1
|
Dos Santos Rodrigues B, Leroy K, Mihajlovic M, De Boever S, Vanbellingen S, Cogliati B, Aerts JL, Vinken M. Evaluation of functional candidate biomarkers of non-genotoxic hepatocarcinogenicity in human liver spheroid co-cultures. Arch Toxicol 2023; 97:1739-1751. [PMID: 36941454 DOI: 10.1007/s00204-023-03486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Validated in vitro assays for testing non-genotoxic carcinogenic potential of chemicals are currently not available. Consequently, the two-year rodent bioassay remains the gold standard method for the identification of these chemicals. Transcriptomic and proteomic analyses have provided a comprehensive understanding of the non-genotoxic carcinogenic processes, however, functional changes induced by effects at transcriptional and translational levels have not been addressed. The present study was set up to test a number of proposed in vitro biomarkers of non-genotoxic hepatocarcinogenicity at the functional level using a translational 3-dimensional model. Spheroid cultures of human hepatocytes and stellate cells were exposed to 5 genotoxic carcinogenic, 5 non-genotoxic carcinogenic, and 5 non-carcinogenic chemical compounds and assessed for oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis, and inflammation. The spheroid model could capture many of these events triggered by the genotoxic carcinogenic chemicals, particularly aflatoxin B1 and hydroquinone. Nonetheless, no clear distinction could be made between genotoxic and non-genotoxic hepatocarcinogenicity. Therefore, spheroid cultures of human liver cells may be appropriate in vitro tools for mechanistic investigation of chemical-induced hepatocarcinogenicity, however, these mechanisms and their read-outs do not seem to be eligible biomarkers for detecting non-genotoxic carcinogenic chemicals.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sarah Vanbellingen
- Entity of Neuro-Aging and Viro-Immunotherapy, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Joeri L Aerts
- Entity of Neuro-Aging and Viro-Immunotherapy, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
2
|
Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol 2020; 140:111297. [DOI: 10.1016/j.fct.2020.111297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
|
3
|
Nicolaidou V, Koufaris C. Application of transcriptomic and microRNA profiling in the evaluation of potential liver carcinogens. Toxicol Ind Health 2020; 36:386-397. [PMID: 32419640 DOI: 10.1177/0748233720922710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocarcinogens are agents that increase the incidence of liver cancer in exposed animals or humans. It is now established that carcinogenic exposures have a widespread impact on the transcriptome, inducing both adaptive and adverse changes in the activities of genes and pathways. Chemical hepatocarcinogens have also been shown to affect expression of microRNA (miRNA), the evolutionarily conserved noncoding RNA that regulates gene expression posttranscriptionally. Considerable effort has been invested into examining the involvement of mRNA in chemical hepatocarcinogenesis and their potential usage for the classification and prediction of new chemical entities. For miRNA, there has been an increasing number of studies reported over the past decade, although not to the same degree as for transcriptomic studies. Current data suggest that it is unlikely that any gene or miRNA signature associated with short-term carcinogen exposure can replace the rodent bioassay. In this review, we discuss the application of transcriptomic and miRNA profiles to increase mechanistic understanding of chemical carcinogens and to aid in their classification.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
In vitro proteomic analysis of methapyrilene toxicity in rat hepatocytes reveals effects on intermediary metabolism. Arch Toxicol 2018; 93:369-383. [DOI: 10.1007/s00204-018-2360-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
|
5
|
Rooney J, Hill T, Qin C, Sistare FD, Corton JC. Adverse outcome pathway-driven identification of rat liver tumorigens in short-term assays. Toxicol Appl Pharmacol 2018; 356:99-113. [DOI: 10.1016/j.taap.2018.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
|
6
|
Mechanistic roles of microRNAs in hepatocarcinogenesis: A study of thioacetamide with multiple doses and time-points of rats. Sci Rep 2017; 7:3054. [PMID: 28596526 PMCID: PMC5465221 DOI: 10.1038/s41598-017-02798-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the “liver cancer” annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.
