomen
- National Institute of Public Health & the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, The Netherlands.
| |
- Peter Bos
- National Institute of Public Health & the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, The Netherlands.
| |
- Willie Peijnenburg
- National Institute of Public Health & the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, The Netherlands.
| |
- Martie van Tongeren
- Centre for Human Exposure Science, Institute of Occupational Medicine, Research Avenue, North, Riccarton, Edinburgh, EH14 4AP, Scotland.
| |
- Bernd Nowack
- EMPA-Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland.
| |
- Neil Hunt
- The REACH Centre, Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire, LA1 4YQ, United Kingdom.
| |
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, c/o PST Vega di Venezia - Via della Libertà 12, 30175 Marghera (VE), Italy.
| |
- Janeck J Scott-Fordsmand
- Department of Bioscience-Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark.
| |
- Lang Tran
- Centre for Human Exposure Science, Institute of Occupational Medicine, Research Avenue, North, Riccarton, Edinburgh, EH14 4AP, Scotland.
| |
- Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, c/o PST Vega di Venezia - Via della Libertà 12, 30175 Marghera (VE), Italy.
| |
Collapse
24
Stone V, Johnston HJ, Balharry D, Gernand JM, Gulumian M. Approaches to Develop Alternative Testing Strategies to Inform Human Health Risk Assessment of Nanomaterials.
RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2016;
36:1538-1550. [PMID:
27285586 DOI:
10.1111/risa.12645]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 02/11/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
The development of alternative testing strategies (ATS) for hazard assessment of new and emerging materials is high on the agenda of scientists, funders, and regulators. The relatively large number of nanomaterials on the market and under development means that an increasing emphasis will be placed on the use of reliable, predictive ATS when assessing their safety. We have provided recommendations as to how ATS development for assessment of nanomaterial hazard may be accelerated. Predefined search terms were used to identify the quantity and distribution of peer-reviewed publications for nanomaterial hazard assessment following inhalation, ingestion, or dermal absorption. A summary of knowledge gaps relating to nanomaterial hazard is provided to identify future research priorities and areas in which a rich data set might exist to allow ATS identification. Consultation with stakeholders (e.g., academia, industry, regulators) was critical to ensure that current expert opinion was reflected. The gap analysis revealed an abundance of studies that assessed the local and systemic impacts of inhaled particles, and so ATS are available for immediate use. Development of ATS for assessment of the dermal toxicity of chemicals is already relatively advanced, and these models should be applied to nanomaterials as relatively few studies have assessed the dermal toxicity of nanomaterials to date. Limited studies have investigated the local and systemic impacts of ingested nanomaterials. If the recommendations for research prioritization proposed are adopted, it is envisioned that a comprehensive battery of ATS can be developed to support the risk assessment process for nanomaterials. Some alternative models are available for immediate implementation, while others require more developmental work to become widely adopted. Case studies are included that can be used to inform the selection of alternative models and end points when assessing the pathogenicity of fibers and mode of action of nanomaterial toxicity.
Collapse
Affiliation(s)
- Vicki Stone
- School of Life Sciences, Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| |
- Helinor J Johnston
- School of Life Sciences, Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
| |
- Dominique Balharry
- School of Life Sciences, Nano Safety Research Group, Heriot-Watt University, Edinburgh, UK
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
- Jeremy M Gernand
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA, USA
| |
- Mary Gulumian
- Toxicology and Biochemistry Section NIOH, Johannesburg, South Africa
- Haematology and Molecular Medicine Department School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
25
Shatkin JA, Ong KJ, Beaudrie C, Clippinger AJ, Hendren CO, Haber LT, Hill M, Holden P, Kennedy AJ, Kim B, MacDonell M, Powers CM, Sharma M, Sheremeta L, Stone V, Sultan Y, Turley A, White RH. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.
RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2016;
36:1520-1537. [PMID:
27510619 DOI:
10.1111/risa.12683]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article.
Collapse
Affiliation(s)
| |
| |
| |
| |
| |
| |
| |
- Patricia Holden
- UC Santa Barbara, Bren School of Environmental Science & Management, ERI, and UC CEIN, University of California, Santa Barbara, CA, USA
| |
- Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| |
| |
- Margaret MacDonell
- Argonne National Laboratory, Environmental Science Division, Argonne, IL, USA
| |
- Christina M Powers
- U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Transportation and Air Quality, Ann Arbor, MI, USA
| |
- Monita Sharma
- PETA International Science Consortium Ltd, London, UK
| |
| |
- Vicki Stone
- John Muir Building Gait 1 Heriot-Watt University, Edinburgh, Scotland, UK
| |
| |
| |
| |
Collapse
26
Hofmann T, Ma-Hock L, Strauss V, Treumann S, Rey Moreno M, Neubauer N, Wohlleben W, Gröters S, Wiench K, Veith U, Teubner W, van Ravenzwaay B, Landsiedel R. Comparative short-term inhalation toxicity of five organic diketopyrrolopyrrole pigments and two inorganic iron-oxide-based pigments.
