1
|
Rocha JMV, de Souza VB, Panunto PC, Nicolosi JS, da Silva EDN, Cadore S, Londono OM, Muraca D, Tancredi P, de Brot M, Nadruz W, Ruiz ALTG, Knobel M, Schenka AA. In vitro and in vivo acute toxicity of a novel citrate-coated magnetite nanoparticle. PLoS One 2022; 17:e0277396. [PMID: 36395271 PMCID: PMC9671459 DOI: 10.1371/journal.pone.0277396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Magnetic nanoparticles (MNps) have become powerful tools for multiple biomedical applications such as hyperthermia drivers, magnetic resonance imaging (MRI) vectors, as well as drug-delivery systems. However, their toxic effects on human health have not yet been fully elucidated, especially in view of their great diversity of surface modifications and functionalizations. Citrate-coating of MNps often results in increased hydrophilicity, which may positively impact their performance as drug-delivery systems. Nonetheless, the consequences on the intrinsic toxicity of such MNps are unpredictable. Herein, novel magnetite (Fe3O4) nanoparticles covered with citrate were synthesized and their potential intrinsic acute toxic effects were investigated using in vitro and in vivo models. The proposed synthetic pathway turned out to be simple, quick, inexpensive, and reproducible. Concerning toxicity risk assessment, these citrate-coated iron oxide nanoparticles (IONps) did not affect the in vitro viability of different cell lines (HaCaT and HepG2). Moreover, the in vivo acute dose assay (OECD test guideline #425) showed no alterations in clinical parameters, relevant biochemical variables, or morphological aspects of vital organs (such as brain, liver, lung and kidney). Iron concentrations were slightly increased in the liver, as shown by Graphite Furnace Atomic Absorption Spectrometry and Perls Prussian Blue Staining assays, but this finding was considered non-adverse, given the absence of accompanying functional/clinical repercussions. In conclusion, this study reports on the development of a simple, fast and reproducible method to obtain citrate-coated IONps with promising safety features, which may be used as a drug nanodelivery system in the short run. (263 words).
Collapse
Affiliation(s)
- Jose Marcos Vieira Rocha
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Valeria Barbosa de Souza
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia Costa Panunto
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Emanueli do Nascimento da Silva
- Institute of Chemistry, UNICAMP, Campinas, Brazil
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | | | - Diego Muraca
- Institute of Physics "Gleb Wataghin", UNICAMP, Campinas, Brazil
| | - Pablo Tancredi
- Laboratory of Amorphous Solids, INTECIN, Faculty of Engineering, University of Buenos Aires–CONICET, Buenos Aires, Argentina
| | - Marina de Brot
- Department of Anatomic Pathology, A. C. Camargo Cancer Center, Campinas, Brazil
| | - Wilson Nadruz
- Department of Internal Medicine, School of Medical Sciences, UNICAMP, Campinas, Brazil
| | | | - Marcelo Knobel
- Institute of Physics "Gleb Wataghin", UNICAMP, Campinas, Brazil
| | - Andre Almeida Schenka
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, UNICAMP, Campinas, Brazil
- * E-mail:
| |
Collapse
|
2
|
Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Nanocarriers for combating biofilms: advantages and challenges. J Appl Microbiol 2022; 133:1273-1287. [PMID: 35621701 DOI: 10.1111/jam.15640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/08/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analyzed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances, and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to the clinical setting.
Collapse
Affiliation(s)
- Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
3
|
Reddy UA, Prabhakar PV, Mahboob M. Comparative study of nano and bulk Fe 3O 4 induced oxidative stress in Wistar rats. Biomarkers 2018; 23:425-434. [PMID: 29458263 DOI: 10.1080/1354750x.2018.1443508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONTEXT Magnetic nanomaterials (Fe3O4 NMs) have become novel tools with multiple biological and medical applications because of their biocompatibility. However, adverse health effects of these NMs are of great interest to learn. OBJECTIVE This study was designed to assess the size and dose-dependent effects of Fe3O4 NMs and its bulk on oxidative stress biomarkers after post-subacute treatment in female Wistar rats. METHODS Rats were daily administered with 30, 300 and 1000 mg/kg b.w. doses for 28 d of Fe3O4 NMs and its bulk for biodistribution and histopathological studies. RESULTS Fe3O4 NMs treatment caused significant increase in lipid peroxidation levels of treated rats. It was also observed that the NM treatment elicited significant changes in enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase in treated rat organs with major reduction in glutathione content. Metal content analysis revealed that tissue deposition of NM in the organs was higher when compared to bulk and caused histological changes in liver. CONCLUSION This study demonstrated that for same dose, NM showed higher bioaccumulation, oxidative stress and tissue damage than its bulk. The difference in toxic effect of Fe3O4 nano and bulk could be related to their altered physicochemical properties.
Collapse
Affiliation(s)
- Utkarsh A Reddy
- a Toxicology Unit, Pharmacology and Toxicology Division , Indian Institute of Chemical Technology , Hyderabad , Telangana , India
| | - P V Prabhakar
- a Toxicology Unit, Pharmacology and Toxicology Division , Indian Institute of Chemical Technology , Hyderabad , Telangana , India
| | - Mohd Mahboob
- a Toxicology Unit, Pharmacology and Toxicology Division , Indian Institute of Chemical Technology , Hyderabad , Telangana , India
| |
Collapse
|
4
|
Reis ÉDM, Rezende AAAD, Oliveira PFD, Nicolella HD, Tavares DC, Silva ACA, Dantas NO, Spanó MA. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food Chem Toxicol 2016; 96:309-19. [PMID: 27562929 DOI: 10.1016/j.fct.2016.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.2 nm anatase TiO2 NCs and 78.0 nm predominantly rutile TiO2 NCs through an in vitro micronucleus (MN) assay using V79 cells and an in vivo somatic mutation and recombination test in Drosophila wings. The MN assay was performed with nontoxic concentrations of TiO2 NCs. Only anatase (3.4 nm) at the highest concentration (120 μM) induced genotoxicity in V79 cells. In the in vivo test, Drosophila melanogaster larvae obtained from standard (ST) or high bioactivation (HB) crosses were treated with TiO2 NCs. In the ST cross, no mutagenic effects were observed. However, in the HB cross, TiO2 NCs (3.4 nm) were mutagenic at 1.5625 and 3.125 mM, while 78.0 nm NCs increased mutant spots at all concentrations tested except 3.125 mM. Only the smallest anatase TiO2 NCs induced mutagenic effects in vitro and in vivo. For rutile TiO2 NCs, no clastogenic/aneugenic effects were observed in the MN assay. However, they were mutagenic in Drosophila. Therefore, both anatase and rutile TiO2 NCs induced mutagenicity. Further research is necessary to clarify the TiO2 NCs genotoxic/mutagenic action mechanisms.
Collapse
Affiliation(s)
- Érica de Melo Reis
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Alexandre Azenha Alves de Rezende
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | | | | | | | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Noelio Oliveira Dantas
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Mário Antônio Spanó
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|