1
|
Huang B, Peng X, Zhai X, Hu J, Chen J, Yang S, Huang Q, Deng E, Li H, Barakat TS, Chen J, Pei D, Fan X, Chambers I, Zhang M. Inhibition of HDAC activity directly reprograms murine embryonic stem cells to trophoblast stem cells. Dev Cell 2024; 59:2101-2117.e8. [PMID: 38823394 DOI: 10.1016/j.devcel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Embryonic stem cells (ESCs) can differentiate into all cell types of the embryonic germ layers. ESCs can also generate totipotent 2C-like cells and trophectodermal cells. However, these latter transitions occur at low frequency due to epigenetic barriers, the nature of which is not fully understood. Here, we show that treating mouse ESCs with sodium butyrate (NaB) increases the population of 2C-like cells and enables direct reprogramming of ESCs into trophoblast stem cells (TSCs) without a transition through a 2C-like state. Mechanistically, NaB inhibits histone deacetylase activities in the LSD1-HDAC1/2 corepressor complex. This increases acetylation levels in the regulatory regions of both 2C- and TSC-specific genes, promoting their expression. In addition, NaB-treated cells acquire the capacity to generate blastocyst-like structures that can develop beyond the implantation stage in vitro and form deciduae in vivo. These results identify how epigenetics restrict the totipotent and trophectoderm fate in mouse ESCs.
Collapse
Affiliation(s)
- Boyan Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Xing Peng
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Xuzhao Zhai
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jie Hu
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Junyu Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China; School of Life Science, South China Normal University, Guangzhou 510005, China
| | - Suming Yang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Qingpei Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Enze Deng
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China
| | - Huanhuan Li
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510525, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510525, China
| | - Xiaoying Fan
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China.
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, Scotland.
| | - Man Zhang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China.
| |
Collapse
|
2
|
Lu T, Li T, Wu MK, Zheng CC, He XM, Zhu HL, Li L, Man RJ. Molecular simulations required to target novel and potent inhibitors of cancer invasion. Expert Opin Drug Discov 2023; 18:1367-1377. [PMID: 37676052 DOI: 10.1080/17460441.2023.2254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Computer-aided drug design (CADD) is a computational approach used to discover, develop, and analyze drugs and active molecules with similar biochemical properties. Molecular simulation technology has significantly accelerated drug research and reduced manufacturing costs. It is an optimized drug discovery method that greatly improves the efficiency of novel drug development processes. AREASCOVERED This review discusses the development of molecular simulations of effective cancer inhibitors and traces the main outcomes of in silico studies by introducing representative categories of six important anticancer targets. The authors provide views on this topic from the perspective of both medicinal chemistry and artificial intelligence, indicating the major challenges and predicting trends. EXPERT OPINION The goal of introducing CADD into cancer treatment is to realize a highly efficient, accurate, and desired approach with a high success rate for identifying potent drug candidates. However, the major challenge is the lack of a sophisticated data-filtering mechanism to verify bottom data from mixed-quality references. Consequently, despite the continuous development of algorithms, computer power, and interface optimization, specific data filtering mechanisms will become an urgent and crucial issue in the future.
Collapse
Affiliation(s)
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
3
|
Xu W, Yan P, Zhou Z, Yao J, Pan H, Jiang L, Bo Z, Ni B, Sun M, Gao S, Huan C. HDAC6 Triggers the ATM-Dependent DNA Damage Response To Promote PRV Replication. Microbiol Spectr 2023; 11:e0213222. [PMID: 36951571 PMCID: PMC10101138 DOI: 10.1128/spectrum.02132-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Pseudorabies virus (PRV) infection is modulated by various cellular host factors. In this study, we investigated the role of histone deacetylase 6 (HDAC6) in this process. We determined HDAC6 expression in vitro and performed gene knockout, pharmacological inhibition analyses, immunofluorescence assays, and statistical analyses. We found that the pharmacological and genetic inhibition of HDAC6 significantly decreased PRV replication, whereas its overexpression promoted PRV replication. Additionally, we demonstrated that PRV infection can induce the phosphorylation of histone H2AX and lead to DNA damage response (DDR), and the ataxia telangiectasia mutated (ATM) inhibitor KU55933 inhibits DDR and PRV infection. Mechanistically, the HDAC6 inhibitor tubacin and HDAC6 knockout can decrease DDR. The results of this study suggested that HDAC6 may be a crucial factor in PRV-induced ATM-dependent DDR to promote PRV replication. IMPORTANCE Pseudorabies virus (PRV) is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV infection in swine can lead to high morbidity and mortality of swine, causing huge economic losses. In particular, PRV variants can cause severe damage to the nervous and respiratory systems of humans, revealing that PRV may be a potential zoonotic pathogen. Vaccines for PRV have been developed that can delay or reduce the epidemic, but they currently cannot eliminate this disease completely. Therefore, studies should investigate new targets for the prevention and control of PRV infection. In this study, we demonstrated that HDAC6 can induce ataxia telangiectasia mutated-dependent DNA damage response to foster PRV replication, indicating that HDAC6 is a therapeutic target for PRV infection.
