1
|
Bird MF, McDonald J, Horley B, O’Doherty JP, Fraser B, Gibson CL, Guerrini R, Caló G, Lambert DG. MOP and NOP receptor interaction: Studies with a dual expression system and bivalent peptide ligands. PLoS One 2022; 17:e0260880. [PMID: 35061679 PMCID: PMC8782398 DOI: 10.1371/journal.pone.0260880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Opioids targeting mu;μ (MOP) receptors produce analgesia in the peri-operative period and palliative care. They also produce side effects including respiratory depression, tolerance/dependence and addiction. The N/OFQ opioid receptor (NOP) also produces analgesia but is devoid of the major MOP side effects. Evidence exists for MOP-NOP interaction and mixed MOP-NOP ligands produce analgesia with reduced side effects. We have generated a HEKMOP/NOP human expression system and used bivalent MOP-NOP and fluorescent ligands to (i) probe for receptor interaction and (ii) consequences of that interaction. We used HEKMOP/NOP cells and two bivalent ligands; Dermorphin-N/OFQ (MOP agonist-NOP agonist; DeNO) and Dermorphin-UFP101 (MOP agonist-NOP antagonist; De101). We have determined receptor binding profiles, GTPγ[35S] binding, cAMP formation and ERK1/2 activation. We have also probed MOP and NOP receptor interactions in HEK cells and hippocampal neurones using the novel MOP fluorescent ligand, DermorphinATTO488 and the NOP fluorescent ligand N/OFQATTO594. In HEKMOP/NOP MOP ligands displaced NOP binding and NOP ligands displaced MOP binding. Using fluorescent probes in HEKMOP/NOP cells we demonstrated MOP-NOP probe overlap and a FRET signal indicating co-localisation. MOP-NOP were also co-localised in hippocampal tissue. In GTPγ[35S] and cAMP assays NOP stimulation shifted the response to MOP rightwards. At ERK1/2 the response to bivalent ligands generally peaked later. We provide evidence for MOP-NOP interaction in recombinant and native tissue. NOP activation reduces responsiveness of MOP activation; this was shown with conventional and bivalent ligands.
Collapse
Affiliation(s)
- M. F. Bird
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - J. McDonald
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - B. Horley
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - J. P. O’Doherty
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| | - B. Fraser
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - C. L. Gibson
- School of Psychology, University of Nottingham, Psychology Building, University Park, Nottingham, United Kingdom
| | - R. Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - G. Caló
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - D. G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Bird MF, Guerrini R, Willets JM, Thompson JP, Caló G, Lambert DG. Nociceptin/Orphanin FQ (N/OFQ) conjugated to ATTO594: a novel fluorescent probe for the N/OFQ (NOP) receptor. Br J Pharmacol 2018; 175:4496-4506. [PMID: 30276802 PMCID: PMC6255954 DOI: 10.1111/bph.14504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The nociceptin/orphanin FQ (N/OFQ) receptor (NOP) is a member of the opioid receptor family and is involved in a number of physiological responses, pain and immune regulation as examples. In this study, we conjugated a red fluorophore-ATTO594 to the peptide ligand N/OFQ (N/OFQATTO594 ) for the NOP receptor and explored NOP receptor function at high (in recombinant systems) and low (on immune cells) expression. EXPERIMENTAL APPROACH We assessed N/OFQATTO594 receptor binding, selectivity and functional activity in recombinant (CHO) cell lines. Live cell N/OFQATTO594 binding was measured in (i) HEK cells expressing NOP and NOPGFP receptors, (ii) CHO cells expressing the hNOPGαqi5 chimera (to force coupling to measurable Ca2+ responses) and (iii) freshly isolated human polymorphonuclear cells (PMN). KEY RESULTS N/OFQATTO594 bound to NOP receptor with nM affinity and high selectivity. N/OFQATTO594 activated NOP receptor by reducing cAMP formation and increasing Ca2+ levels in CHOhNOPGαqi5 cells. N/OFQATTO594 was also able to visualize NOP receptors at low expression levels on PMN cells. In NOP-GFP-tagged receptors, N/OFQATTO594 was used in a FRET protocol where GFP emission activated ATTO, visualizing ligand-receptor interaction. When the NOPGFP receptor is activated by N/OFQATTO594 , movement of ligand and receptor from the cell surface to the cytosol can be measured. CONCLUSIONS AND IMPLICATIONS In the absence of validated NOP receptor antibodies and issues surrounding the use of radiolabels (especially in low expression systems), these data indicate the utility of N/OFQATTO594 to study a wide range of N/OFQ-driven cellular responses.
