1
|
Chen J, Yao F, Jiang Y, Qin X, Xian M, Feng Y, Cong Z. Diverse N-Oxidation of Primary Aromatic Amines Controlled by Engineered P450 Peroxizyme Variants Facilitated by Dual-Functional Small Molecule. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412100. [PMID: 39680753 DOI: 10.1002/advs.202412100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Amine oxidation is an important organic reaction for the production of high-value N-containing compounds. However, it is still challenging to control the reactivity of active N-centered radicals to selectively access N-oxidation products. Herein, this study reports the engineering of cytochrome P450BM3 into multifunctional N-oxidizing enzymes with the assistance of dual-functional small molecules (DFSM) to selectively produce N-oxygenation (i.e., p-nitrosobenzene, p-nitrobenzene, and azoxybenzene) and one-electron oxidation products (i.e., oligomeric quinones and azobenzene) from aromatic amines. The best mutant, F87A/T268V/V78T/A82T, exclusively gives p-nitrosobenzene (up to 98% selectivity), whereas the selectivity for p-nitrobenzene is >99% using the mutant F87A/T268V/A82T/I263L. Crystal structure analysis reveals that key mutations and DFSM exert synergistic effects on catalytic promiscuity by controlling the substrate orientation in active center. This study highlights the potential of DFSM-facilitated P450 peroxygenase and peroxidase for the synthesis of N-containing compounds via the controllable oxidation of aromatic amines, substantially expanding the chemical space of P450 enzymes.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuquan Yao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yiping Jiang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xiangquan Qin
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingang Feng
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqi Cong
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Yuan J, Sun X, Che S, Zhang L, Ruan Z, Li X, Yang J. AhR-mediated CYP1A1 and ROS overexpression are involved in hepatotoxicity of decabromodiphenyl ether (BDE-209). Toxicol Lett 2021; 352:26-33. [PMID: 34571075 DOI: 10.1016/j.toxlet.2021.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants. They are constantly detected in terrestrial, ocean, and atmospheric systems, and it is of particular concern that these fat-soluble xenobiotics may have a negative impact on human health. This study aimed to evaluate the toxic effect and underlying mechanism of decabromodiphenyl ether (BDE-209) on human liver in a HepG2 cell model. The results showed that BDE-209 significantly induced HepG2 cells apoptosis, increased intracellular reactive oxygen species (ROS), disturbed [Ca 2+] homeostasis and mitochondrial membrane potential (MMP), and caused nuclear shrinkage and DNA double-strand breaks. BDE-209 also significantly decreased the activities of antioxidant parameters, superoxide dismutase (SOD), total antioxygenic capacity (T-AOC), glutathione (GSH), and total glutathione (T-GSH). The up-regulation of the Aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 (CYP1A1) signaling pathway indicates that after long-term and high-dose exposure, BDE-209 may be a liver carcinogen. Interestingly, HepG2 cells attempt to metabolize BDE-209 through the Nrf2-mediated antioxidant pathway. These findings help elucidate the mechanisms of BDE-209-induced hepatotoxicity in humans.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
3
|
Padunglappisit C, Posaya-Anuwat S, Sompoch V, Piyawiwattanakoon P, Panpisut P. Effects of Different Amine Activators on the Monomer Conversion, Biaxial Flexural Strength, and Color Stability of Experimental Provisional Dental Restorations. Eur J Dent 2021; 15:488-494. [PMID: 33535248 PMCID: PMC8382472 DOI: 10.1055/s-0040-1721908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective
The aim was to assess the effect of different amine activators including N, N-dimethyl-p-toluidine (DMPT) or Na-N-tolyglycine glycidyl methacrylate (NTGGMA) on chemical-activated monomer conversion, biaxial flexural strength (BFS), and color stability of composites for provisional dental restorations.
Materials and Methods
Two formulations of composites containing either DMPT (D-temp) or NTGGMA (N-temp) were prepared. The degree of monomer conversion was assessed. The BFS of the materials was tested using the ball-on-ring testing jig. The color difference (∆E
00
) of the materials after immersion in water was also determined. The commercial comparisons were Unifast (UF), Protemp (PT), Luxacrown, and Luxatemp (LT).