Collapse
Affiliation(s)
- Weiyin Xu
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ping Yan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ziyan Zhou
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Zongyi Bo
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Mingxia Sun
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Gatzweiler C, Ridinger J, Ayhan S, Najafi S, Peterziel H, Witt O, Oehme I. Evaluation of Antitumor and On-Target Activity of HDAC Inhibitors with the Zebrafish Embryo Xenograft Model. Methods Mol Biol 2023; 2589:75-85. [PMID: 36255618 DOI: 10.1007/978-1-0716-2788-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reliable preclinical drug testing models for cancer research are urgently needed with zebrafish embryo models emerging as a powerful vertebrate model for xenotransplantation studies. Here, we describe the evaluation of toxicity, efficacy, and on-target activity of histone deacetylase (HDAC) inhibitors in a zebrafish embryo yolk sac xenotransplantation model of medulloblastoma and neuroblastoma cells. For this, we performed toxicity assays with our zebrafish drug library consisting of 28 clinically relevant targeted as well as chemotherapeutic drugs with zebrafish embryos. We further engrafted zebrafish embryos with fluorescently labeled pediatric tumor cells (SK-N-BE(2)-C, HD-MB03, or MED8A) and monitored the progression after HDAC inhibitor treatment of xenotransplanted tumors through tumor volume measurements with high-content confocal microscopy in a multi-well format. The on-target activity of HDAC inhibitors was verified through immunohistochemistry staining on paraffin-embedded early larvae. Overall, the zebrafish embryo xenotransplantation model allows for fast and cost-efficient in vivo evaluation of targeted drug toxicity, efficacy, and on-target activity in the field of precision oncology.
Collapse
Affiliation(s)
- Charlotte Gatzweiler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simay Ayhan
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Fontana A, Cursaro I, Carullo G, Gemma S, Butini S, Campiani G. A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. Int J Mol Sci 2022; 23:ijms231710014. [PMID: 36077415 PMCID: PMC9456347 DOI: 10.3390/ijms231710014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with pan-HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is. In addition, polypharmacological approaches have been explored to achieve a synergistic action on multi-factorial diseases or to enhance the drug efficacy. In this frame, proteolysis-targeting chimeras (PROTACs) might be regarded as a dual-targeting approach for attaining HDAC8 proteasomal degradation. This review highlights the most relevant and recent advances relative to HDAC8 validation in various diseases, providing a snapshot of the current selective HDAC8is, with a focus on polyfunctional modulators.