Inhal Toxicol 2016;
28:463-79. [PMID:
27387137 PMCID:
PMC5020341 DOI:
10.1080/08958378.2016.1200698]
[Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Diketopyrrolopyrroles (DPP) are a relatively new class of organic high-performance pigments. The present inhalation and particle characterization studies were performed to compare the effects of five DPP-based pigments (coarse and fine Pigment Red 254, coarse and fine meta-chloro DPP isomer and one form of mixed chlorinated DPP isomers) and compare it to coarse and fine inorganic Pigment Red 101. Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 h/day on 5 consecutive days. Target concentrations were 30 mg/m3 as high dose for all compounds and selected based occupational exposure limits for respirable nuisance dust. Toxicity was determined after end of exposure and after 3-week recovery using broncho-alveolar lavage fluid (BALF) and microscopic examinations of the entire respiratory tract. Mixed chlorinated DPP isomers and coarse meta-chloro DPP isomer caused marginal changes in BALF, consisting of slight increases of polymorphonuclear neutrophils, and in case of coarse meta-chloro DPP increased MCP-1 and osteopontin levels. Mixed chlorinated DPP isomers, Pigment Red 254, and meta-chloro DPP caused pigment deposits and phagocytosis by alveolar macrophages, slight hypertrophy/hyperplasia of the bronchioles and alveolar ducts, but without evidence of inflammation. In contrast, only pigment deposition and pigment phagocytosis were observed after exposure to Pigment Red 101. All pigments were tolerated well and caused only marginal effects in BALF or no effects at all. Only minor effects were seen on the lung by microscopic examination. There was no evidence of systemic inflammation based on acute-phase protein levels in blood.
Collapse
Affiliation(s)
| |
- Lan Ma-Hock
- a Department of Experimental Toxicology and Ecology
| |
| |
| |
| |
| |
| |
| |
- Karin Wiench
- c Department of Product Safety , BASF SE , Ludwigshafen , Germany
| |
- Ulrich Veith
- d Department of Product Stewardship Pigments , BASF Schweiz AG , Basel , Switzerland , and
| |
- Wera Teubner
- e Department of Product Safety , BASF Schweiz AG , Basel , Switzerland
| |
| |
| |
Collapse
27
Li Q, Hu H, Jiang L, Zou Y, Duan J, Sun Z. Cytotoxicity and autophagy dysfunction induced by different sizes of silica particles in human bronchial epithelial BEAS-2B cells.
Toxicol Res (Camb) 2016;
5:1216-1228. [PMID:
30090427 PMCID:
PMC6062363 DOI:
10.1039/c6tx00100a]
[Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022] Open
Abstract
The adverse effects of silica nanoparticles are gaining attention due to their wide application in biomedicine. However, information about size-dependent toxicity induced by silica nanoparticles is insufficient. In this study, two size of nano-scale (40 nm, 60 nm) and one size of micro-scale (200 nm) silica particles were studied to investigate the possible mechanism of cytotoxicity and autophagy dysfunction in human bronchial epithelial BEAS-2B cells. The cell viability was decreased in a size- and dose-dependent manner, while the LDH activity, oxidative stress and mitochondrial damage significantly increased, induced by both nano- and micro-scale silica particles. Ultrastructural analysis showed that nano-scale silica particles could induce mitochondrial damage and autophagy, but not micro-scale particles. Verified by the autophagy inhibitor 3-MA, the expression of LC3 and SQSTM1/p62 was upregulated in nano-scale silica particles in a size- and dose-dependent manner, while the micro-scale particles had an inhibitory effect. In addition, autophagy activation and autophagy blockage were triggered by nano-scale silica particles via the PI3K/Akt/mTOR pathway. Our findings first demonstrated that exposure to nano-scale silica particles rather than micro-scale particles could lead to autophagy dysfunction and impair cellular homeostasis.
Collapse
Affiliation(s)
- Qiuling Li
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
- Hejing Hu
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
- Lizhen Jiang
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
- Yang Zou
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
- Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
Collapse
28
Sharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs).
Arch Toxicol 2016;
90:1605-22. [PMID:
27215431 DOI:
10.1007/s00204-016-1742-7]
[Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023]
Abstract
The increased production and use of multi-walled carbon nanotubes (MWCNTs) in a diverse array of consumer, medical, and industrial applications have raised concerns about potential human exposure to these materials in the workplace and ambient environments. Inhalation is a primary route of exposure to MWCNTs, and the existing data indicate that they are potentially hazardous to human health. While a 90-day rodent inhalation test (e.g., OECD Test No. 413: subchronic inhalation toxicity: 90-day study or EPA Health Effects Test Guidelines OPPTS 870.3465 90-day inhalation toxicity) is recommended by the U.S. Environmental Protection Agency Office of Pollution Prevention and Toxics for MWCNTs (and other CNTs) if they are to be commercially produced (Godwin et al. in ACS Nano 9:3409-3417, 2015), this test is time and cost-intensive and subject to scientific and ethical concerns. As a result, there has been much interest in transitioning away from studies on animals and moving toward human-based in vitro and in silico models. However, given the multiple mechanisms of toxicity associated with subchronic exposure to inhaled MWCNTs, a battery of non-animal tests will likely be needed to evaluate the key endpoints assessed by the 90-day rodent study. Pulmonary fibrosis is an important adverse outcome related to inhalation exposure to MWCNTs and one that the non-animal approach should be able to assess. This review summarizes the state-of-the-science regarding in vivo and in vitro toxicological methods for predicting MWCNT-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Monita Sharma
- PETA International Science Consortium Ltd., London, UK
| |
- Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
| |
| |
| |
Collapse
29
Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BGH, de Jong WH, Brown D, Hristozov D, Stone V. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure.