Results
The monomer conversion of D-temp (57.4 ± 1.3%) was comparable to that of N-temp (59.0 ± 1.3%). The conversion of both D-temp and N-temp were higher than that of PT (48.1 ± 3.4%) and LT (48.0 ± 1.6%). BFS of both D-temp (164.2 ± 18.1 MPa) and N-temp (168.6 ± 8.9 MPa) were comparable but higher than that of UF (119.8 ± 13.6 MPa). ∆E
00
of D-temp (2.7 ± 0.7) and N-temp (2.5 ± 0.8) were comparable but higher than that of other commercial materials (0.6–1.2).
Conclusion
The use of DMPT or NTGGMA showed negligible effect on monomer conversion, BFS, and color stability of the experimental provisional restorations. The conversion and BFS of the experimental materials were in the range of that obtained from commercial bis-acryl-based materials. However, the color stability of the experimental materials was lower than that of commercial materials.
Collapse
Affiliation(s)
| | | | - Varisara Sompoch
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | | | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.,Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
4
|
Mezencev R, Auerbach SS. The sensitivity of transcriptomics BMD modeling to the methods used for microarray data normalization. PLoS One 2020; 15:e0232955. [PMID: 32413060 PMCID: PMC7228135 DOI: 10.1371/journal.pone.0232955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/25/2020] [Indexed: 11/25/2022] Open
Abstract
Whole-genome expression data generated by microarray studies have shown promise for quantitative human health risk assessment. While numerous approaches have been developed to determine benchmark doses (BMDs) from probeset-level dose responses, sensitivity of the results to methods used for normalization of the data has not yet been systematically investigated. Normalization of microarray data converts raw hybridization signals to expression estimates that are expected to be proportional to the amounts of transcripts in the profiled specimens. Different approaches to normalization have been shown to greatly influence the results of some downstream analyses, including biological interpretation. In this study we evaluate the influence of microarray normalization methods on the transcriptomic BMDs. We demonstrate using in vivo data that the use of alternative pipelines for normalization of Affymetrix microarray data can have a considerable impact on the number of detected differentially expressed genes and pathways (processes) determined to be treatment responsive, which may lead to alternative interpretations of the data. In addition, we found that normalization can have a considerable effect (as much as ~30-fold in this study) on estimation of the minimum biological potency (transcriptomic point of departure). We argue for consideration of alternative normalization methods and their data-informed selection to most effectively interpret microarray data for use in human health risk assessment.
Collapse
Affiliation(s)
- Roman Mezencev
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington DC, United States of America
| | - Scott S. Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, United States of America
| |
Collapse
|
5
|
Transcriptome analysis revealed the mechanism of the metabolic toxicity and susceptibility of di-(2-ethylhexyl)phthalate on adolescent male ICR mice with type 2 diabetes mellitus. Arch Toxicol 2019; 93:3183-3206. [DOI: 10.1007/s00204-019-02590-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
|
6
|
The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments. Toxicol Appl Pharmacol 2019; 380:114706. [DOI: 10.1016/j.taap.2019.114706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022]
|
7
|
Phillips JR, Svoboda DL, Tandon A, Patel S, Sedykh A, Mav D, Kuo B, Yauk CL, Yang L, Thomas RS, Gift JS, Davis JA, Olszyk L, Merrick BA, Paules RS, Parham F, Saddler T, Shah RR, Auerbach SS. BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics 2019; 35:1780-1782. [PMID: 30329029 PMCID: PMC6513160 DOI: 10.1093/bioinformatics/bty878] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023] Open
Abstract
SUMMARY A new version (version 2) of the genomic dose-response analysis software, BMDExpress, has been created. The software addresses the increasing use of transcriptomic dose-response data in toxicology, drug design, risk assessment and translational research. In this new version, we have implemented additional statistical filtering options (e.g. Williams' trend test), curve fitting models, Linux and Macintosh compatibility and support for additional transcriptomic platforms with up-to-date gene annotations. Furthermore, we have implemented extensive data visualizations, on-the-fly data filtering, and a batch-wise analysis workflow. We have also significantly re-engineered the code base to reflect contemporary software engineering practices and streamline future development. The first version of BMDExpress was developed in 2007 to meet an unmet demand for easy-to-use transcriptomic dose-response analysis software. Since its original release, however, transcriptomic platforms, technologies, pathway annotations and quantitative methods for data analysis have undergone a large change necessitating a significant re-development of BMDExpress. To that end, as of 2016, the National Toxicology Program assumed stewardship of BMDExpress. The result is a modernized and updated BMDExpress 2 that addresses the needs of the growing toxicogenomics user community. AVAILABILITY AND IMPLEMENTATION BMDExpress 2 is available at https://github.com/auerbachs/BMDExpress-2/releases. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC, USA
