1
|
Valladales-Restrepo LF, Ospina-Cano JA, Aristizábal-Carmona BS, Machado-Alba JE. Prescription Patterns of Inducers and Inhibitors of Cytochrome P450 and Their Potential Drug Interactions in the Real World: A Cross-Sectional Study. Drugs Real World Outcomes 2024:10.1007/s40801-024-00450-1. [PMID: 39243339 DOI: 10.1007/s40801-024-00450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Both the induction and inhibition of cytochrome P450 are associated with multiple pharmacological interactions, which can lead to loss of efficacy or increase the risk of adverse drug reactions. OBJECTIVE The aim was to determine the prescription patterns of cytochrome P450-inducing and -inhibiting drugs and their contraindicated and major pharmacological interactions in a group of patients from Colombia. METHODS This cross-sectional observational study included patients who received drugs that induce or inhibit metabolism and examined their contraindicated and major pharmacological interactions. The patients were identified from a population-based database of drug dispensing. Patients were included between December 1 and December 31, 2021. Inhibitors and inducers of cytochrome P450 were classified based on FDA (Food and Drug Administration) guidelines. Drug interactions were identified using the Micromedex® database. Descriptive, bivariate and multivariable analysis was performed. RESULTS A total of 63,433 patients were analyzed. Antiseizure medications (35.9%) and antifungals (27.6%) were the most used inducers and inhibitors. A total of 30.1% of patients had potential contraindicated or greater interactions. The following factors were associated with a higher probability of presenting a potential pharmacological interaction: being male (OR 1.14; 95% CI 1.10-1.19), aged 18-39 years (OR 1.77; 95% CI 1.67-1.89) or 40-64 years (OR 1.64; 95% CI 1.56-1.72), having neurological diseases (OR 1.28; 95% CI 1.21-1.35), having psychiatric diseases (OR 3.84; 95% CI 3.58-4.13), having rheumatologic diseases (OR 1.32; 95% CI 1.23-1.41), receiving comedications with statins (OR 1.14; 95% CI 1.08-1.19), receiving comedications with analgesics (OR 1.33; 95% CI 1.27-1.38), receiving comedications with antiparasitics (OR 2.88; 95% CI 2.66-3.11) and an increase in the number of medications (OR 1.24; 95% CI 1.23-1.25). CONCLUSION Among the users of cytochrome P450 inhibitors and inducers, potential contraindications and greater interactions are very common, especially in men under 65 years of age with comorbidities and polypharmacy.
Collapse
Affiliation(s)
- Luis Fernando Valladales-Restrepo
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Calle 105 No. 14-140, 660003, Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
- Semillero de Investigación en Farmacología Geriátrica, Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Juan Alberto Ospina-Cano
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Calle 105 No. 14-140, 660003, Pereira, Risaralda, Colombia
| | - Brayan Stiven Aristizábal-Carmona
- Semillero de Investigación en Farmacología Geriátrica, Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Jorge Enrique Machado-Alba
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Calle 105 No. 14-140, 660003, Pereira, Risaralda, Colombia.
| |
Collapse
|
2
|
Minegishi G, Kobayashi Y, Fujikura M, Sano A, Kazuki Y, Kobayashi K. Induction of hepatic CYP3A4 expression by cholesterol and cholic acid: Alterations of gene expression, microsomal activity, and pharmacokinetics. Pharmacol Res Perspect 2024; 12:e1197. [PMID: 38644590 PMCID: PMC11033495 DOI: 10.1002/prp2.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.
Collapse
Affiliation(s)
- Genki Minegishi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Yuka Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Mayu Fujikura
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Ayane Sano
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC)Tottori UniversityTottoriJapan
- Department of Chromosome Biomedical Engineering, Faculty of Medicine, School of Life ScienceTottori UniversityTottoriJapan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical PharmacyMeiji Pharmaceutical UniversityKiyoseJapan
| |
Collapse
|
3
|
Zhou RL, Pannecouque C, De Clercq E, Wang S, Chen FE. Development of novel HEPT analogs featuring significantly improved anti-resistance potency against HIV-1 through chemical space exploration of the tolerant region I. Bioorg Chem 2023; 140:106783. [PMID: 37595396 DOI: 10.1016/j.bioorg.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Our recent great interest in developing 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs for HIV therapy identified a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) 3 (EC50 = 0.01681 μM), but its therapeutic efficacy was limited by its poor anti-resistance potency. This prompted us to search for potential HEPT analogs with broad-spectrum activities, leading to the generation of a series of novel HEPT analogs through exploring the chemical space of the solvent - protein interface. Encouraging improvements in anti-resistance efficacy were observed in some of these analogs, with the most promising compound 7 g being 3 to 26 - fold more potent than 3 against five mutant strains (E138K, Y181C, L100I, K103N, and Y188L). This analog surpassed the activity and selectivity of compound 3 by approximately 2-fold (EC50 = 0.007468 μM, SI = 4260). Furthermore, it was found to demonstrate feeble inhibition of CYP and hERG in vitro, and no in vivo acute toxicity. This study will further enrich the structure-activity relationships (SARs) of the HEPT scaffold, providing new guidance for the development of NNRTIs.