Nanotoxicology 2016;
10:1084-95. [PMID:
27132941 PMCID:
PMC4975088 DOI:
10.3109/17435390.2016.1172678]
[Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Increased use of nanomaterials has raised concerns about the potential for undesirable human health and environmental effects. Releases into the air may occur and, therefore, the inhalation route is of specific interest. Here we tested copper oxide nanoparticles (CuO NPs) after repeated inhalation as hazard data for this material and exposure route is currently lacking for risk assessment.
Methods: Rats were exposed nose-only to a single exposure concentration and by varying the exposure time, different dose levels were obtained (C × T protocol). The dose is expressed as 6 h-concentration equivalents of 0, 0.6, 2.4, 3.3, 6.3, and 13.2 mg/m3 CuO NPs, with a primary particle size of 10 9.2–14 nm and an MMAD of 1.5 μm.
Results: Twenty-four hours after a 5-d exposure, dose-dependent lung inflammation and cytotoxicity were observed. Histopathological examinations indicated alveolitis, bronchiolitis, vacuolation of the respiratory epithelium, and emphysema in the lung starting at 2.4 mg/m3. After a recovery period of 22 d, limited inflammation was still observed, but only at the highest dose of 13.2 mg/m3. The olfactory epithelium in the nose degenerated 24 h after exposure to 6.3 and 13.2 mg/m3, but this was restored after 22 d. No histopathological changes were detected in the brain, olfactory bulb, spleen, kidney and liver.
Conclusion: A 5-d, 6-h/day exposure equivalent to an aerosol of agglomerated CuO NPs resulted in a dose-dependent toxicity in rats, which almost completely resolved during a 3-week post-exposure period.
Collapse
Affiliation(s)
- Ilse Gosens
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| |
- Flemming R Cassee
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands .,b Institute for Risk Assessment Studies, Utrecht University , Utrecht , The Netherlands
| |
- Michela Zanella
- c ECSIN-European Center for the Sustainable Impact of Nanotechnology, Veneto Nanotech S.C.P.A. , Rovigo , Italy
| |
- Laura Manodori
- c ECSIN-European Center for the Sustainable Impact of Nanotechnology, Veneto Nanotech S.C.P.A. , Rovigo , Italy
| |
- Andrea Brunelli
- d Informatics and Statistics, University Ca' Foscari of Venice, INCA - VEGAPARK , Venice , Italy
| |
- Anna Luisa Costa
- e National Research Council - Institute of Science and Technology for Ceramics , Faenza , Italy , and
| |
- Bas G H Bokkers
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| |
- Wim H de Jong
- a National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| |
- David Brown
- f School of Life Sciences, Heriot-Watt University, Nanosafety Research Group , Edinburgh , UK
| |
- Danail Hristozov
- d Informatics and Statistics, University Ca' Foscari of Venice, INCA - VEGAPARK , Venice , Italy
| |
- Vicki Stone
- f School of Life Sciences, Heriot-Watt University, Nanosafety Research Group , Edinburgh , UK
| |
Collapse
30
Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials.
Arch Toxicol 2016;
90:1769-83. [PMID:
27121469 PMCID:
PMC4894935 DOI:
10.1007/s00204-016-1717-8]
[Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022]
Abstract
The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air–liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air–liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs.
Collapse
31
Wohlleben W, Driessen MD, Raesch S, Schaefer UF, Schulze C, Vacano BV, Vennemann A, Wiemann M, Ruge CA, Platsch H, Mues S, Ossig R, Tomm JM, Schnekenburger J, Kuhlbusch TAJ, Luch A, Lehr CM, Haase A. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
Nanotoxicology 2016;
10:970-80. [PMID:
26984182 DOI:
10.3109/17435390.2016.1155671]
[Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lung lining fluid is the first biological barrier nanoparticles (NPs) encounter during inhalation. As previous inhalation studies revealed considerable differences between surface functionalized NPs with respect to deposition and toxicity, our aim was to investigate the influence of lipid and/or protein binding on these processes. Thus, we analyzed a set of surface functionalized NPs including different SiO2 and ZrO2 in pure phospholipids, CuroSurf(TM) and purified native porcine pulmonary surfactant (nS). Lipid binding was surprisingly low for pure phospholipids and only few NPs attracted a minimal lipid corona. Additional presence of hydrophobic surfactant protein (SP) B in CuroSurf(TM) promoted lipid binding to NPs functionalized with Amino or PEG residues. The presence of the hydrophilic SP A in nS facilitated lipid binding to all NPs. In line with this the degree of lipid and protein affinities for different surface functionalized SiO2 NPs in nS followed the same order (SiO2 Phosphate ∼ unmodified SiO2 < SiO2 PEG < SiO2 Amino NPs). Agglomeration and biomolecule interaction of NPs in nS was mainly influenced by surface charge and hydrophobicity. Toxicological differences as observed in short-term inhalation studies (STIS) were mainly influenced by the core composition and/or surface reactivity of NPs. However, agglomeration in lipid media and lipid/protein affinity appeared to play a modulatory role on short-term inhalation toxicity. For instance, lipophilic NPs like ZrO2, which are interacting with nS to a higher extent, exhibited a far higher lung burden than their hydrophilic counterparts, which deserves further attention to predict or model effects of respirable NPs.