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health Canada, Ottawa, ON, Canada
| | - Longlong Yang
- D.S. Technologies, Inc, Research Triangle Park, NC, USA
| | - Russell S Thomas
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeff S Gift
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - J Allen Davis
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | | | - B Alex Merrick
- National Toxicology Program, NIEHS, Research Triangle Park, NC, USA
| | - Richard S Paules
- National Toxicology Program, NIEHS, Research Triangle Park, NC, USA
| | - Fred Parham
- National Toxicology Program, NIEHS, Research Triangle Park, NC, USA
| | - Trey Saddler
- National Toxicology Program, NIEHS, Research Triangle Park, NC, USA
| | | | - Scott S Auerbach
- National Toxicology Program, NIEHS, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Dunnick JK, Shockley KR, Pandiri AR, Kissling GE, Gerrish KE, Ton TV, Wilson RE, Brar SS, Brix AE, Waidyanatha S, Mutlu E, Morgan DL. PBDE-47 and PBDE mixture (DE-71) toxicities and liver transcriptomic changes at PND 22 after in utero/postnatal exposure in the rat. Arch Toxicol 2018; 92:3415-3433. [PMID: 30206662 PMCID: PMC6706773 DOI: 10.1007/s00204-018-2292-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pentabromodiphenyl ethers (PBDE) are found in human tissue, in household dust, and in the environment, and a particular concern is the potential for the induction of cancer pathways from these fat-soluble persistent organic pollutants. Only one PBDE cancer study has been conducted and that was for a PBDE mixture (DE-71). Because it is not feasible to test all PBDE congeners in the environment for cancer potential, it is important to develop a set of biological endpoints that can be used in short-term toxicity studies to predict disease outcome after long-term exposures. In this study, PBDE-47 was selected as the test PBDE congener to evaluate and compare toxicity to that of the carcinogenic PBDE mixture. The toxicities of PBDE-47 and the PBDE mixture were evaluated at PND 22 in Wistar Han rat (Crl: WI (Han)) pups after in utero/postnatal exposure (0, 0.1, 15, or 50 mg/kg; dams, GD6-21; pups, PND 12-PND 21; oral gavage daily dosing). By PND 22, PBDE-47 caused centrilobular hypertrophy and fatty change in liver, and reduced serum thyroxin (T4) levels; similar effects were also observed after PBDE mixture exposure. Transcriptomic changes in the liver included induction of cytochrome p450 transcripts and up-regulation of Nrf2 antioxidant pathway transcripts and ABC membrane transport transcripts. Decreases in other transport transcripts (ABCG5 & 8) provided a plausible mechanism for lipid accumulation, characterized by a treatment-related liver fatty change after PBDE-47 and PBDE mixture exposure. The benchmark dose calculation based on liver transcriptomic data was generally lower for PBDE-47 than for the PBDE mixture. The up-regulation of the Nrf2 antioxidant pathway and changes in metabolic transcripts after PBDE-47 and PBDE mixture exposure suggest that PBDE-47, like the PBDE mixture (NTP 2016, TR 589), could be a liver toxin/carcinogen after long-term exposure.
Collapse
Affiliation(s)
- J K Dunnick
- Toxicology Branch, National Institute of Environmental Health Sciences, P. O. Box 12233, Research Triangle Park, NC, 27709-2233, USA.
| | - K R Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - A R Pandiri
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - G E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - K E Gerrish
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - T V Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - R E Wilson
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - S S Brar
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - A E Brix
- EPL, Inc., Research Triangle Park, NC, 27709, USA
| | - S Waidyanatha
- Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - E Mutlu
- Toxicology Operations Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - D L Morgan
- Toxicology Branch, National Institute of Environmental Health Sciences, P. O. Box 12233, Research Triangle Park, NC, 27709-2233, USA
| |
Collapse
|
9
|
Auerbach SS, Paules RS. Genomic dose response: Successes, challenges, and next steps. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|