1
|
Shusterman D. Trigeminal Function in Sino-Nasal Health and Disease. Biomedicines 2023; 11:1778. [PMID: 37509418 PMCID: PMC10376906 DOI: 10.3390/biomedicines11071778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The upper airway (nasal passages, paranasal sinuses, pharynx, and glottis) provides the sentinel portion of the human respiratory tract, with the combined senses of olfaction (cranial nerve I) and trigeminal sensation (cranial nerve V) signaling the quality of inspired air. Trigeminal function also complements the sense of taste (in turn mediated by cranial nerves VII, IX and X), and participates in the genesis of taste aversions. The ability of trigeminal stimulation in the upper aero-digestive tract to trigger a variety of respiratory and behavioral reflexes has long been recognized. In this context, the last three decades has seen a proliferation of observations at a molecular level regarding the mechanisms of olfaction, irritation, and gustation. Concurrently, an ever-widening network of physiological interactions between olfaction, taste, and trigeminal function has been uncovered. The objective of this review is to summarize the relatively recent expansion of research in this sub-field of sensory science, and to explore the clinical and therapeutic implications thereof.
Collapse
Affiliation(s)
- Dennis Shusterman
- Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco, CA 94143-0843, USA
| |
Collapse
|
2
|
[Indoor air guide values for acetophenone]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:1216-1225. [PMID: 36074161 DOI: 10.1007/s00103-022-03580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
4
|
Thá EL, Canavez ADPM, Schuck DC, Gagosian VSC, Lorencini M, Leme DM. Beyond dermal exposure: The respiratory tract as a target organ in hazard assessments of cosmetic ingredients. Regul Toxicol Pharmacol 2021; 124:104976. [PMID: 34139277 DOI: 10.1016/j.yrtph.2021.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.
Collapse
Affiliation(s)
- Emanoela Lundgren Thá
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | | | | | - Márcio Lorencini
- Grupo Boticário, Product Safety Management- Q&PP, São José dos Pinhais, PR, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
6
|
Even M, Roloff A, Lüttgert N, Beauchamp J, Stalter D, Schulte A, Hutzler C, Luch A. Exposure Assessment of Toxicologically Relevant Volatile Organic Compounds Emitted from Polymer-Based Costume Masks. Chem Res Toxicol 2021; 34:132-143. [PMID: 33400513 DOI: 10.1021/acs.chemrestox.0c00414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plastic costume masks regularly exhibit unpleasant odors that may be associated with the emissions of volatile organic compounds (VOCs). Upon inhalation, VOCs might adversely affect the wearer's health if the exposure exceeds regulatory threshold values. The VOCs emitted from a selection of costume masks (n = 12) were characterized semiquantitatively with a screening method based on GC/MS measurements in dynamic headspace sampling mode. Furthermore, odors associated with the masks were evaluated by a sensory panel. Two masks emitted particularly high concentrations of ethylbenzene, xylenes, and cyclohexanone and exhibited the most intense and unpleasant odors, which were described as rubber-like, pungent, and leather-like. To simulate and assess the inhalation exposures for wearers of these masks, an innovative experimental setup based on a doll's head was developed, with sampling of emitted volatiles on adsorption material and subsequent analysis by thermal desorption-GC/MS. The measured inhalable concentrations of cyclohexanone exceeded the derived no-effect level (DNEL) for systemic effects on the general population over several hours of wearing, and also after repeated use. Importantly, the cyclohexanone DNEL was reevaluated in relation to a recent study on inhalation toxicity in rodents and was found to be significantly lower (1.4 mg·m-3) compared to the industry-derived values (10-20 mg·m-3), thus aggravating the health risks associated with inhalation exposure from some of the costume masks tested. Finally, a comparison of the inhalable concentrations derived from the simulated exposure assessments with those derived from measurements in miniaturized emission test chambers indicate that microchambers represent a useful tool for high-throughput analysis. The influences of temperature and inhalation/exhalation flow rates on VOC exposures were also studied.