Collapse
Affiliation(s)
| |
- Marc D Driessen
- b Department of Chemicals and Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
- Simon Raesch
- c Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbrücken , Germany
| |
- Ulrich F Schaefer
- c Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbrücken , Germany
| |
- Christine Schulze
- c Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbrücken , Germany
| |
| |
- Antje Vennemann
- d IBE R& D gGmbH, Institute for Lung Health , Münster , Germany
| |
- Martin Wiemann
- d IBE R& D gGmbH, Institute for Lung Health , Münster , Germany
| |
- Christian A Ruge
- c Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbrücken , Germany
| |
| |
- Sarah Mues
- f Biomedical Technology Center , Westfälische Wilhelms-University , Münster , Germany
| |
- Rainer Ossig
- f Biomedical Technology Center , Westfälische Wilhelms-University , Münster , Germany
| |
- Janina M Tomm
- g Department of Proteomics , Helmholtz Centre for Environmental Research (UFZ) , Leipzig , Germany
| |
- Jürgen Schnekenburger
- f Biomedical Technology Center , Westfälische Wilhelms-University , Münster , Germany
| |
- Thomas A J Kuhlbusch
- h Institute of Energy and Environmental Technology (IUTA) E.V , Air Quality & Sustainable Nanotechnology , Duisburg , Germany .,i Center for Nanointegration CENIDE , University of Duisburg-Essen , Duisburg , Germany , and
| |
- Andreas Luch
- b Department of Chemicals and Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
- Claus-Michael Lehr
- c Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology , Saarland University , Saarbrücken , Germany .,j Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Saarbrücken , Germany
| |
- Andrea Haase
- b Department of Chemicals and Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
32
Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials.
J Nanobiotechnology 2016;
14:16. [PMID:
26944705 PMCID:
PMC4779246 DOI:
10.1186/s12951-016-0164-2]
[Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Most in vitro studies investigating nanomaterial pulmonary toxicity poorly correlate to in vivo inhalation studies. Alveolar macrophages (AMs) play an outstanding role during inhalation exposure since they effectively clear the alveoli from particles. This study addresses the applicability of an in vitro alveolar macrophage assay to distinguish biologically active from passive nanomaterials.
METHODS
Rat NR8383 alveolar macrophages were exposed to 18 inorganic nanomaterials, covering AlOOH, BaSO4, CeO2, Fe2O3, TiO2, ZrO2, and ZnO NMs, amorphous SiO2 and graphite nanoplatelets, and two nanosized organic pigments. ZrO2 and amorphous SiO2 were tested without and with surface functionalization. Non-nanosized quartz DQ12 and corundum were used as positive and negative controls, respectively. The test materials were incubated with the cells in protein-free culture medium. Lactate dehydrogenase, glucuronidase, and tumour necrosis factor alpha were assessed after 16 h. In parallel, H2O2 was assessed after 1.5 h. Using the no-observed-adverse-effect concentrations (NOAECs) from available rat short-term inhalation studies (STIS), the test materials were categorized as active (NOAEC < 10 mg/m(3)) or passive.
RESULTS
In vitro data reflected the STIS categorization if a particle surface area-based threshold of <6000 mm(2)/mL was used to determine the biological relevance of the lowest observed significant in vitro effects. Significant effects that were recorded above this threshold were assessed as resulting from test material-unspecific cellular 'overload'. Test materials were assessed as active if ≥2 of the 4 in vitro parameters undercut this threshold. They were assessed as passive if 0 or 1 parameter was altered. An overall assay accuracy of 95 % was achieved.
CONCLUSIONS
The in vitro NR8383 alveolar macrophage assay allows distinguishing active from passive nanomaterials. Thereby, it allows determining whether in vivo short-term inhalation testing is necessary for hazard assessment. Results may also be used to group nanomaterials by biological activity. Further work should aim at validating the assay.
Collapse
Affiliation(s)
- Martin Wiemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstraße 11, 48149, Münster, Germany.
| |
- Antje Vennemann
- IBR R&D gGmbH Institute for Lung Health, Mendelstraße 11, 48149, Münster, Germany.
| |
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Hallstattfeld 16, 85579, Neubiberg, Germany.
| |
- Karin Wiench
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| |
- Lan Ma-Hock
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| |
- Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, GB/TB - Z470, 67056, Ludwigshafen, Germany.
| |
Collapse
33
Cordelli E, Keller J, Eleuteri P, Villani P, Ma-Hock L, Schulz M, Landsiedel R, Pacchierotti F. No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2or BaSO4nanomaterials.
Mutagenesis 2016;
32:13-22. [DOI:
10.1093/mutage/gew005]
[Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
34
Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RPF, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V. A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health--ENPRA Project--The Highlights, Limitations, and Current and Future Challenges.