Collapse
Affiliation(s)
- Ruo-Lan Zhou
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of C∼hemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals subgroups of primary human hepatocytes with heterogeneous responses to drug challenge. Genome Biol 2023; 24:234. [PMID: 37848949 PMCID: PMC10583437 DOI: 10.1186/s13059-023-03075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Xenobiotics are primarily metabolized by hepatocytes in the liver, and primary human hepatocytes are the gold standard model for the assessment of drug efficacy, safety, and toxicity in the early phases of drug development. Recent advances in single-cell genomics demonstrate liver zonation and ploidy as main drivers of cellular heterogeneity. However, little is known about the impact of hepatocyte specialization on liver function upon metabolic challenge, including hepatic metabolism, detoxification, and protein synthesis. RESULTS Here, we investigate the metabolic capacity of individual human hepatocytes in vitro. We assess how chronic accumulation of lipids enhances cellular heterogeneity and impairs the metabolisms of drugs. Using a phenotyping five-probe cocktail, we identify four functional subgroups of hepatocytes responding differently to drug challenge and fatty acid accumulation. These four subgroups display differential gene expression profiles upon cocktail treatment and xenobiotic metabolism-related specialization. Notably, intracellular fat accumulation leads to increased transcriptional variability and diminishes the drug-related metabolic capacity of hepatocytes. CONCLUSIONS Our results demonstrate that, upon a metabolic challenge such as exposure to drugs or intracellular fat accumulation, hepatocyte subgroups display different and heterogeneous transcriptional responses.
Collapse
Affiliation(s)
- Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Lucia Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany.
| | - Celia Pilar Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich (TUM), 80333, Munich, Germany.
| |
Collapse
|
5
|
Abass K, Reponen P, Anyanwu B, Pelkonen O. Inter-species differences between humans and other mammals in the in vitro metabolism of carbofuran and the role of human CYP enzymes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104243. [PMID: 37572996 DOI: 10.1016/j.etap.2023.104243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
This study investigated the metabolic transformation of carbofuran in seven species of mammals using LC-MS/MS and liver microsomes. The results revealed species-specific differences in metabolite formation, indicating the potential role of metabolic pathways in toxicity and risk assessment. The majority of carbofuran was metabolized through the 3-hydroxycarbofuran pathway, with the highest levels observed in dogLM and the lowest in humanLM. Further analysis was conducted to investigate the human cytochrome P450-mediated metabolism of carbofuran, with CYP3A4 being found to be the most efficient enzyme with the highest contribution to the 3-hydroxycarbofuran pathway. Inhibition of CYP3A4 with ketoconazole resulted in a substantial decrease in carbofuran metabolism. In addition, carbofuran exhibited inhibitory effects on human CYP3A4 and CYP2B6, demonstrating the potential for carbofuran to interact with these enzymes. The findings highlight the importance of in vitro screening for metabolic processes and provide insights into the biotransformation of carbofuran.
Collapse
Affiliation(s)
- Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, the United Arab Emirates; Sharjah Institute for Medical Research (SIMR), University of Sharjah, the United Arab Emirates; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland.