Collapse
Affiliation(s)
- Morgane Even
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2-4, 14195 Berlin, Germany
| | - Alexander Roloff
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Nils Lüttgert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany
| | - Daniel Stalter
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Agnes Schulte
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Christoph Hutzler
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2-4, 14195 Berlin, Germany
| |
Collapse
|
7
|
Vijayaraghavan R, Deb U, Gutch PK. Effect of dibenz(b,f)-1,4-oxazepine aerosol on the breathing pattern and respiratory variables by continuous recording and analysis in unanaesthetised mice. Toxicol Rep 2020; 7:1121-1126. [PMID: 32953463 PMCID: PMC7486425 DOI: 10.1016/j.toxrep.2020.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/02/2022] Open
Abstract
Dibenz (b,f)-1,4-oxazepine (CR) is a riot control agent. Respiratory variables and breathing pattern were recorded continuously in mice. CR produced concentration dependent sensory irritation without pulmonary irritation. Concentrations below 158.2 mg/m3 showed recovery to normal breathing. Study shows CR causes sensory irritation only and may not cause lung injury.
A riot control agent has to be a sensory irritant of a reversible type without pulmonary irritation as the later can cause lung injury. The aim of the present study is to continuously record and analyse breathing pattern and respiratory variables of dibenz (b,f)-1,4-oxazepine (CR) in unanaesthetised mice during and after exposure. The lowest concentration of 0.65 mg/m3 did not produce any effect on the breathing pattern. As high as 500 fold increase (315.9 mg/m3) in the concentration was used and no mortality was observed. CR produced a concentration dependent sensory irritation, without pulmonary irritation or airflow obstruction, showing that it may not cause any lung injury. The sensory irritation was initiated within 5 min of exposure due to the activation of TRPA1 receptors of the upper respiratory tract. Immediate recovery of normal breath without sensory irritation was observed in all the concentrations except the highest concentration of 315.9 mg/m3. Corresponding to the sensory irritation there was concentration dependent respiratory depression. The 50 percent respiratory depression (RD50) in this experiment was 152 mg/m3 and the estimated threshold limit value for occupational exposure was 4.56 mg/m3. The present study shows that CR causes sensory irritation only which is completely recoverable.
Collapse
Affiliation(s)
| | - Utsab Deb
- Defence Research Laboratory, Tezpur, 784001, India
| | | |
Collapse
|
8
|
Kleinbeck S, Schäper M, Pacharra M, Lehmann ML, Golka K, Blaszkewicz M, Brüning T, van Thriel C. A short-term inhalation study to assess the reversibility of sensory irritation in human volunteers. Arch Toxicol 2020; 94:1687-1701. [PMID: 32185413 PMCID: PMC7261732 DOI: 10.1007/s00204-020-02703-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Sensory irritation is an acute adverse effect caused by chemicals that stimulate chemoreceptors of the upper respiratory tract or the mucous membranes of the outer eye. The avoidance of this end point is of uttermost importance in regulatory toxicology. In this study, repeated exposures to ethyl acrylate were analyzed to investigate possible carryover effects from day to day for different markers of sensory irritation. Thirty healthy subjects were exposed for 4 h on five subsequent days to ethyl acrylate at concentrations permitted by the German occupational exposure limit at the time of study. Ratings of eye irritation as well as eye blinking frequencies indicate the elicitation of sensory irritation. These markers of sensory irritation showed a distinct time course on every single day. However, cumulative carryover effects could not be identified across the week for any marker. The rhinological and biochemical markers could not reveal hints for more pronounced sensory irritation. Neither increased markers of neurogenic inflammation nor markers of immune response could be identified. Furthermore, the performance on neurobehavioral tests was not affected by ethyl acrylate and despite the strong odor of ethyl acrylate the participants improved their performances from day to day. While the affected physiological marker, the increased eye blinking frequency stays roughly on the same level across the week, subjective markers like perception of eye irritation decrease slightly from day to day though the temporal pattern of, i.e., eye irritation perception stays the same on each day. A hypothetical model of eye irritation time course derived from PK/PD modeling of the rabbit eye could explain the within-day time course of eye irritation ratings repeatedly found in this study more precisely.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Michael Schäper
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Marlene Pacharra
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Marie Louise Lehmann
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus Golka
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Meinolf Blaszkewicz
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Thomas Brüning
- Research Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle de la Camp-Platz 1, 44789, Bochum, Germany
| | - Christoph van Thriel
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
9
|