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016;
19:1-28. [PMID:
27030582 DOI:
10.1080/10937404.2015.1126210]
[Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ENPRA was one of the earlier multidisciplinary European Commission FP7-funded projects aiming to evaluate the risks associated with nanomaterial (NM) exposure on human health across pulmonary, cardiovascular, hepatic, renal, and developmental systems. The outputs from this project have formed the basis of this review. A retrospective interpretation of the findings across a wide range of in vitro and in vivo studies was performed to identify the main highlights from the project. In particular, focus was placed on informing what advances were made in the hazard assessment of NM, as well as offering some suggestions on the future of "nanotoxicology research" based on these observations, shortcomings, and lessons learned from the project. A number of issues related to the hazard assessment of NM are discussed in detail and include use of appropriate NM for nanotoxicology investigations; characterization and dispersion of NM; use of appropriate doses for all related investigations; need for the correct choice of experimental models for risk assessment purposes; and full understanding of the test systems and correct interpretation of data generated from in vitro and in vivo systems. It is hoped that this review may assist in providing information in the implementation of guidelines, model systems, validation of assessment methodology, and integrated testing approaches for risk assessment of NM. It is vital to learn from ongoing and/or completed studies to avoid unnecessary duplication and offer suggestions that might improve different aspects of experimental design.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
- Ilse Gosens
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| |
- Laura MacCalman
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| |
- Helinor Johnston
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
- Pernille H Danielsen
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| |
- Nicklas R Jacobsen
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| |
- Anke-Gabriele Lenz
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| |
- Teresa Fernandes
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
- Roel P F Schins
- g IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| |
- Flemming R Cassee
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| |
- Håkan Wallin
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| |
- Wolfgang Kreyling
- h Helmholtz Zentrum München , Institute of Epidemiology II , Munich , Germany
| |
- Tobias Stoeger
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| |
- Steffen Loft
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| |
- Peter Møller
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| |
- Lang Tran
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| |
- Vicki Stone
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
Collapse
35
Maser E, Schulz M, Sauer UG, Wiemann M, Ma-Hock L, Wohlleben W, Hartwig A, Landsiedel R. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials.
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015;
794:57-74. [DOI:
10.1016/j.mrgentox.2015.10.005]
[Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/17/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
36
Shin JH, Han SG, Kim JK, Kim BW, Hwang JH, Lee JS, Lee JH, Baek JE, Kim TG, Kim KS, Lee HS, Song NW, Ahn K, Yu IJ. 5-Day repeated inhalation and 28-day post-exposure study of graphene.
Nanotoxicology 2015;
9:1023-31. [PMID:
25697182 DOI:
10.3109/17435390.2014.998306]
[Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Graphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats. A total of three groups (20 rats per group) were compared: (1) control (ambient air), (2) low concentration (0.68 ± 0.14 mg/m(3) graphene) and (3) high concentration (3.86 ± 0.94 mg/m(3) graphene). The rats were exposed to graphene for 6 h/day for 5 days, followed by recovery for 1, 3, 7 or 28 days. The bioaccumulation and macrophage ingestion of the graphene were evaluated in the rat lungs. The exposure to graphene did not change the body weights or organ weights of the rats after the 5-day exposure and during the recovery period. No statistically significant difference was observed in the levels of lactate dehydrogenase, protein and albumin between the exposed and control groups. However, graphene ingestion by alveolar macrophages was observed in the exposed groups. Therefore, these results suggest that the 5-day repeated exposure to graphene only had a minimal toxic effect at the concentrations and time points used in this study.
Collapse
Affiliation(s)
- Jae Hoon Shin
- a Occupational Lung Diseases Institute, KCOMWEL , Ansan , Korea
| |
- Sung Gu Han
- b Toxicology Laboratory , College of Animal Bioscience and Technology, Konkuk University , Seoul , Korea
| |
- Jin Kwon Kim
- c Institute of Nano Products Safety Research, Hoseo University , Asan , Korea
| |
- Boo Wook Kim
- a Occupational Lung Diseases Institute, KCOMWEL , Ansan , Korea
| |
- Joo Hwan Hwang
- a Occupational Lung Diseases Institute, KCOMWEL , Ansan , Korea
| |
- Jong Seong Lee
- a Occupational Lung Diseases Institute, KCOMWEL , Ansan , Korea
| |
- Ji Hyun Lee
- c Institute of Nano Products Safety Research, Hoseo University , Asan , Korea
| |
- Jin Ee Baek
- a Occupational Lung Diseases Institute, KCOMWEL , Ansan , Korea
| |
- Tae Gyu Kim
- c Institute of Nano Products Safety Research, Hoseo University , Asan , Korea
| |
- Keun Soo Kim
- c Institute of Nano Products Safety Research, Hoseo University , Asan , Korea
| |
- Heon Sang Lee
- d Department of Chemical Engineering , Donga University , Busan , Korea
| |
- Nam Woong Song
- e Korea Research Institute of Standards and Science , Daejeon , Korea , and
| |
- Kangho Ahn
- f Department of Mechanical Engineering , Hanyang University , Ansan , Korea
| |
- Il Je Yu
- c Institute of Nano Products Safety Research, Hoseo University , Asan , Korea
| |
Collapse
37
A perspective on the developmental toxicity of inhaled nanoparticles.