| | - Petri Reponen
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland
| | - Brilliance Anyanwu
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, the United Arab Emirates
| | - Olavi Pelkonen
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland
| |
Collapse
|
6
|
Zhou N, Zhu Y, Hu M, Zheng R, Sun M, Bian Y, Chen X, Li T. Evaluation potential effects of Picroside II on cytochrome P450 enzymes in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116582. [PMID: 37192720 DOI: 10.1016/j.jep.2023.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Picrorhiza scrophulariiflora Pennell, a well-known Chinese herb, has been traditionally utilized as an antioxidant and anti-inflammatory agent. One of its main bioactive components is Picroside II, a glycoside derivative. However, there is limited information on the effects of Picroside II on the activity of cytochrome P450 (CYP) enzymes nor on potential herb-drug interactions are rarely studied. AIM OF THE STUDY The purpose of the study was to investigate the effects of Picroside II on the activity of cytochrome P450 enzymes in vitro and in vivo and its potential herb-drug interactions. MATERIALS AND METHODS Specific probe substrates were employed to assess the effect of Picroside II on the activity of P450 enzymes. The inhibitory effects of Picroside II on CYP enzymes were assayed both in human (i.e., 1A, 2C9, 2C19, 2D6, 2E1, and 3A) and rat (i.e., 1A, 2C6/11, 2D1, 2E1, and 3A) liver microsomes in vitro. The inductive effects were investigated in rats following oral gavage of 2.5 mg/kg and 10 mg/kg Picroside II. A specific Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) method was developed to determine the formation of specific metabolites. RESULTS Enzyme inhibition results showed that Picroside II (0.5-200 μM) had no evident inhibitory effects on rat and human liver microsomes in vitro. Interestingly, the administration of multiple doses of 10 mg/kg Picroside II inhibited the activity of CYP2C6/11 by reducing the rate of formation of 4-hydroxydiclofenac and 4-hydroxymephenytoin, while Picroside II at 2.5 mg/kg increased the activity of CYP3A by promoting the formation of 1-hydroxymidazolam and 6-hydroxychlorzoxazone in rats. In addition, there were negligible effects on CYP1A, CYP2D1, and CYP2E1 in rats. CONCLUSIONS The results indicated that Picroside II modulated the activities of CYP enzymes and was involved in CYP2C and CYP3A medicated herb-drug interactions. Therefore, careful monitoring is necessary when Picroside II is used in combination with related conventional drugs.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yujie Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Miaorong Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengqi Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yueying Bian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Xijing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Tingting Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Wang Z, Liu W, Li X, Chen H, Qi D, Pan F, Liu H, Yu S, Yi B, Wang G, Liu Y. Physiologically based pharmacokinetic combined JAK2 occupancy modelling to simulate PK and PD of baricitinib with kidney transporter inhibitors and in patients with hepatic/renal impairment. Regul Toxicol Pharmacol 2022; 133:105210. [PMID: 35700864 DOI: 10.1016/j.yrtph.2022.105210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Our aim is to build a physiologically based pharmacokinetic and JAK2 occupancy model (PBPK-JO) to simultaneously predict pharmacokinetic (PK) and pharmacodynamic (PD) changes of baricitinib (BAR) in healthy humans when co-administrated with kidney transporters OAT3 and MATE2-K inhibitors, and in patients with hepatic and renal impairment. METHODS Probenecid and vandetanib were selected as OAT3 and MATE2-K competitive inhibitors, respectively. The PBPK-JO model was built using physicochemical and biochemical properties of BAR, and then verified by observed clinical PK. Finally, the model was applied to determine optimal dosing regimens in various clinical situations. RESULTS Here, we have successfully simulated PK and JAK2 occupancy profiles in humans by PBPK-JO model. Moreover, this modelling reproduced every observed PK data, and every mean relative deviation (MRD) was below 2. The simulation suggested that PK of BAR had a significant change (2.22-fold increase), however PD only had a slight increase of 1.14-fold. Additionally, the simulation also suggested that vandetanib was almost unlikely to affect the PK and PD of BAR. In simulations of hepatic and renal impairment patients, the predictions suggested that significant changes in the PK and PD of BAR occurred. However, there was a lower fold increase in JAK2 occupancy than in PK in patients relative to healthy individuals. CONCLUSION Administration dose adjustment of BAR when co-administrated with OAT3 inhibitors or in patients with hepatic or renal impairment should combine PK and PD changes of BAR, instead of only considering PK alteration.
Collapse
Affiliation(s)
- Zhongjian Wang
- Pharnexcloud Digital Technology Co., Ltd., Chengdu, Sichuan, 610093, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Hongjiao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Dongying Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Huining Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Bowen Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, 101500, China.