Collapse
Affiliation(s)
- Anna Fontana
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-057-723-4161
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
6
|
Bar-Hai N, Ishay-Ronen D. Engaging plasticity: Differentiation therapy in solid tumors. Front Pharmacol 2022; 13:944773. [PMID: 36034865 PMCID: PMC9410762 DOI: 10.3389/fphar.2022.944773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a systemic heterogeneous disease that can undergo several rounds of latency and activation. Tumor progression evolves by increasing diversity, adaptation to signals from the microenvironment and escape mechanisms from therapy. These dynamic processes indicate necessity for cell plasticity. Epithelial-mesenchymal transition (EMT) plays a major role in facilitating cell plasticity in solid tumors by inducing dedifferentiation and cell type transitions. These two practices, plasticity and dedifferentiation enhance tumor heterogeneity creating a key challenge in cancer treatment. In this review we will explore cancer cell plasticity and elaborate treatment modalities that aspire to overcome such dynamic processes in solid tumors. We will further discuss the therapeutic potential of utilizing enhanced cell plasticity for differentiation therapy.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Cancer Research Center, Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Dana Ishay-Ronen,
| |
Collapse
|
7
|
HDAC8-Selective Inhibition by PCI-34051 Enhances the Anticancer Effects of ACY-241 in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms23158645. [PMID: 35955780 PMCID: PMC9369251 DOI: 10.3390/ijms23158645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023] Open
Abstract
HDAC6 is overexpressed in ovarian cancer and is known to be correlated with tumorigenesis. Accordingly, ACY-241, a selective HDAC6 inhibitor, is currently under clinical trial and has been tested in combination with various drugs. HDAC8, another member of the HDAC family, has recently gained attention as a novel target for cancer therapy. Here, we evaluated the synergistic anticancer effects of PCI-34051 and ACY-241 in ovarian cancer. Among various ovarian cancer cells, PCI-34051 effectively suppresses cell proliferation in wild-type p53 ovarian cancer cells compared with mutant p53 ovarian cancer cells. In ovarian cancer cells harboring wild-type p53, PCI-34051 in combination with ACY-241 synergistically represses cell proliferation, enhances apoptosis, and suppresses cell migration. The expression of pro-apoptotic proteins is synergistically upregulated, whereas the expressions of anti-apoptotic proteins and metastasis-associated proteins are significantly downregulated in combination treatment. Furthermore, the level of acetyl-p53 at K381 is synergistically upregulated upon combination treatment. Overall, co-inhibition of HDAC6 and HDAC8 through selective inhibitors synergistically suppresses cancer cell proliferation and metastasis in p53 wild-type ovarian cancer cells. These results suggest a novel approach to treating ovarian cancer patients and the therapeutic potential in developing HDAC6/8 dual inhibitors.
Collapse
|
8
|
Xiong P, Zhang T, Li Z, Tang X. Retinoid Drugs Improve Autophagy of Medulloblastoma Cells via Hedgehog-Gli Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study aims to discuss the effect of retinoid drug on autophagy of medulloblastoma cells. Targeted ferrocenoretinoic acid was prepared and identified. The MB cells were assigned into blank group, control group and transfection group followed by analysis of cell survival rate and
expression of Rack1, Hedgehog-Gli, Beclin1 and LC3. The size and form of prepared ferrocenoretinoic acid was uniform. There was positive charge which can bind target. Ferrocenoretinoic acid treatment declined cell survival rate and increased cell apoptotic rate. The level of Rack1 and Hedgehog-Gli
in transfection group was lower than other two group. The tendency in expression of Beclin1 and LC3 was reversed. In conclusion, the expression of Rack1 is restrained by nano-retinoid drug so as to restrain the Hedgehog-Gli signal activity. Therefore, the survival rate of medulloblastoma cells
could be restrained and apoptotic rate could be prompted.
Collapse
Affiliation(s)
- Ping Xiong
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Tao Zhang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zheng Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
9
|
Azetidin-2-one-based small molecules as dual hHDAC6/HDAC8 inhibitors: Investigation of their mechanism of action and impact of dual inhibition profile on cell viability. Eur J Med Chem 2022; 238:114409. [DOI: 10.1016/j.ejmech.2022.114409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023]
|
10
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
11
|
Zeyen P, Zeyn Y, Herp D, Mahmoudi F, Yesiloglu TZ, Erdmann F, Schmidt M, Robaa D, Romier C, Ridinger J, Herbst-Gervasoni CJ, Christianson DW, Oehme I, Jung M, Krämer OH, Sippl W. Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. Eur J Med Chem 2022; 234:114272. [PMID: 35306288 PMCID: PMC9007901 DOI: 10.1016/j.ejmech.2022.114272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 epigenetic modifiers that fall into 4 classes. Histone deacetylase inhibitors (HDACi) are valid tools to assess HDAC functions. HDAC6 and HDAC10 belong to the class IIb subgroup of the HDAC family. The targets and biological functions of HDAC10 are ill-defined. This lack of knowledge is due to a lack of specific and potent HDAC10 inhibitors with cellular activity. Here, we have synthesized and characterized piperidine-4-acrylhydroxamates as potent and highly selective inhibitors of HDAC10. This was achieved by targeting the acidic gatekeeper residue Glu274 of HDAC10 with a basic piperidine moiety that mimics the interaction of the polyamine substrate of HDAC10. We have confirmed the binding modes of selected inhibitors using X-ray crystallography. Promising candidates were selected based on their specificity by in vitro profiling using recombinant HDACs. The most promising HDAC10 inhibitors 10c and 13b were tested for specificity in acute myeloid leukemia (AML) cells with the FLT3-ITD oncogene. By immunoblot experiments we assessed the hyperacetylation of histones and tubulin-α, which are class I and HDAC6 substrates, respectively. As validated test for HDAC10 inhibition we used flow cytometry assessing autolysosome formation in neuroblastoma and AML cells. We demonstrate that 10c and 13b inhibit HDAC10 with high specificity over HDAC6 and with no significant impact on class I HDACs. The accumulation of autolysosomes is not a consequence of apoptosis and 10c and 13b are not toxic for normal human kidney cells. These data show that 10c and 13b are nanomolar inhibitors of HDAC10 with high specificity. Thus, our new HDAC10 inhibitors are tools to identify the downstream targets and functions of HDAC10 in cells.