Reprod Toxicol 2015;
56:118-40. [PMID:
26050605 DOI:
10.1016/j.reprotox.2015.05.015]
[Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
This paper aimed to clarify whether maternal inhalation of engineered nanoparticles (NP) may constitute a hazard to pregnancy and fetal development, primarily based on experimental animal studies of NP and air pollution particles. Overall, it is plausible that NP may translocate from the respiratory tract to the placenta and fetus, but also that adverse effects may occur secondarily to maternal inflammatory responses. The limited database describes several organ systems in the offspring to be potentially sensitive to maternal inhalation of particles, but large uncertainties exist about the implications for embryo-fetal development and health later in life. Clearly, the potential for hazard remains to be characterized. Considering the increased production and application of nanomaterials and related consumer products a testing strategy for NP should be established. Due to large gaps in data, significant amounts of groundwork are warranted for a testing strategy to be established on a sound scientific basis.
Collapse
38
Westphal GA, Schremmer I, Rostek A, Loza K, Rosenkranz N, Brüning T, Epple M, Bünger J. Particle-induced cell migration assay (PICMA): A new in vitro assay for inflammatory particle effects based on permanent cell lines.
Toxicol In Vitro 2015;
29:997-1005. [PMID:
25896209 DOI:
10.1016/j.tiv.2015.04.005]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 11/29/2022]
Abstract
Inflammation is a decisive pathophysiologic mechanism of particle toxicity and accumulation of neutrophils in the lung is believed to be a crucial step in this process. This study describes an in vitro model for investigations of the chemotactic attraction of neutrophils in response to particles using permanent cell lines. We challenged NR8383 rat macrophages with particles that were characterized concerning chemical nature, crystallinity, and size distribution in the dry state and in the culture medium. The cell supernatants were used to investigate migration of differentiated human leukemia cells (dHL-60 cells). The dose range for the tests was determined using an impedance-based Real-Time Cell Analyzer. The challenge of NR8383 cells with 32-96 μg cm(-2) coarse and nanosized particles resulted in cell supernatants which induced strong and dose-dependent migration of dHL-60 cells. Quartz caused the strongest effects - exceeding the positive control "fetal calf serum" (FCS) several-fold, followed by silica, rutile, carbon black, and anatase. BaSO4 served as inert control and induced no cell migration. Particles caused NR8383 cells to secrete chemotactic compounds. The assay clearly distinguished between the particles of different inflammatory potential in a highly reproducible way. Specificity of the test is suggested by negative results with BaSO4.
Collapse
Affiliation(s)
- Götz A Westphal
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
- Isabell Schremmer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
- Alexander Rostek
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
- Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
- Nina Rosenkranz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
- Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
- Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
- Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
39
Arts JHE, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, Wiench K, Wohlleben W, Landsiedel R. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).
Regul Toxicol Pharmacol 2015;
71:S1-27. [PMID:
25818068 DOI:
10.1016/j.yrtph.2015.03.007]
[Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/22/2022]
Abstract
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources.
Collapse
Affiliation(s)
- Josje H E Arts
- AkzoNobel, Technology and Engineering, Arnhem, Netherlands
| |
- Mackenzie Hadi
- Shell Health, Shell International B.V., The Hague, Netherlands
| |
| |
| |
| |
- Delina Lyon
- Shell Health, Shell Oil Company, Houston, TX, USA
| |
| |
| |
| |
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| |
- David Warheit
- DuPont Haskell Global Centers for HES, Newark, DE, USA
| |
| |
| |
| |
Collapse
40
Hammad S, Bolt HM. Current developments in nanosafety research.
Arch Toxicol 2014;
88:2089-91. [PMID:
25420465 DOI:
10.1007/s00204-014-1403-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,
| |
| |
Collapse
41
42
Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies.
Nanomedicine (Lond) 2014;
9:2557-85. [DOI:
10.2217/nnm.14.149]
[Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.
Collapse
Affiliation(s)
| |
- Ursula G Sauer
- Scientific Consultancy – Animal Welfare, Neubiberg, Germany
| |
| |
- Jürgen Schnekenburger
- Biomedical Technology Centre of the Medical Faculty of Westphalian Wilhelms University Münster, Münster, Germany
| |
- Martin Wiemann
- IBE R&D gGmbH Institute for Lung Health, Münster, Germany
| |
Collapse
43
Konduru N, Keller J, Ma-Hock L, Gröters S, Landsiedel R, Donaghey TC, Brain JD, Wohlleben W, Molina RM. Biokinetics and effects of barium sulfate nanoparticles.
Part Fibre Toxicol 2014;
11:55. [PMID:
25331813 PMCID:
PMC4219084 DOI:
10.1186/s12989-014-0055-3]
[Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO₄ NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of ¹³¹BaSO₄ NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO₄ in rats.
METHODS
We compared the tissue distribution of ¹³¹Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of ¹³¹BaSO₄. Rats were exposed to 50 mg/m³ BaSO₄ aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed.
RESULTS
Inhaled BaSO₄ NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO₄ NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO₄ NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO₄ NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated ¹³¹Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected ¹³¹BaSO₄ NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure.