Collapse
Affiliation(s)
- M F Bird
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryUniversity of LeicesterLeicesterUK
| | - R Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTAUniversity of FerraraFerraraItaly
| | - J M Willets
- Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | - J P Thompson
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryUniversity of LeicesterLeicesterUK
| | - G Caló
- Department of Medical Sciences, Section of Pharmacology and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - D G Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryUniversity of LeicesterLeicesterUK
| |
Collapse
|
3
|
Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol 2018; 175:2881-2896. [PMID: 29524334 PMCID: PMC6016625 DOI: 10.1111/bph.14199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo. EXPERIMENTAL APPROACH We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35 S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities. KEY RESULTS UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance. CONCLUSIONS AND IMPLICATIONS In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - H Niwa
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - R Tose
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - J McDonald
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - V Ruggieri
- Department of Oncology Haematology and Respiratory DiseasesUniversity of Modena and Reggio EmiliaModenaItaly
| | - M Filaferro
- Department of Biomedical, Metabolic and Neuro‐SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - G Vitale
- Section of Pharmacology, Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - L Micheli
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - C Ghelardini
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - S Salvadori
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - G Calo
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - R Guerrini
- Department of Pharmaceutical SciencesUniversity of FerraraFerraraItaly
| | - D J Rowbotham
- Department of Health SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - D G Lambert
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| |
Collapse
|
4
|
Bird MF, Cerlesi MC, Brown M, Malfacini D, Vezzi V, Molinari P, Micheli L, Mannelli LDC, Ghelardini C, Guerrini R, Calò G, Lambert DG. Characterisation of the Novel Mixed Mu-NOP Peptide Ligand Dermorphin-N/OFQ (DeNo). PLoS One 2016; 11:e0156897. [PMID: 27272042 PMCID: PMC4896453 DOI: 10.1371/journal.pone.0156897] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Opioid receptors are currently classified as Mu (μ), Delta (δ), Kappa (κ) plus the opioid related nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP). Despite compelling evidence for interactions and benefits of targeting more than one receptor type in producing analgesia, clinical ligands are Mu agonists. In this study we have designed a Mu-NOP agonist named DeNo. The Mu agonist component is provided by dermorphin, a peptide isolated from the skin of Phyllomedusa frogs and the NOP component by the endogenous agonist N/OFQ. METHODS We have assessed receptor binding profile of DeNo and compared with dermorphin and N/OFQ. In a series of functional screens we have assessed the ability to (i) increase Ca2+ in cells coexpressing recombinant receptors and a the chimeric protein Gαqi5, (ii) stimulate the binding of GTPγ[35S], (iii) inhibit cAMP formation, (iv) activate MAPKinase, (v) stimulate receptor-G protein and arrestin interaction using BRET, (vi) electrically stimulated guinea pig ileum (gpI) assay and (vii) ability to produce analgesia via the intrathecal route in rats. RESULTS DeNo bound to Mu (pKi; 9.55) and NOP (pKi; 10.22) and with reasonable selectivity. This translated to increased Ca2+ in Gαqi5 expressing cells (pEC50 Mu 7.17; NOP 9.69), increased binding of GTPγ[35S] (pEC50 Mu 7.70; NOP 9.50) and receptor-G protein interaction in BRET (pEC50 Mu 8.01; NOP 9.02). cAMP formation was inhibited and arrestin was activated (pEC50 Mu 6.36; NOP 8.19). For MAPK DeNo activated p38 and ERK1/2 at Mu but only ERK1/2 at NOP. In the gpI DeNO inhibited electrically-evoked contractions (pEC50 8.63) that was sensitive to both Mu and NOP antagonists. DeNo was antinociceptive in rats. CONCLUSION Collectively these data validate the strategy used to create a novel bivalent Mu-NOP peptide agonist by combining dermorphin (Mu) and N/OFQ (NOP). This molecule behaves essentially as the parent compounds in vitro. In the antonocicoeptive assays employed in this study DeNo displays only weak antinociceptive properties.