Collapse
|
12
|
Vogelmann A, Jung M, Hansen FK, Schiedel M. Comparison of Cellular Target Engagement Methods for the Tubulin Deacetylases Sirt2 and HDAC6: NanoBRET, CETSA, Tubulin Acetylation, and PROTACs. ACS Pharmacol Transl Sci 2022; 5:138-140. [PMID: 35187421 PMCID: PMC8844959 DOI: 10.1021/acsptsci.2c00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 01/29/2023]
Abstract
The tubulin deacetylases Sirt2 and HDAC6 have been associated with the development of various diseases. Herein, we discuss recent approaches that enable cellular target engagement studies for these deacetylases and thus play a critical role in the evaluation of small molecule inhibitors of Sirt2 or HDAC6 as potential therapeutic agents.
Collapse
Affiliation(s)
- Anja Vogelmann
- Institute
of Pharmaceutical Sciences, Albert-Ludwigs-University
Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, Albert-Ludwigs-University
Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Finn K. Hansen
- Department
of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, Hassan MM, Gwynne W, Israelian J, Radu TB, Geletu M, Abdeldayem A, Gawel JM, Cabral AD, Venugopal C, de Araujo ED, Singh SK, Gunning PT. Discovery of HDAC6-Selective Inhibitor NN-390 with in Vitro Efficacy in Group 3 Medulloblastoma. J Med Chem 2022; 65:3193-3217. [PMID: 35119267 DOI: 10.1021/acs.jmedchem.1c01585] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.
Collapse
Affiliation(s)
- Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ashley A Adile
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - William Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chitra Venugopal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Combining APR-246 and HDAC-Inhibitors: A Novel Targeted Treatment Option for Neuroblastoma. Cancers (Basel) 2021; 13:cancers13174476. [PMID: 34503286 PMCID: PMC8431508 DOI: 10.3390/cancers13174476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Preclinical analyses identified APR-246 as a potent treatment option for neuroblastoma. However, a specific mode of action, sufficient biomarkers and promising combination partners are still missing. Here, we analyze the susceptibilities of different entities and relate them to gene expression profiles and previously described biomarkers. We propose a gene signature, consisting of 13 genes, as a novel predictive biomarker. Furthermore, we provide evidence that APR-246 directly targets metabolic weaknesses in neuroblastoma cell lines, thus hampering ROS detoxification. This makes APR-246 suitable to be combined with ROS-inducing HDAC inhibitors, a treatment combination that has not been described for neuroblastoma thus far. Abstract APR-246 (Eprenetapopt/PRIMA-1Met) is a very potent anti-cancer drug in clinical trials and was initially developed as a p53 refolding agent. As an alternative mode of action, the elevation of reactive oxygen species (ROS) has been proposed. Through an in silico analysis, we investigated the responses of approximately 800 cancer cell lines (50 entities; Cancer Therapeutics Response Portal, CTRP) to APR-246 treatment. In particular, neuroblastoma, lymphoma and acute lymphocytic leukemia cells were highly responsive. With gene expression data from the Cancer Cell Line Encyclopedia (CCLE; n = 883) and patient samples (n = 1643) from the INFORM registry study, we confirmed that these entities express low levels of SLC7A11, a previously described predictive biomarker for APR-246 responsiveness. Combining the CTRP drug response data with the respective CCLE gene expression profiles, we defined a novel gene signature, predicting the effectiveness of APR-246 treatment with a sensitivity of 90% and a specificity of 94%. We confirmed the predicted APR-246 sensitivity in 8/10 cell lines and in ex vivo cultures of patient samples. Moreover, the combination of ROS detoxification-impeding APR-246 with approved HDAC-inhibitors, known to elevate ROS, substantially increased APR-246 sensitivity in cell cultures and in vivo in two zebrafish neuroblastoma xenograft models. These data provide evidence that APR-246, in combination with HDAC-inhibitors, displays a novel potent targeted treatment option for neuroblastoma patients.