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
8
|
Braeuning A, Bloch D, Karaca M, Kneuer C, Rotter S, Tralau T, Marx-Stoelting P. An approach for mixture testing and prioritization based on common kinetic groups. Arch Toxicol 2022; 96:1661-1671. [PMID: 35306572 PMCID: PMC9095521 DOI: 10.1007/s00204-022-03264-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
In light of an ever-increasing exposure to chemicals, the topic of potential mixture toxicity has gained increased attention, particularly as the toxicological toolbox to address such questions has vastly improved. Routinely toxicological risk assessments will rely on the analysis of individual compounds with mixture effects being considered only in those specific cases where co-exposure is foreseeable, for example for pesticides or food contact materials. In the field of pesticides, active substances are summarized in so-called cumulative assessment groups (CAG) which are primarily based on their toxicodynamic properties, that is, respective target organs and mode of action (MoA). In this context, compounds causing toxicity by a similar MoA are assumed to follow a model of dose/concentration addition (DACA). However, the respective approach inherently falls short of addressing cases where there are dissimilar or independent MoAs resulting in wider toxicokinetic effects. Yet, the latter are often the underlying cause when effects deviate from the DACA model. In the present manuscript, we therefore suggest additionally to consider toxicokinetic effects (especially related to xenobiotic metabolism and transporter interaction) for the grouping of substances to predict mixture toxicity. In line with the concept of MoA-based CAGs, we propose common kinetics groups (CKGs) as an additional tool for grouping of chemicals and mixture prioritization. Fundamentals of the CKG concept are discussed, along with challenges for its implementation, and methodological approaches and examples are explored.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Denise Bloch
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Mawien Karaca
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Rotter
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
9
|
Abass K, Reponen P, Alsanie WF, Rautio A, Pelkonen O. Characterization of furathiocarb metabolism in in vitro human liver microsomes and recombinant cytochrome P450 enzymes. Toxicol Rep 2022; 9:679-689. [PMID: 35399214 PMCID: PMC8989696 DOI: 10.1016/j.toxrep.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Furathiocarb is a carbamate insecticide detected in ecosystems. Its main metabolite carbofuran has been alluded to affect birth outcomes and disturb hormone levels in humans. The metabolism of furathiocarb in humans has not been characterized. The metabolism studies were performed using hepatic microsomes from ten donors and fifteen human cDNA-expressed CYPs. The initial screening and identification of the metabolites were performed by LC-TOF. Quantifications and fragmentations were performed by LC/MS-MS. Furathiocarb was metabolized to eight phase I metabolites via two general pathways, carbofuran metabolic pathway and furathiocarb oxidation pathway. Six metabolites in the carbofuran metabolic pathway (carbofuran, 3-hydroxycarbofuran, 3-ketocarbofuran, 3-keto-7-phenolcarbofuran, 3-hydroxy-7-phenolcarbofuran, and 7-phenolcarbofuran) were identified with the help of authentic standards. The two unidentified metabolites in the furathiocarb oxidation pathway are probably hydroxylated and sulfoxidated derivatives of furathiocarb. The carbofuran metabolic pathway was more predominant than the furathiocarb oxidation pathway, ratios ranged from 24- to 115-fold in a 10-donor panel of hepatic microsomes. On the basis of recombinant CYP studies, the carbofuran pathway was dominated by CYP3A4 (95.9%); contributions by CYP1A2 (1.3%) and CYP2B6 (2.0%) were minor. The minor furathiocarb oxidation pathway was catalyzed by CYP2C19 and CYP2D6 (hydroxylated/sulfoxidated metabolite A) and by CYP3A5, CYP3A4 and CYP2A6 (metabolite B). High and significant correlation between carbofuran metabolic pathway and CYP3A4 marker activities (midazolam-1'-hydroxylation and omeprazole-sulfoxidation) were observed. Ketoconazole, a CYP3A4-inhibitor, inhibited the carbofuran pathway by 32–86% and hydroxylated/sulfoxidated metabolite-B formations by 41–62%. The data suggest that in humans, the carbofuran metabolic pathway is dominant, and CYP3A4 is the major enzyme involved. These results provide useful scientific information for furathiocarb risk assessment in humans. Eight Phase I metabolites were detected by LC-TOF-MS/MS. The carbofuran pathway was more rapid than the furathiocarb oxidation pathway The carbofuran pathway was dominated by CYP3A4 (96%). Ketoconazole inhibited the carbofuran pathway by 32–86%. The findings provide useful scientific information for furathiocarb risk assessment in humans.