Dux M, Rosta J, Messlinger K. TRP Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches. Int J Mol Sci 2020; 21:ijms21010342. [PMID: 31948011 PMCID: PMC6981722 DOI: 10.3390/ijms21010342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pain in trigeminal areas is driven by nociceptive trigeminal afferents. Transduction molecules, among them the nonspecific cation channels transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), which are activated by endogenous and exogenous ligands, are expressed by a significant population of trigeminal nociceptors innervating meningeal tissues. Many of these nociceptors also contain vasoactive neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P. Release of neuropeptides and other functional properties are frequently examined using the cell bodies of trigeminal neurons as models of their sensory endings. Pathophysiological conditions cause phosphorylation, increased expression and trafficking of transient receptor potential (TRP) channels, neuropeptides and other mediators, which accelerate activation of nociceptive pathways. Since nociceptor activation may be a significant pathophysiological mechanism involved in both peripheral and central sensitization of the trigeminal nociceptive pathway, its contribution to the pathophysiology of primary headaches is more than likely. Metabolic disorders and medication-induced painful states are frequently associated with TRP receptor activation and may increase the risk for primary headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-374; Fax: +36-62-545-842
| | - Judit Rosta
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany;
| |
Collapse
|
10
|
Wakayama T, Ito Y, Sakai K, Miyake M, Shibata E, Ohno H, Kamijima M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J Occup Health 2019; 61:19-35. [PMID: 30698348 PMCID: PMC6499367 DOI: 10.1002/1348-9585.12017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives 2‐Ethyl‐1‐hexanol (2EH), a fragrance ingredient and a raw material for the production of plasticizer di(2‐ethylhexyl) phthalate, is responsible for sick building syndrome (SBS). This review aims to clarify the 2EH characteristics as an indoor air pollutant such as indoor air concentration, emission mechanism, toxicity, and clinical effects. Methods Scientific publications in English that has been made available on PubMed as of June 2018 and ad hoc publications in regional languages were reviewed. Results Inhalation exposure to 2EH caused mucous membrane irritation in the eyes, nose, and throat in experimental animals. Studies in human volunteers revealed an increase in olfactory irritation and eye discomfort. There has been increasing evidence of 2EH being present in indoor air in buildings. The primary sources of 2EH emissions are not building materials themselves, but instead the hydrolysis of plasticizers and flooring adhesives. In particular, compounds like di(2‐ethylhexyl) phthalate present in polyvinyl chloride flooring materials are hydrolyzed upon contact with alkaline moisture‐containing concrete floors. That being said, it may be observed that indoor concentrations of 2EH increased every year during summer. Conclusions Unlike other volatile organic compounds that cause SBS, 2EH can be retained in indoor air for long durations, increasing the likelihood of causing undesirable health effects in building occupants exposed to it. As a precautionary measure, it is important to use flooring materials that do not emit 2EH by hydrolysis, or to dry concrete before covering with flooring materials.
Collapse
Affiliation(s)
- Takanari Wakayama
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Mio Miyake
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Eiji Shibata
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Ohno
- Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
11
|
Martinez JM, Eling TE. Activation of TRPA1 by volatile organic chemicals leading to sensory irritation. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2019; 36:572-582. [PMID: 31026039 DOI: 10.14573/altex.1811012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/29/2019] [Indexed: 11/23/2022]
Abstract
Many volatile organic chemicals (VOCs) have not been tested for sensory pulmonary irritation. Development of in vitro non-animal sensory irritation assay suitable for a large number of chemicals is needed to replace the mouse assay. An adverse outcome pathway (AOP) is designed to provide a clear description of the biochemical and cellular processes leading to toxicological effects or an adverse outcome. The AOP for chemical sensory pulmonary irritation was developed according to the Organization for Economic Co-operation and Development guidance including the Bradford Hill criteria for a weight of evidence to determine the confidence of the AOP. The proposed AOP is based on an in-depth review of the relevant scientific literature to identify the initial molecular event for respiratory irritation. The activation of TRPA1 receptor (transient receptor potential cation channel, subfamily A, member 1) is the molecular initial event (MIE) leading to sensory irritation. A direct measure of TRPA1 activation in vitro should identify chemical sensory irritants and provide an estimate of potency. Fibroblasts expressing TRPA1 are used to determine TRPA1 activation and irritant potency. We report a linear relationship between the in vivo RD₅₀ and the in vitro pEC₅₀ values (R=0.81) to support this hypothesis. We propose that this in vitro assay after additional analysis and validation could serve as a suitable candidate to replace the mouse sensory irritation assay.