Collapse
|
15
|
Pojani E, Barlocco D. Selective Inhibitors of Histone Deacetylase 10 (HDAC-10). Curr Med Chem 2021; 29:2306-2321. [PMID: 34468295 DOI: 10.2174/0929867328666210901144658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Histone acetylation balance is one epigenetic mechanism controlling gene expression associated with disease progression. It has been observed that histone deacetylase 10 (HDAC-10) isozyme contributes to the chemotherapy resistance; in addition, the poor clinical outcome observed in patients with aggressive solid tumors, such as neuroblastoma, has been associated with its overexpression. Moreover, HDAC-10 selective inhibition suppresses the autophagic response, thus providing an improved risk-benefit profile compared to cytotoxic cancer chemotherapy drugs. On these bases, HDAC-10 is becoming an emerging target for drug design. Due to the rapid progress in the development of next-generation HDAC inhibitors, this review article aims to provide an overview on novel selective or dual HDAC-8/10 inhibitors, as new leads for cancer chemotherapy, able to avoid the severe side-effects of several actual approved "pan" HDAC inhibitors. A literature search was conducted in MedLine, PubMed, Caplus, SciFinder Scholar databases from 2015 to the present. Since the disclosure that the HDAC-6 inhibitor Tubastatin A was able to bind HDAC-10 efficiently, several related analogues were synthesized and tested. Both tricyclic (25-30) and bicyclic (31-42) derivatives were considered. The best pharmacological profile was shown by 36 (HDAC-10 pIC50 = 8.4 and pIC50 towards Class I HDACs from 5.2-6.4). In parallel, based on the evidence that high levels of HDAC-8 are a marker of poor prognosis in neuroblastoma treatment, dual HDAC-8/10 inhibitors were designed. The hydroxamic acid TH34 (HDAC-8 and 10 IC50 = 1.9 µM and 7.7 µM, respectively) and the hybrid derivatives 46d, 46e and 46g were the most promising both in terms of potency and selectivity. Literature surveys indicate several structural requirements for inhibitory potency and selectivity towards HDAC-10, e.g., electrostatic and/or hydrogen bond interactions with E274 and complementarity to the P(E,A) CE motif helix.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25 - 20133 Milan, Italy
| |
Collapse
|
16
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
17
|
Tavares MT, de Almeida LC, Kronenberger T, Monteiro Ferreira G, Fujii de Divitiis T, Franco Zannini Junqueira Toledo M, Mariko Aymoto Hassimotto N, Agostinho Machado-Neto J, Veras Costa-Lotufo L, Parise-Filho R. Structure-activity relationship and mechanistic studies for a series of cinnamyl hydroxamate histone deacetylase inhibitors. Bioorg Med Chem 2021; 35:116085. [PMID: 33668008 DOI: 10.1016/j.bmc.2021.116085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.
Collapse
Affiliation(s)
- Maurício Temotheo Tavares
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology Applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thainá Fujii de Divitiis
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Neuza Mariko Aymoto Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - Letícia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J Pers Med 2021; 11:jpm11030211. [PMID: 33809565 PMCID: PMC7999600 DOI: 10.3390/jpm11030211] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
A neuroblastoma (NB) is a solid paediatric tumour arising from undifferentiated neuronal cells. Despite the recent advances in disease management and treatment, it remains one of the leading causes of childhood cancer deaths, thereby necessitating the development of new therapeutic agents and regimens. Retinoic acid (RA), a vitamin A derivative, is a promising agent that can induce differentiation in NB cells. Its isoform, 13-cis RA or isotretinoin, is used in NB therapy; however, its effectiveness is limited to treating a minimal residual disease as maintenance therapy. As such, research focuses on RA derivatives that might increase the anti-NB action or explores the potential synergy between RA and other classes of drugs, such as cellular processes mediators, epigenetic modifiers, and immune modulators. This review summarises the in vitro, in vivo, and clinical data of RA, its derivatives, and synergising compounds, thereby establishing the most promising RA derivatives and combinations of RA for further investigation.
