1
|
Chen B, Zhang Q, Ren Z, Zhang T, Yu H, Liu C, Yang Y, Xu P, Liu S. A proteomics strategy for the identification of multiple sites in sulfur mustard-modified HSA and screening potential biomarkers for retrospective analysis of exposed human plasma. Anal Bioanal Chem 2022; 414:4179-4188. [PMID: 35478034 DOI: 10.1007/s00216-022-04070-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022]
Abstract
A major challenge for the unequivocal verification of alleged exposure to sulfur mustard (HD) lies in identifying its multiple modifications on endogenous proteins and utilizing these modified proteins to achieve accurate, sensitive, and rapid detection for retrospective analysis of HD exposure. As the most abundant protein in human plasma, human serum albumin (HSA) can react with many xenobiotics, such as HD, to protect the body from damage. The HSA adducts induced by HD have been used as biomarkers for the verification of HD exposure. In this study, the modification sites on HSA by HD were identified through application of the bottom-up strategy used in proteomics, and 41 modified sites were discovered with seven types of amino acids, of which 3 types were not previously reported. Then, different enzymes, including pepsin, endoproteinase Glu-C, and pronase, were applied to digest HD-HSA to produce adducts with hydroxyethylthioethyl (HETE) groups, which may be used as potential biomarkers for HD exposure. As candidates for retrospective analysis, sixteen adducts were obtained and characterized with ultra-high-pressure liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry (UHPLC-QE Focus MS). These potential biomarkers were evaluated in human plasma that was exposed in vitro to HD and five of its analogues. This study integrated the identification of modification sites through application of the bottom-up strategy of proteomics and screening biomarkers, providing a novel strategy for retrospective detection of the exposure of xenobiotic chemicals.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Qiaoli Zhang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing, 210094, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research, Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, People's Republic of China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research, Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, People's Republic of China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, People's Republic of China.
| |
Collapse
|