Collapse
Affiliation(s)
- Jeanelle M Martinez
- National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas E Eling
- National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Nielsen GD. Sensory irritation of vapours of formic, acetic, propionic and butyric acid. Regul Toxicol Pharmacol 2018; 99:89-97. [DOI: 10.1016/j.yrtph.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
|
13
|
Steinritz D, Stenger B, Dietrich A, Gudermann T, Popp T. TRPs in Tox: Involvement of Transient Receptor Potential-Channels in Chemical-Induced Organ Toxicity-A Structured Review. Cells 2018; 7:cells7080098. [PMID: 30087301 PMCID: PMC6115949 DOI: 10.3390/cells7080098] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemicals can exhibit significant toxic properties. While for most compounds, unspecific cell damaging processes are assumed, a plethora of chemicals exhibit characteristic odors, suggesting a more specific interaction with the human body. During the last few years, G-protein-coupled receptors and especially chemosensory ion channels of the transient receptor potential family (TRP channels) were identified as defined targets for several chemicals. In some cases, TRP channels were suggested as being causal for toxicity. Therefore, these channels have moved into the spotlight of toxicological research. In this review, we screened available literature in PubMed that deals with the role of chemical-sensing TRP channels in specific organ systems. TRPA1, TRPM and TRPV channels were identified as essential chemosensors in the nervous system, the upper and lower airways, colon, pancreas, bladder, skin, the cardiovascular system, and the eyes. Regarding TRP channel subtypes, A1, M8, and V1 were found most frequently associated with toxicity. They are followed by V4, while other TRP channels (C1, C4, M5) are only less abundantly expressed in this context. Moreover, TRPA1, M8, V1 are co-expressed in most organs. This review summarizes organ-specific toxicological roles of TRP channels.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Bernhard Stenger
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
14
|
Wiedmer C, Buettner A. Quantification of organic solvents in aquatic toys and swimming learning devices and evaluation of their influence on the smell properties of the corresponding products. Anal Bioanal Chem 2018; 410:2585-2595. [DOI: 10.1007/s00216-018-0929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
15
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Characterization of odorants in inflatable aquatic toys and swimming learning devices-which substances are causative for the characteristic odor and potentially harmful? Anal Bioanal Chem 2017; 409:3905-3916. [PMID: 28401289 DOI: 10.1007/s00216-017-0330-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
Based on the observation of intense and offensive smells in the product group of aquatic toys, four representative products were exemplarily chosen and sensorially characterized by an expert panel. Panellists reported mostly almond- and rubber-like notes for three of the four samples, whereas the smell of the fourth sample was dominated by organic solvent-associated notes such as "nail polish-like." To elucidate the molecular reasons of these smells, we isolated the volatile fraction of the product by solvent extraction and high vacuum distillation, and identified the main odorants by aroma extract dilution analysis (AEDA), followed by one- and two-dimensional gas chromatography, with parallel mass spectrometric and olfactometric detection. Additionally, the materials of the samples were identified by means of differential scanning calorimetry (DSC), attenuated total reflectance spectroscopy (ATR-spectroscopy), and Beilstein halogen test. Between 32 and 46 odors could be detected in each sample by means of AEDA, whereby five to 13 of these compounds were detectable with by far the highest dilution factors, and were found to primarily correlate with the smells of the respective products. Focussing the subsequent identification on these causative substances led to the successful identification of the majority of these odorants. Among them were several mono- or di-unsaturated carbonyl compounds and their epoxidized derivatives, which are typical odorous artefacts from fatty acid oxidation, but also odor-active organic solvents such as cyclohexanone, isophorone, and phenol.
Collapse
|
17
|
Symptoms from masked acrolein exposure suggest altered trigeminal reactivity in chemical intolerance. Neurotoxicology 2017; 60:92-98. [PMID: 28359837 DOI: 10.1016/j.neuro.2017.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chemical intolerance (CI) is a widespread occupational and public health problem characterized by symptoms that reportedly result from low-levels of chemical exposure. The mechanisms behind CI are unknown, however modifications of the chemical senses (rather than toxic processes) have been suggested as key components. The aim of this study was to investigate whether individuals with self-reported CI report more sensory irritation during masked acrolein exposure compared to controls without CI. METHODS Individuals with CI (n=18) and controls without CI (n=19) were exposed in an exposure chamber. Each participant took part in two exposure conditions - one with heptane (the masking compound), and one with heptane and acrolein at a dose below previously reported sensory irritation thresholds. The exposures lasted for 60min. Symptoms and confidence ratings were measured continuously throughout the exposure as were measurements of electrodermal activity and self-reported tear-film break-up time. Participants were blind to exposure condition. RESULTS Individuals with CI, compared with controls reported greater sensory irritation in the eyes, nose and throat when exposed to acrolein masked with heptane. There was no difference during exposure to heptane. CONCLUSIONS Masked exposure to acrolein at a concentration below the previously reported detection threshold is perceived as more irritating by individuals with CI compared with controls. The results indicate that there is altered trigeminal reactivity in those with CI compared to controls.