Collapse
|
19
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
20
|
Rapid In Vivo Validation of HDAC Inhibitor-Based Treatments in Neuroblastoma Zebrafish Xenografts. Pharmaceuticals (Basel) 2020; 13:ph13110345. [PMID: 33121173 PMCID: PMC7692187 DOI: 10.3390/ph13110345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023] Open
Abstract
The survival rate among children with relapsed neuroblastomas continues to be poor, and thus new therapeutic approaches identified by reliable preclinical drug testing models are urgently needed. Zebrafish are a powerful vertebrate model in preclinical cancer research. Here, we describe a zebrafish neuroblastoma yolk sac model to evaluate efficacy and toxicity of histone deacetylase (HDAC) inhibitor treatments. Larvae were engrafted with fluorescently labeled, genetically diverse, established cell lines and short-term cultures of patient-derived primary cells. Engrafted tumors progressed locally and disseminated remotely in an intact environment. Combination treatments involving the standard chemotherapy doxorubicin and HDAC inhibitors substantially reduced tumor volume, induced tumor cell death, and inhibited tumor cell dissemination to the tail region. Hence, this model allows for fast, cost-efficient, and reliable in vivo evaluation of toxicity and response of the primary and metastatic tumor sites to drug combinations.
Collapse
|
21
|
Morgen M, Steimbach RR, Géraldy M, Hellweg L, Sehr P, Ridinger J, Witt O, Oehme I, Herbst‐Gervasoni CJ, Osko JD, Porter NJ, Christianson DW, Gunkel N, Miller AK. Design and Synthesis of Dihydroxamic Acids as HDAC6/8/10 Inhibitors. ChemMedChem 2020; 15:1163-1174. [PMID: 32348628 PMCID: PMC7335359 DOI: 10.1002/cmdc.202000149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Indexed: 12/22/2022]
Abstract
We report the synthesis and evaluation of a class of selective multitarget agents for the inhibition of HDAC6, HDAC8, and HDAC10. The concept for this study grew out of a structural analysis of the two selective inhibitors Tubastatin A (HDAC6/10) and PCI-34051 (HDAC8), which we recognized share the same N-benzylindole core. Hybridization of the two inhibitor structures resulted in dihydroxamic acids with benzyl-indole and -indazole core motifs. These substances exhibit potent activity against HDAC6, HDAC8, and HDAC10, while retaining selectivity over HDAC1, HDAC2, and HDAC3. The best substance inhibited the viability of the SK-N-BE(2)C neuroblastoma cell line with an IC50 value similar to a combination treatment with Tubastatin A and PCI-34051. This compound class establishes a proof of concept for such hybrid molecules and could serve as a starting point for the further development of enhanced HDAC6/8/10 inhibitors.
Collapse
Affiliation(s)
- Michael Morgen
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Raphael R. Steimbach
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Faculty of BiosciencesUniversity of Heidelberg69120HeidelbergGermany
| | - Magalie Géraldy
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Lars Hellweg
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory (EMBL)69117HeidelbergGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)69120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
- Department of Pediatric OncologyHematology and ImmunologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Jeremy D. Osko
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nicholas J. Porter
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of PennsylvaniaPhiladelphiaPA 19104-6323USA
| | - Nikolas Gunkel
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| | - Aubry K. Miller
- Cancer Drug Development GroupGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)69120HeidelbergGermany
| |
Collapse
|
22
|
Adewole KE, Ishola AA. A Computational Approach to Investigate the HDAC6 and HDAC10 Binding Propensity of Psidium guajava-derived Compounds as Potential Anticancer Agents. Curr Drug Discov Technol 2020; 18:423-436. [PMID: 32357815 DOI: 10.2174/1568009620666200502013657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Different parts of Psidium guajava are consumed as food and used for medicinal purposes around the world. Although studies have reported their antiproliferative effects via different biochemical mechanisms, their modulatory effects on epigenetic modification of DNA molecules via histone deacetylases (HDACs) are largely unknown. OBJECTIVE This study was carried out to investigate the histone deacetylase 6 (HDAC6) and histone deacetylase 10 (HDAC10) binding propensity of guava-derived compounds, using in silico methods, in other to identify compounds with HDAC inhibitory potentials. METHODS Fifty-nine guava-derived compounds and apicidin, a standard HDAC inhibitor, were docked with HDAC6 and HDAC10 using AutodockVina after modeling (SWISS-MODEL server) and validating (ERRAT and VERIFY-3D) the structure of HDAC10. Molecular interactions between the ligands and the HDACs were viewed with Discovery Studio Visualizer. Prediction of binding sites, surface structural pockets, active sites, area, shape and volume of every pocket and internal cavities of proteins was done using Computed Atlas of Surface Topography of proteins (CASTp) server, while absorption, distribution, metabolism, and excretion (ADME) study of notable compounds was done using Swiss online ADME web tool. RESULTS 2α-hydroxyursolic acid, asiatic acid, betulinic acid, crategolic acid, guajadial A and B, guavacoumaric acid, guavanoic acid, ilelatifol D, isoneriucoumaric acid, jacoumaric acid, oleanolic acid, psiguadial A, B, and C demonstrated maximum interaction with the selected HDACs. ADME studies revealed that although isoneriucoumaric and jacoumaric acid ranked very high as HDAC inhibitors, they both violated the Lipinski's rule of 5. CONCLUSION This study identified 13 drugable guava-derived compounds that can be enlisted for further studies as potential HDAC6 and HDAC10 inhibitors.