Collapse
Affiliation(s)
- Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 7300, FI-90014, Finland
- Pharmacology and Toxicology Unit, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
- Department of Pesticides, Menoufia University, P.O. Box 32511, Egypt
- Correspondence to: Faculty of Medicine, Arctic Health, University of Oulu, Oulu FI-90014, Finland.
| | - Petri Reponen
- Pharmacology and Toxicology Unit, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences & Centre of Biomedical Sciences Research (CBSR), Taif University, Saudi Arabia
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 7300, FI-90014, Finland
- Thule Institute, University of the Arctic, Oulu FI-90014, Finland
| | - Olavi Pelkonen
- Pharmacology and Toxicology Unit, Research Unit of Biomedicine, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| |
Collapse
|
10
|
Habano W, Miura T, Terashima J, Ozawa S. Aryl hydrocarbon receptor as a DNA methylation reader in the stress response pathway. Toxicology 2022; 470:153154. [PMID: 35301058 DOI: 10.1016/j.tox.2022.153154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR) mediates various cellular responses upon exposure to exogenous and endogenous stress factors. In these responses, AhR plays a dual role as a stress sensor for detecting various AhR ligands and as a transcription factor that upregulates the expression of downstream effector genes, such as those encoding drug-metabolizing enzymes. As a transcription factor, it selectively binds to the unmethylated form of a specific sequence called the xenobiotic responsive element (XRE). We suggest that AhR is a novel DNA methylation reader, unlike classical methylation readers, such as methyl-CpG-binding protein 2, which binds to methylated sequences. Under physiological conditions of continuous exposure to endogenous AhR ligands, such as kynurenine, methylation states of the individual target XREs must be strictly regulated to select and coordinate the expression of downstream genes responsible for maintaining homeostasis in the body. In contrast, long-term exposure to AhR ligands frequently leads to changes in the methylation patterns around the XRE sequence. These data indicate that AhR may contribute to the adaptive cellular response to various stresses by modulating DNA methylation. Thus, the DNA methylation profile of AhR target genes should be dynamically controlled through a balance between robustness and flexibility under both physiological and stress conditions. AhR is a pivotal player in the regulation of stress response as it shows versatility by functioning as a stress sensor, methylation reader, and putative methylation modulator.
Collapse
Affiliation(s)
- Wataru Habano
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan.
| | - Toshitaka Miura
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| | - Shogo Ozawa
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa 028-3694, Iwate, Japan
| |
Collapse
|
11
|
Abass K, Reponen P, Alsanie WF, Rautio A, Pelkonen O. Metabolic profiling and in vitro-in vivo extrapolation of furathiocarb in mammalian hepatic microsomes. Toxicol Rep 2022; 9:750-758. [DOI: 10.1016/j.toxrep.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
|
12
|
Li G, Yi B, Liu J, Jiang X, Pan F, Yang W, Liu H, Liu Y, Wang G. Effect of CYP3A4 Inhibitors and Inducers on Pharmacokinetics and Pharmacodynamics of Saxagliptin and Active Metabolite M2 in Humans Using Physiological-Based Pharmacokinetic Combined DPP-4 Occupancy. Front Pharmacol 2021; 12:746594. [PMID: 34737703 PMCID: PMC8560969 DOI: 10.3389/fphar.2021.746594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
We aimed to develop a physiological-based pharmacokinetic and dipepidyl peptidase 4 (DPP-4) occupancy model (PBPK-DO) characterized by two simultaneous simulations to predict pharmacokinetic (PK) and pharmacodynamic changes of saxagliptin and metabolite M2 in humans when coadministered with CYP3A4 inhibitors or inducers. Ketoconazole, delavirdine, and rifampicin were selected as a CYP3A4 competitive inhibitor, a time-dependent inhibitor, and an inducer, respectively. Here, we have successfully simulated PK profiles and DPP-4 occupancy profiles of saxagliptin in humans using the PBPK-DO model. Additionally, under the circumstance of actually measured values, predicted results were good and in line with observations, and all fold errors were below 2. The prediction results demonstrated that the oral dose of saxagliptin should be reduced to 2.5 mg when coadministrated with ketoconazole. The predictions also showed that although PK profiles of saxagliptin showed significant changes with delavirdine (AUC 1.5-fold increase) or rifampicin (AUC: a decrease to 0.19-fold) compared to those without inhibitors or inducers, occupancies of DPP-4 by saxagliptin were nearly unchanged, that is, the administration dose of saxagliptin need not adjust when there is coadministration with delavirdine or rifampicin.
Collapse
Affiliation(s)
- Gang Li
- Beijing Adamadle Biotech Co, Ltd., Beijing, China
| | - Bowen Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingtong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoquan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haibo Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co, Ltd., Beijing, China
| |
Collapse
|
13
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|