Collapse
|
18
|
Lehmann R, Hatt H, van Thriel C. Alternative in vitro assays to assess the potency of sensory irritants-Is one TRP channel enough? Neurotoxicology 2016; 60:178-186. [PMID: 27545873 DOI: 10.1016/j.neuro.2016.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/18/2022]
Abstract
One important function of the peripheral nervous system is the detection of noxious chemicals in the environment as well as the recognition of tissue damage throughout the body. Transient receptor potential (TRP) ion channels are able to sense a multitude of signaling factors involved in these processes. Via the sensory ganglia these sentinels convey information to the central nervous system, where perceptions of nociception or sensory irritation are generated. From the 28 members of the 6 subfamilies present in mammals, researchers in toxicology paid special attention to TRPA1 and TRPV1 channels. Various xenobiotics (e.g., acrolein, formaldehyde) can open these channels causing sensory irritations and defense mechanisms like sneezing, coughing and lacrimation. Heterologous expression of these two channels and the subsequent investigation of ion fluxes have been proposed as in vitro models for the assessment of sensory irritation. In a series of experiments using acetophenone, isophorone, and 2-ethylhexanol (2-EH) we investigated the effects of these irritants on heterologously expressed TRP channels in comparison to a primary cell culture of trigeminal ganglia neurons of mice. We confirmed acetophenone as a specific TRPA1 agonist that activates the receptor in concentrations >3mM, whereas isophorone specifically activates TRPV1 in concentrations >100μM. 2-EH can activate heterologously expressed TRPA1 concentration-dependently (1 mM-10mM). In Ca2+ imaging we observed 2-EH as an agonist of multiple channels (TRPA1, TRPV1, GPCRs) that activates the trigeminal neurons by application of μM 2-EH concentrations. The convergent results of our experiments further support the specificity of acetophenone and isophorone to activate only one of these investigated TRP channels and a more unspecific activation in the case of 2-EH. However, the results of the two different in vitro systems also showed that both TRPA1 and TRPV1 channel activation is important for the perception of irritants and only the combined and tiered testing might lead to precise estimates describing the potency of a xenobiotic to cause sensory irritation or pain.
Collapse
Affiliation(s)
- Ramona Lehmann
- IfADo-Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany.
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christoph van Thriel
- IfADo-Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| |
Collapse
|
19
|
Millqvist E. TRPV1 and TRPM8 in Treatment of Chronic Cough. Pharmaceuticals (Basel) 2016; 9:E45. [PMID: 27483288 PMCID: PMC5039498 DOI: 10.3390/ph9030045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic cough is common in the population, and among some there is no evident medical explanation for the symptoms. Such a refractory or idiopathic cough is now often regarded as a neuropathic disease due to dysfunctional airway ion channels, though the knowledge in this field is still limited. Persistent coughing and a cough reflex easily triggered by irritating stimuli, often in combination with perceived dyspnea, are characteristics of this disease. The patients have impaired quality of life and often reduced work capacity, followed by social and economic consequences. Despite the large number of individuals suffering from such a persisting cough, there is an unmet clinical need for effective cough medicines. The cough treatment available today often has little or no effect. Adverse effects mostly follow centrally acting cough drugs comprised of morphine and codeine, which demands the physician's awareness. The possibilities of modulating airway transient receptor potential (TRP) ion channels may indicate new ways to treat the persistent cough "without a reason". The TRP ion channel vanilloid 1 (TRPV1) and the TRP melastin 8 (TRPM8) appear as two candidates in the search for cough therapy, both as single targets and in reciprocal interaction.
Collapse
Affiliation(s)
- Eva Millqvist
- Department of Allergology, Institution of Internal Medicine, The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden.
| |
Collapse
|