Collapse
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo City, Ondo State, Nigeria
| | - Ahmed Adebayo Ishola
- Central Research Laboratories Limited, 132B University Road Ilorin, Kwara State, Nigeria
| |
Collapse
|
23
|
Balasubramaniam S, Vijayan S, Goldman LV, May XA, Dodson K, Adhikari S, Rivas F, Watkins DL, Stoddard SV. Design and synthesis of diazine-based panobinostat analogues for HDAC8 inhibition. Beilstein J Org Chem 2020; 16:628-637. [PMID: 32318119 PMCID: PMC7155894 DOI: 10.3762/bjoc.16.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Guided by computational analysis, herein we report the design, synthesis and evaluation of four novel diazine-based histone deacetylase inhibitors (HDACis). The targets of interest (TOI) are analogues of panobinostat, one of the most potent and versatile HDACi reported. By simply replacing the phenyl core of panobinostat with that of a diazine derivative, docking studies against HDAC2 and HDAC8 revealed that the four analogues exhibit inhibition activities comparable to that of panobinostat. Multistep syntheses afforded the visualized targets TOI1, TOI2, TOI3-rev and TOI4 whose biological evaluation confirmed the strength of HDAC8 inhibition with TOI4 displaying the greatest efficacy at varying concentrations. The results of this study lay the foundation for future design strategies toward more potent HDACis for HDAC8 isozymes and further therapeutic applications for neuroblastoma.
Collapse
Affiliation(s)
| | - Sajith Vijayan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Liam V Goldman
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Xavier A May
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Kyra Dodson
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Sweta Adhikari
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Davita L Watkins
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677-1848, USA
| | | |
Collapse
|
24
|
Bai Y, Ahmad D, Wang T, Cui G, Li W. Research Advances in the Use of Histone Deacetylase Inhibitors for Epigenetic Targeting of Cancer. Curr Top Med Chem 2019; 19:995-1004. [PMID: 30686256 DOI: 10.2174/1568026619666190125145110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
Abstract
The causes and progression of cancer are controlled by epigenetic processes. The mechanisms involved in epigenetic regulation of cancer development, gene expression, and signaling pathways have been studied. Histone deacetylases (HDACs) have a major impact on chromatin remodeling and epigenetics, making their inhibitors a very interesting area of cancer research. This review comprehensively summarizes the literature regarding HDAC inhibitors (HDACis) as an anticancer treatment published in the past few years. In addition, we explain the mechanisms of their therapeutic effects on cancer. An analysis of the beneficial characteristics and drawbacks of HDACis also is presented, which will assist preclinical and clinical researchers in the design of future experiments to improve the therapeutic efficacy of these drugs and circumvent the challenges in the path of successful epigenetic therapy. Future therapeutic strategies may include a combination of HDACis and chemotherapy or other inhibitors to target multiple oncogenic signaling pathways.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Daid Ahmad
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Uba AI, Yelekçi K. Crystallographic structure versus homology model: a case study of molecular dynamics simulation of human and zebrafish histone deacetylase 10. J Biomol Struct Dyn 2019; 38:4397-4406. [PMID: 31701819 DOI: 10.1080/07391102.2019.1691658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Histone deacetylase (HDAC) 10 has been implicated in the pathology of various cancers and neurodegenerative disorders, making the discovery of novel inhibitors of the isoform an important endeavor. However, the unavailability of crystallographic structure of human HDAC10 (hHDAC10) hinders structure-based drug design effort. Previously, we reported the homology modeled structure of human HDAC10 built using the crystallographic structure of Danio rerio (zebrafish) HDAC10 (zHDAC10) (Protein Data Bank (PDB) ID; 5TD7, released on 24 May 2017) as a template. Here, in continuation with our study, both hHDAC10 and zHDAC10, and their respective complexes with trichostatin A (TSA), quisinostat, and the native ligand (in 5TD7), 7-[(3-aminopropyl)amino]-1,1,1-trifluoroheptane-2,2-diol (PDB ID; FKS) were submitted to 100 ns-long unrestrained molecular dynamics (MD) simulations. Comparative analyses of the MD trajectories revealed that zHDAC10 and its complexes displayed higher stability than hHDAC10 and its corresponding complexes over time. Nonetheless, docking of active and inactive set molecules revealed that more reliable conformations of hHDAC10 could be obtained at an extended time period. This study may shed more light on the reliability of hHDAC10 modeled structure for use in selective inhibitor design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
26
|
HDAC3 Activity is Essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1. Cancers (Basel) 2019; 11:cancers11101436. [PMID: 31561534 PMCID: PMC6826998 DOI: 10.3390/cancers11101436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.