CONCLUSIONS
Pulmonary exposure to instilled BaSO₄ NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m³) of BaSO₄ NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO₄ NPs were cleared quickly yet resulted in higher tissue retention than when ingested. Particle dissolution is a likely mechanism. Injected BaSO₄ NPs localized in the reticuloendothelial organs and redistributed to the bone over time. BaSO₄ NP exhibited lower toxicity and biopersistence in the lungs compared to other poorly soluble NPs such as CeO₂ and TiO₂.
Collapse
Affiliation(s)
- Nagarjun Konduru
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
- Jana Keller
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| |
- Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| |
- Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| |
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| |
- Thomas C Donaghey
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
- Joseph D Brain
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
- Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, GV/TB - Z470, Carl-Bosch-Straße 38, Ludwigshafen, 67056, Germany.
| |
- Ramon M Molina
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
44
Boland S, Hussain S, Baeza-Squiban A. Carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity.
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014;
6:641-52. [PMID:
25266826 DOI:
10.1002/wnan.1302]
[Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/11/2022]
Abstract
Increasing evidence link nanomaterials with adverse biological outcomes and due to the variety of applications and potential human exposures to nanoparticles, it is thus important to evaluate their toxicity for the risk assessment of workers and consumers. It is crucial to understand the underlying mechanisms of their toxicity as observation of similar effects after different nanomaterial exposures does not reflect similar intracellular processing and organelle interactions. A thorough understanding of mechanisms is needed not only for accurate prediction of potential toxicological impacts but also for the development of safer nanoapplications by modulating the physicochemical characteristics. Furthermore biomedical applications may also take advantage of an in depth knowledge about the mode of action of nanotoxicity to design new nanoparticle-derived drugs. In the present manuscript we discuss the similarities and differences in molecular pathways of toxicity after carbon black (CB) and titanium dioxide (TiO₂) nanoparticle exposures and identify the main toxicity mechanisms induced by these two nanoparticles which may also be indicative for the mode of action of other insoluble nanomaterials. We address the translocation, cell death induction, genotoxicity, and inflammation induced by TiO₂ and CB nanoparticles which depend on their internalization, reactive oxygen species (ROS) production capacities and/or protein interactions. We summarize their distinct cellular mechanisms of toxicity and the crucial steps which may be targeted to avoid adverse effects or to induce them for nanomedical purposes. Several physicochemical characteristics could influence these general toxicity pathways depicted here and the identification of common toxicity pathways could support the grouping of nanomaterials in terms of toxicity.
Collapse
Affiliation(s)
- Sonja Boland
- Univ Paris Diderot, (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics (RMCX), Paris, France
| |
| |
| |
Collapse
45
Baeza-Squiban A. [Physio-pathological impacts of inhaled nanoparticles].
Biol Aujourdhui 2014;
208:151-8. [PMID:
25190574 DOI:
10.1051/jbio/2014019]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 11/14/2022]
Abstract
Nanomaterials are defined as materials with any external dimension in the nanoscale or having an internal structure or surface structure in the nanoscale, approximately 1 nm to 100 nm. They exhibit new or reinforced properties as compared to the same material at the micrometric scale, providing a benefit in numerous technological applications. However, their specific surface properties in addition to their shape, composition, size are suspected to elicit adverse responses from biological systems, underlining the need for a thorough hazard assessment. Increasing use of nanomaterials in industrial as well as consumer products extends the possibilities of environmental and occupational human exposures. During all their life cycle, from their production to their destruction through their use, engineered nanoparticles can be released and the respiratory route is one of the main unintentional routes of exposure. Although the respiratory tract is equipped with efficient clearance mechanisms, there is increasing evidence that nanoparticles exhibit an ability to cross biological barriers, getting access to the bloodstream and secondary target organs. Different features of nanomaterials (size, form, surface reactivity...) contribute to their internalization and translocation through the respiratory barrier. Short term inhalation exposure to nanoparticles induces pulmonary inflammation the extent of which is dependent on the type of nanoparticles according to shape, size, solubility...Oxidative stress is considered as a major toxicity pathway triggered by nanomaterials as they can intrinsically produce reactive oxygen species or induced the intracellular production of reactive oxygen species or anti-oxidant depletion upon interaction with cells. Alternative mechanisms are suspected, related to the ability of nanoparticles to interact with proteins. As they get in contact with biological fluids, nanoparticles are covered by a protein corona that modifies their interactions with cells, their fate and their effects. There is still a need to increase our mechanistic understanding of the toxicological events triggered by nanomaterials in order to provide relevant data for risk assessment as well as in helping to develop nanomaterials with a safer design.
Collapse
46
Karlsson HL, Gliga AR, Calléja FMGR, Gonçalves CSAG, Wallinder IO, Vrieling H, Fadeel B, Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines.
Part Fibre Toxicol 2014;
11:41. [PMID:
25179117 PMCID:
PMC4237954 DOI:
10.1186/s12989-014-0041-9]
[Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND
The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz).
METHODS
The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation).
RESULTS
We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles.
CONCLUSIONS
We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
| |
| |
| |
| |
| |
| |
| |
Collapse
47
Size-dependent clearance of gold nanoparticles from lungs of Sprague–Dawley rats after short-term inhalation exposure.
