1
|
Romero-Noreña A, Contreras-Martinez HJ, Mendivil-Perez M. Toxicology of anhydroecgonine methyl ester: A systematic review of a cocaine pyrolysis product. Toxicol Rep 2024; 13:101690. [PMID: 39104366 PMCID: PMC11298642 DOI: 10.1016/j.toxrep.2024.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/18/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Anhydroecgonine Methyl Ester (AEME), also known as methylecgonidine, is the main pyrolysis product of smoking cocaine (cocaine base paste or basuco, crack, or freebase). This review aims to synthesize the available scientific evidence on the toxicokinetic and toxicodynamic effects of AEME. A search of scientific articles published in Science Direct, SCOPUS, and MEDLINE up to May 2024 was conducted. Twenty-four articles, including 13 experimental animal studies, 2 clinical trials, and 3 observational studies, were reviewed. AEME is readily deposited in the alveoli; its absorption improves in combination with cocaine and has a broad tissue distribution. It is metabolized primarily in the liver, with a half-life of approximately one hour, and is mainly excreted through urine. Moreover, AEME acts as a partial agonist of M1 and M3 muscarinic cholinergic receptors, influences dopaminergic system neuroadaptation, increases the production of reactive oxygen species, imbalances the activity of glutathione-associated enzymes, and reduces melatonin levels, affecting its antioxidant regulatory properties. When combined with cocaine, AEME activates the non-apoptotic pathway of caspase-9 and then, the apoptotic pathway via caspase-8, reducing neuronal viability in half the time of cocaine. AEME plays a significant role in cocaine toxicity and AEME itself.
Collapse
Affiliation(s)
- Andrea Romero-Noreña
- Pharmaceutical Sciences Research Group, PhD student in Health Sciences, Universidad CES, Medellín, Colombia
| | - Heidy Johanna Contreras-Martinez
- Research Group in Pharmaceutical Sciences, associate professor, Doctorate in Health Sciences, Universidad CES, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Neurosciences Group of Antioquia, associate professor, Universidad de Antioquia. (UdeA), Medellín, Colombia
| |
Collapse
|
2
|
Garcia RCT, Spelta LEW, Udo MSB, Bruno V, Fonseca DA, de Faria Almeida CA, Dos Reis TM, Torres LH, Marcourakis T. Neurotoxicity of crack cocaine exposure: evidence from a systematic review of in vitro and in vivo studies. Arch Toxicol 2024; 98:2797-2816. [PMID: 38769171 DOI: 10.1007/s00204-024-03782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Several studies suggest that crack cocaine users exhibit higher prevalence of both psychiatric and psychosocial problems, with an aggressive pattern of drug use. Nevertheless, few experimental studies attempted to verify the neurotoxicity after crack cocaine exposure, especially when compared with other routes of cocaine administration. This systematic review aimed to verify whether in vitro and/or in vivo crack cocaine exposure is more neurotoxic than cocaine exposure (snorted or injected). A search was performed in the PubMed, EMBASE, Scopus, Web of Science, and LILACS databases for in vitro and in vivo toxicological studies conducted with either rats or mice, with no distinction with regard to sex or age. Other methods including BioRxiv, BDTD, Academic Google, citation searching, and specialist consultation were also adopted. Two independent investigators screened the titles and abstracts of retrieved studies and subsequently performed full-text reading and data extraction. The quality of the included studies was assessed by the Toxicological data Reliability assessment Tool (ToxRTool). The study protocol was registered with the Prospective Registry of Systematic Reviews (PROSPERO; CRD42022332250). Of the twelve studies included, three were in vitro and nine were in vivo studies. According to the ToxRTool, most studies were considered reliable either with or without restrictions, with no one being considered as not reliable. The studies found neuroteratogenic effects, decreased threshold for epileptic seizures, schizophrenic-like symptoms, and cognitive deficits to be associated with crack cocaine exposure. Moreover, both in vitro and in vivo studies reported a worsening in cocaine neurotoxic effect caused by the anhydroecgonine methyl ester (AEME), a cocaine main pyrolysis product, which is in line with the more aggressive pattern of crack cocaine use. This systematic review suggests that crack cocaine exposure is more neurotoxic than other routes of cocaine administration. However, before the scarcity of studies on this topic, further toxicological studies are necessary.