Collapse
|
7
|
Grinberg M. Highlight report: Erroneous sample annotation in a high fraction of publicly available genome-wide expression datasets. EXCLI JOURNAL 2016; 14:1256-8. [PMID: 26862323 PMCID: PMC4743481 DOI: 10.17179/excli2015-760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Marianna Grinberg
- Department of Statistics, TU Dortmund University, 44139 Dortmund, Germany
| |
Collapse
|
8
|
Kossler N, Matheis KA, Ostenfeldt N, Bach Toft D, Dhalluin S, Deschl U, Kalkuhl A. Identification of specific mRNA signatures as fingerprints for carcinogenesis in mice induced by genotoxic and nongenotoxic hepatocarcinogens. Toxicol Sci 2014; 143:277-95. [PMID: 25410580 DOI: 10.1093/toxsci/kfu248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long-term rodent carcinogenicity studies for evaluation of chemicals and pharmaceuticals concerning their carcinogenic potential to humans are currently receiving critical revision. Additional data from mechanistic studies can support cancer risk assessment by clarifying the underlying mode of action. In the course of the IMI MARCAR project, a European consortium of EFPIA partners and academics, which aims to identify biomarkers for nongenotoxic carcinogenesis, a toxicogenomic mouse liver database was generated. CD-1 mice were orally treated for 3 and 14 days with 3 known genotoxic hepatocarcinogens: C.I. Direct Black 38, Dimethylnitrosamine and 4,4'-Methylenedianiline; 3 nongenotoxic hepatocarcinogens: 1,4-Dichlorobenzene, Phenobarbital sodium and Piperonyl butoxide; 4 nonhepatocarcinogens: Cefuroxime sodium, Nifedipine, Prazosin hydrochloride and Propranolol hydrochloride; and 3 compounds that show ambiguous results in genotoxicity testing: Cyproterone acetate, Thioacetamide and Wy-14643. By liver mRNA expression analysis using individual animal data, we identified 64 specific biomarker candidates for genotoxic carcinogens and 69 for nongenotoxic carcinogens for male mice at day 15. The majority of genotoxic carcinogen biomarker candidates possess functions in DNA damage response (eg, apoptosis, cell cycle progression, DNA repair). Most of the identified nongenotoxic carcinogen biomarker candidates are involved in regulation of cell cycle progression and apoptosis. The derived biomarker lists were characterized with respect to their dependency on study duration and gender and were successfully used to characterize carcinogens with ambiguous genotoxicity test results, such as Wy-14643. The identified biomarker candidates improve the mechanistic understanding of drug-induced effects on the mouse liver that result in hepatocellular adenomas and/or carcinomas in 2-year mouse carcinogenicity studies.
Collapse
Affiliation(s)
- Nadine Kossler
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Katja A Matheis
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Nina Ostenfeldt
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Dorthe Bach Toft
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Stéphane Dhalluin
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Ulrich Deschl
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Arno Kalkuhl
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| |
Collapse
|
9
|
A review on ochratoxin A transcriptomic studies. Food Chem Toxicol 2013; 59:766-83. [PMID: 23747715 DOI: 10.1016/j.fct.2013.05.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
The mycotoxin Ochratoxin A (OTA) is a potent renal carcinogen in male rats. Transcriptomic studies on OTA (4 in vitro, 6 in vivo, 2 in vitro/in vivo) have been reviewed. The aim of 6 of them was mainly mechanistic whereas the rest had mostly predictive (1) or evaluation (5) purposes. An overall tendency towards gene expression downregulation was observed, probably as a result of protein synthesis inhibition. DNA damage response genes were not deregulated in most of the studies. Genes involved in acute renal injury, cell survival and cell proliferation were upregulated in several in vivo studies. Apoptosis genes were deregulated in vitro but less affected in vivo; activation of several MAPKs has been observed. Many genes related to oxidative stress or involved in cell-to-cell interaction pathways (Wnt) or cytoskeleton structure appeared to be deregulated either in vitro or in vivo. Regucalcin was highly downregulated in vivo and other calcium homeostasis genes were significantly deregulated in vitro. Genes related to OTA transport (OATs) and metabolism (CYPs) appeared downregulated in vivo. Overall, the mechanism of action of OTA remains unclear, however transcriptomic data have contributed to new mechanistic hypothesis generation and to in vitro-in vivo comparison.
Collapse
|
10
|
Doktorova TY, Yildirimman R, Vinken M, Vilardell M, Vanhaecke T, Gmuender H, Bort R, Brolen G, Holmgren G, Li R, Chesne C, van Delft J, Kleinjans J, Castell J, Bjorquist P, Herwig R, Rogiers V. Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models. Carcinogenesis 2013; 34:1393-402. [PMID: 23393228 DOI: 10.1093/carcin/bgt054] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the conventional approach to assess the potential of a chemical to cause cancer in humans still includes the 2-year rodent carcinogenicity bioassay, development of alternative methodologies is needed. In the present study, the transcriptomics responses following exposure to genotoxic (GTX) and non-genotoxic (NGTX) hepatocarcinogens and non-carcinogens (NC) in five liver-based in vitro models, namely conventional and epigenetically stabilized cultures of primary rat hepatocytes, the human hepatoma-derived cell lines HepaRG and HepG2 and human embryonic stem cell-derived hepatocyte-like cells, are examined. For full characterization of the systems, several bioinformatics approaches are employed including gene-based, ConsensusPathDB-based and classification analysis. They provide convincingly similar outcomes, namely that upon exposure to carcinogens, the HepaRG generates a gene classifier (a gene classifier is defined as a selected set of characteristic gene signatures capable of distinguishing GTX, NGTX carcinogens and NC) able to discriminate the GTX carcinogens from the NGTX carcinogens and NC. The other in vitro models also yield cancer-relevant characteristic gene groups for the GTX exposure, but some genes are also deregulated by the NGTX carcinogens and NC. Irrespective of the tested in vitro model, the most uniformly expressed pathways following GTX exposure are the p53 and those that are subsequently induced. The NGTX carcinogens triggered no characteristic cancer-relevant gene profiles in all liver-based in vitro systems. In conclusion, liver-based in vitro models coupled with transcriptomics techniques, especially in the case when the HepaRG cell line is used, represent valuable tools for obtaining insight into the mechanism of action and identification of GTX carcinogens.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pharmacokinetics explain in vivo/in vitro discrepancies of carcinogen-induced gene expression alterations in rat liver and cultivated hepatocytes. Arch Toxicol 2012; 87:337-45. [DOI: 10.1007/s00204-012-0999-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/12/2012] [Indexed: 01/16/2023]
|