Arch Toxicol 2014;
89:1083-94. [DOI:
10.1007/s00204-014-1292-9]
[Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
48
Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I, Luxenhofer G, Wiemann M, Landsiedel R, Wohlleben W, Eiden S, Mempel M, Behrendt H, Schmidt-Weber C, Gutermuth J, Alessandrini F. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties.
Int J Nanomedicine 2014;
9:2815-32. [PMID:
24940059 PMCID:
PMC4051720 DOI:
10.2147/ijn.s57396]
[Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background
Silica (SiO2) nanoparticles (NPs) are widely used in diverse industrial and biomedical applications. Their applicability depends on surface modifications, which can limit potential health problems.
Objective
To assess the potential impact of SiO2 NP exposure and NPs chemical modifications in allergic airway inflammation.
Methods
Mice were sensitized by five repetitive intraperitoneal injections of ovalbumin/aluminum hydroxide (1 μg) over 42 days, then intratracheally instilled with plain or modified SiO2 NPs (50 μg/mouse), and subsequently aerosol challenged for 20 minutes with ovalbumin. One or 5 days later, allergic inflammation was evaluated by cell differentiation of bronchoalveolar lavage fluid, lung function and gene expression and histopathology, as well as electron and confocal microscopy of pulmonary tissue.
Results
Plain SiO2 NPs induced proinflammatory and immunomodulatory effects in vivo, highlighted by enhanced infiltration of inflammatory cells in the bronchoalveolar lavage fluid, induction of a pulmonary T helper type 2 (Th2) cytokine pattern, differentiation of type 2 macrophages, and by morphological changes in the lung of sensitized mice. These effects were dramatically attenuated using surface-functionalized NPs with amino and phosphate groups, but not with polyethylene glycol. The role of macrophages in taking up SiO2 NPs was confirmed by flow cytometry, confocal microscopy, and gene expression analysis.
Conclusion
Our data suggest that amino and phosphate surface modifications, but not polyethylene glycol (PEG), mitigate the proinflammatory and immunomodulatory effect of SiO2 NPs in allergic airway inflammation, paving the way for new strategies in the production of nanomaterials with lower health impact for humans.
Collapse
Affiliation(s)
- Viviana Marzaioli
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
- Juan Antonio Aguilar-Pimentel
- Department of Dermatology and Allergy Biederstein, Technische Universität München (TUM) and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| |
- Ingrid Weichenmeier
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
- Georg Luxenhofer
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| |
| |
| |
| |
| |
- Martin Mempel
- Department of Dermatology, Venereology and Allergology, Universitätsmedizin Göttingen (UMG), Göttingen, Germany
| |
- Heidrun Behrendt
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
- Carsten Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
- Jan Gutermuth
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany ; Department of Dermatology, Vrije Universiteit Brussel, Brussels, Belgium
| |
- Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
49
Hayes AJ, Bakand S. Toxicological perspectives of inhaled therapeutics and nanoparticles.
Expert Opin Drug Metab Toxicol 2014;
10:933-47. [PMID:
24810077 DOI:
10.1517/17425255.2014.916276]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION
The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges.
AREAS COVERED
This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface.
EXPERT OPINION
Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.
Collapse
Affiliation(s)
- Amanda J Hayes
- The University of New South Wales, School of Chemistry , UNSW Sydney, 2052 , Australia +61 403 028747 ; +61 2 9385 6141 ;
| |
| |
Collapse
50
Oomen AG, Bos PMJ, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, Aschberger K, Gottardo S, von der Kammer F, Kühnel D, Hristozov D, Marcomini A, Migliore L, Scott-Fordsmand J, Wick P, Landsiedel R. Concern-driven integrated approaches to nanomaterial testing and assessment--report of the NanoSafety Cluster Working Group 10.
Nanotoxicology 2014;
8:334-48. [PMID:
23641967 PMCID:
PMC4002633 DOI:
10.3109/17435390.2013.802387]
[Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022]
Abstract
Bringing together topic-related European Union (EU)-funded projects, the so-called "NanoSafety Cluster" aims at identifying key areas for further research on risk assessment procedures for nanomaterials (NM). The outcome of NanoSafety Cluster Working Group 10, this commentary presents a vision for concern-driven integrated approaches for the (eco-)toxicological testing and assessment (IATA) of NM. Such approaches should start out by determining concerns, i.e., specific information needs for a given NM based on realistic exposure scenarios. Recognised concerns can be addressed in a set of tiers using standardised protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g., structure-activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. Ecotoxicological testing begins with representative test organisms followed by complex test systems. After each tier, it is evaluated whether the information gained permits assessing the safety of the NM so that further testing can be waived. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognise groups of NM based upon similar modes of action. Grouping of substances in return should form integral part of the IATA themselves.
Collapse
Affiliation(s)
- Agnes G. Oomen
- IVM, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
- Peter M. J. Bos
- IVM, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
| |
- Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| |
| |
- Hugh J. Byrne
- Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland
| |
- Karin Aschberger
- Joint Research Centre – Institute for Health and Consumer Protection, Ispra, Italy
| |
- Stefania Gottardo
- Joint Research Centre – Institute for Health and Consumer Protection, Ispra, Italy
| |
| |
- Dana Kühnel
- Bioanalytical Ecotoxicology, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
| |
| |
- Lucia Migliore
- Department of Translational Research & New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
| |
- Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
| |
Collapse