Collapse
|
27
|
Géraldy M, Morgen M, Sehr P, Steimbach RR, Moi D, Ridinger J, Oehme I, Witt O, Malz M, Nogueira MS, Koch O, Gunkel N, Miller AK. Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. J Med Chem 2019; 62:4426-4443. [PMID: 30964290 DOI: 10.1021/acs.jmedchem.8b01936] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The discovery of isozyme-selective histone deacetylase (HDAC) inhibitors is critical for understanding the biological functions of individual HDACs and for validating HDACs as drug targets. The isozyme HDAC10 contributes to chemotherapy resistance and has recently been described to be a polyamine deacetylase, but no studies toward selective HDAC10 inhibitors have been published. Using two complementary assays, we found Tubastatin A, an HDAC6 inhibitor, to potently bind HDAC10. We synthesized Tubastatin A derivatives and found that a basic amine in the cap group was required for strong HDAC10 binding. HDAC10 inhibitors mimicked knockdown by causing dose-dependent accumulation of acidic vesicles in a neuroblastoma cell line. Furthermore, docking into human HDAC10 homology models indicated that a hydrogen bond between a cap group nitrogen and the gatekeeper residue Glu272 was responsible for potent HDAC10 binding. Taken together, our data provide an optimal platform for the development of HDAC10-selective inhibitors, as exemplified with the Tubastatin A scaffold.
Collapse
Affiliation(s)
| | | | - Peter Sehr
- Chemical Biology Core Facility , European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | | | | | - Johannes Ridinger
- Biosciences Faculty , University of Heidelberg , 69120 Heidelberg , Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ) , 69120 Heidelberg , Germany.,Department of Pediatric Oncology, Hematology and Immunology , University Hospital Heidelberg , 69120 Heidelberg , Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ) , 69120 Heidelberg , Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ) , 69120 Heidelberg , Germany.,Department of Pediatric Oncology, Hematology and Immunology , University Hospital Heidelberg , 69120 Heidelberg , Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| | | | - Mauro S Nogueira
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , 44227 Dortmund , Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , 44227 Dortmund , Germany
| | - Nikolas Gunkel
- German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| | - Aubry K Miller
- German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| |
Collapse
|
28
|
Zwergel C, Romanelli A, Stazi G, Besharat ZM, Catanzaro G, Tafani M, Valente S, Mai A. Application of Small Epigenetic Modulators in Pediatric Medulloblastoma. Front Pediatr 2018; 6:370. [PMID: 30560106 PMCID: PMC6286966 DOI: 10.3389/fped.2018.00370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma is one of the most frequent among pediatric brain tumors, and it has been classified in various subgroups. Some of them already benefit from quite good therapeutic options, whereas others urgently need novel therapeutic approaches. Epigenetic modulators have long been studied in various types of cancer. Within this review, we summarize the main preclinical studies regarding epigenetic targets (such as HDAC, SIRT, BET, EZH2, G9a, LSD1, and DNMT) inhibitors in medulloblastoma. Furthermore, we shed light on the increasing number of applications of drug combinations as well as hybrid compounds involving epigenetic mechanisms. Nevertheless, in the studies published so far, mainly un-specific or old modulators have been used, and the PKs (brain permeability) have not been well-evaluated. Thus, these findings should be considered as a starting point for further improvement and not as a final result.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giulia Stazi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | | | | | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|