Collapse
Affiliation(s)
- Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| | - Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana Sayuri Berto Udo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Neurology, McGovern Medical School, University of Texas Health at Houston, Houston, TX, USA
| | - Vitor Bruno
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danilo Aguiar Fonseca
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Tiago Marques Dos Reis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Larissa Helena Torres
- Department of Neurology, McGovern Medical School, University of Texas Health at Houston, Houston, TX, USA
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins (Basel) 2022; 14:toxins14040278. [PMID: 35448887 PMCID: PMC9032145 DOI: 10.3390/toxins14040278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
Cocaine is one of the most consumed stimulants throughout the world, as official sources report. It is a naturally occurring sympathomimetic tropane alkaloid derived from the leaves of Erythroxylon coca, which has been used by South American locals for millennia. Cocaine can usually be found in two forms, cocaine hydrochloride, a white powder, or ‘crack’ cocaine, the free base. While the first is commonly administered by insufflation (‘snorting’) or intravenously, the second is adapted for inhalation (smoking). Cocaine can exert local anaesthetic action by inhibiting voltage-gated sodium channels, thus halting electrical impulse propagation; cocaine also impacts neurotransmission by hindering monoamine reuptake, particularly dopamine, from the synaptic cleft. The excess of available dopamine for postsynaptic activation mediates the pleasurable effects reported by users and contributes to the addictive potential and toxic effects of the drug. Cocaine is metabolised (mostly hepatically) into two main metabolites, ecgonine methyl ester and benzoylecgonine. Other metabolites include, for example, norcocaine and cocaethylene, both displaying pharmacological action, and the last one constituting a biomarker for co-consumption of cocaine with alcohol. This review provides a brief overview of cocaine’s prevalence and patterns of use, its physical-chemical properties and methods for analysis, pharmacokinetics, pharmacodynamics, and multi-level toxicity.
Collapse
|
4
|
Sierra-Res A, Robles-Her B, J. Bernad- M, Día R, Peñ SI, Vargas-Est D, Gracia-Mor J. Designing and Preclinical Evaluation of a Molecular Imprint Polymer-Based Cocaine Odor Mimic for Conditioning Detection Dogs. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.171.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Singh M, Agarwal S, Tiwari RK, Chanda S, Singh K, Agarwal P, Kashyap A, Pancham P, Mall S, R. R, Sharma S. Neuroprotective Ability of Apocynin Loaded Nanoparticles (APO-NPs) as NADPH Oxidase (NOX)-Mediated ROS Modulator for Hydrogen Peroxide-Induced Oxidative Neuronal Injuries. Molecules 2021; 26:5011. [PMID: 34443598 PMCID: PMC8400077 DOI: 10.3390/molecules26165011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Apocynin (APO) is a known multi-enzymatic complexed compound, employed as a viable NADPH oxidase (NOX) inhibitor, extensively used in both traditional and modern-day therapeutic strategies to combat neuronal disorders. However, its therapeutic efficacy is limited by lower solubility and lesser bioavailability; thus, a suitable nanocarrier system to overcome such limitations is needed. The present study is designed to fabricate APO-loaded polymeric nanoparticles (APO-NPs) to enhance its therapeutic efficacy and sustainability in the biological system. The optimized APO NPs in the study exhibited 103.6 ± 6.8 nm and -13.7 ± 0.43 mV of particle size and zeta potential, respectively, along with further confirmation by TEM. In addition, the antioxidant (AO) abilities quantified by DPPH and nitric oxide scavenging assays exhibited comparatively higher AO potential of APO-NPs than APO alone. An in-vitro release profile displayed a linear diffusion pattern of zero order kinetics for APO from the NPs, followed by its cytotoxicity evaluation on the PC12 cell line, which revealed minimal toxicity with higher cell viability, even after treatment with a stress inducer (H2O2). The stability of APO-NPs after six months showed minimal AO decline in comparison to APO only, indicating that the designed nano-formulation enhanced therapeutic efficacy for modulating NOX-mediated ROS generation.
Collapse
Affiliation(s)
- Manisha Singh
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida 201309, Uttar Pradesh, India; (S.A.); (P.P.); (R.R.)
| | - Shriya Agarwal
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida 201309, Uttar Pradesh, India; (S.A.); (P.P.); (R.R.)
| | - Raj Kumar Tiwari
- Pharmacognosy and Phytochemistry, School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, Uttarakhand, India;
| | - Silpi Chanda
- Pharmacognosy and Phytochemistry, IEC School of Pharmacy, IEC University, Solan 174103, Himachal Pradesh, India;
| | - Kuldeep Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana 133207, Haryana, India;
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay 400076, Maharashtra, India;
| | - Aishwarya Kashyap
- Department of Biotechnology, Vellore Institute of Technology, School of Bio Sciences & Technology (SBST), Vellore 632014, Tamil Nadu, India;
| | - Pranav Pancham
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida 201309, Uttar Pradesh, India; (S.A.); (P.P.); (R.R.)
| | - Shweta Mall
- Department of Animal Genetics and Breeding, Southern Regional Station of Indian Council of Agriculture Research—Research Institute, Bangalore 560030, Karnataka, India;
| | - Rachana R.
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology, Sector-62, Noida 201309, Uttar Pradesh, India; (S.A.); (P.P.); (R.R.)
| | - Shalini Sharma
- Sunder Deep Pharmacy College, NH-9, Delhi-Meerut Expressway, Ghaziabad 201015, Uttar Pradesh, India;
| |
Collapse
|