1
|
Zhang L, Zhang X, Yang Y, Gu J, Liu Z, Wang C. The structural basis of conserved residue variant effect on enzyme activity of UGT2B15. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140888. [PMID: 36610584 DOI: 10.1016/j.bbapap.2023.140888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
UDP-glucuronosyltransferase 2B15 (UGT2B15) is a crucial phase II drug-metabolizing enzyme, which glucuronidates various compounds, including clinical drugs and hormones. Mutants might affect glucuronidation, leading to a disruption of drug metabolism in vivo and decrease of therapeutic effect. Here, we mainly analyzed two representative mutants, H401P and L446S, on UGT2B15 activity using glucuronidation assays, molecular dynamic (MD) simulation and X-ray diffraction methods. The enzyme activity of L446S obviously increased six-fold than the wild type, although the enzyme activities of P191L, T374A, and H401P were lost apparently. Furthermore, we used MD simulations to calculate the energy change in the catalytic process of H401P and L446S, and the results indicated the free binding energies of H401P mutant to oxazepam and UDPGA were -30.98 ± 1.00 kcal/mol and -36.42 ± 1.04 kcal/mol, respectively, increased obviously compared to wild type, suggesting the mutation on position 401 had a crucial effect on the catalysis. Moreover, the three-dimensional structure of UGT2B15 C-terminal domain L446S was determined through protein crystallography and X-ray diffraction technology and the results suggested that one more hydrogen bonding between S446 and K410 was formed in the S446 crystal structure, compared to the wild type. Isothermal titration calorimetry assay further revealed the Kd values of C-terminal domain of UGT2B15 harbored L446S towards the cofactor UDPGA was similar to the value of wild type. Above all, our results pointed out that H401P and L446S affected the enzyme activity by different mechanism. Our work provided a helpful mechanism for variance explained in the UGTs catalyzation process.
Collapse
Affiliation(s)
- Lin Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.; Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.; School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xuerong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yibing Yang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Caiyan Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China..
| |
Collapse
|
2
|
Cisneros KV, Agarwal V, James MO. Sulfonation and glucuronidation of hydroxylated bromodiphenyl ethers in human liver. CHEMOSPHERE 2019; 226:132-139. [PMID: 30925405 PMCID: PMC6516465 DOI: 10.1016/j.chemosphere.2019.03.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Hydroxylated bromodiphenyl ethers (OH-BDEs) can arise from monooxygenation of anthropogenic BDEs or through natural biosynthetic processes in marine organisms, and several OH-BDEs have been shown to be toxic. OH-BDEs are expected to form sulfate and glucuronide conjugates that are readily excreted, however there is little information on these pathways. We examined the human hepatic glucuronidation and sulfonation of 6-OH-BDE47, 2-OH-BDE68, 4-OH-BDE68 and 2-OH-6'methoxy-BDE68. Human liver microsomes and cytosol were from de-identified female and male donors aged 31 to 75 under an exempt protocol. Recombinant human SULT1A1, 1B1, 1E1 and 2A1 enzymes were prepared from bacterial expression systems. Sulfonation and glucuronidation of each OH-BDE were studied using radiolabeled co-substrates, 3'phosphoadenosine-5'phospho-35S-sulfate or uridine diphospho-β-D-14C-glucuronic acid in order to quantify the sulfated or glucuronidated products. The OH-BDEs studied were more efficiently glucuronidated than sulfonated. Of the compounds studied, 2-OH-BDE68 was the most readily conjugated, and exhibited an efficiency (Vmax/KM) of glucuronidation of 0.274 ± 0.125 mL/min/mg protein, mean ± S.D., n = 3, while that for sulfonation was 0.179 ± 0.030 mL/min/mg protein. For both pathways, all Km values were in the low μM range. Studies with human SULT enzymes showed that sulfonation of these four substrates was readily catalyzed by SULT1B1 and SULT1E1. Much lower activity was found with SULT1A1 and SULT2A1. Assuming that the glucuronide and sulfate conjugates are non-toxic and readily excreted, as is the case for most such conjugates, these studies suggest that OH-BDEs should not accumulate in people to the same extent as the parent BDEs.
Collapse
Affiliation(s)
- Katherine V Cisneros
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610-0485, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610-0485, USA.
| |
Collapse
|