Collapse
MESH Headings
- Animals
- CHO Cells
- Calcium/metabolism
- Cricetulus
- Guinea Pigs
- HEK293 Cells
- Humans
- Male
- Opioid Peptides/chemistry
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Receptors, Opioid/chemistry
- Receptors, Opioid/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Nociceptin Receptor
Collapse
Affiliation(s)
- Mark F. Bird
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Maria Camilla Cerlesi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Mark Brown
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Davide Malfacini
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Vanessa Vezzi
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - David G. Lambert
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Guerrini R, Marzola E, Trapella C, Pacifico S, Cerlesi MC, Malfacini D, Ferrari F, Bird MF, Lambert DG, Salvadori S, Calo G. Structure activity studies of nociceptin/orphanin FQ(1-13)-NH2 derivatives modified in position 5. Bioorg Med Chem 2015; 23:1515-20. [PMID: 25716007 DOI: 10.1016/j.bmc.2015.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 11/24/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a heptadecapeptide acting as the endogenous ligand of the N/OFQ peptide receptor (NOP). N/OFQ(1-13)-NH2 is the shortest N/OFQ sequence maintaining the same potency and efficacy as the natural peptide. Thus N/OFQ(1-13)-NH2 was used as chemical template for investigating the structure activity relationship of threonine in position 5. 28 [X(5)]N/OFQ(1-13)-NH2 derivatives, in which Thr was substituted with natural and unnatural residues, were synthesized and characterized pharmacologically for their effects at the human NOP receptor. Two different functional assays were used: agonist stimulated [(35)S]GTPγS binding in cell membranes and calcium mobilization in whole cells co-expressing chimeric G proteins. All [X(5)]N/OFQ(1-13)-NH2 derivatives behaved as full NOP agonists showing large differences in their potency. There was an excellent correlation between the results obtained in the two assays. The results of this study suggest that: position 5 does not play a pivotal role in receptor activation; the secondary alcoholic function of Thr is not important for receptor binding; side chain size, lipo/hydrophilic balance as well as hydrogen bond capability are also not crucial for receptor binding; an aliphatic amino function positively charged with at least 3 carbon atom distance from the peptide backbone has a huge disrupting effect on receptor binding. In conclusion this study demonstrates that a simple ethyl side chain as in compound 23 is sufficient in N/OFQ position 5 for maintaining bioactivity.
Collapse
Affiliation(s)
- Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; Laboratorio per le tecnologie delle terapie avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Erika Marzola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; Laboratorio per le tecnologie delle terapie avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; Laboratorio per le tecnologie delle terapie avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Camilla Cerlesi
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Davide Malfacini
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Ferrari
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Mark Francis Bird
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - David George Lambert
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; Laboratorio per le tecnologie delle terapie avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Lohman RJ, Harrison RS, Ruiz-Gómez G, Hoang HN, Shepherd NE, Chow S, Hill TA, Madala PK, Fairlie DP. Helix-constrained nociceptin peptides are potent agonists and antagonists of ORL-1 and nociception. VITAMINS AND HORMONES 2015; 97:1-55. [PMID: 25677767 DOI: 10.1016/bs.vh.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus. This likely anchors the receptor-activating N-terminus of nociception nearby for insertion in the membrane-spanning helices of ORL-1. In search of higher agonist potency, two lysine and two aspartate residues were strategically incorporated into the receptor-binding C-terminus of the nociceptin sequence and two Lys(i)→Asp(i+4) side chain-side chain condensations were used to generate lactam cross-links that constrained nociceptin into a highly stable α-helix in water. A cell-based assay was developed using natively expressed ORL-1 receptors on mouse neuroblastoma cells to measure phosphorylated ERK as a reporter of agonist-induced receptor activation and intracellular signaling. Agonist activity was increased up to 20-fold over native nociceptin using a combination of this helix-inducing strategy and other amino acid modifications. An NMR-derived three-dimensional solution structure is described for a potent ORL-1 agonist derived from nociceptin, along with structure-activity relationships leading to the most potent known α-helical ORL-1 agonist (EC₅₀ 40 pM, pERK, Neuro-2a cells) and antagonist (IC₅₀ 7 nM, pERK, Neuro-2a cells). These α-helix-constrained mimetics of nociceptin(1-17) had enhanced serum stability relative to unconstrained peptide analogues and nociceptin itself, were not cytotoxic, and displayed potent thermal analgesic and antianalgesic properties in rats (ED₅₀ 70 pmol, IC₅₀ 10 nmol, s.c.), suggesting promising uses in vivo for the treatment of pain and other ORL-1-mediated responses.
Collapse
Affiliation(s)
- Rink-Jan Lohman
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Rosemary S Harrison
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Gloria Ruiz-Gómez
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Huy N Hoang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas E Shepherd
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Shiao Chow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Praveen K Madala
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Todorov PT, Mateeva PI, Zamfirova RN, Pavlov ND, Naydenova ED. Synthesis and biological activity of new series of N-modified analogues of the N/OFQ(1-13)NH2 with aminophosphonate moiety. Amino Acids 2012; 43:1217-23. [PMID: 22143428 DOI: 10.1007/s00726-011-1177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/22/2011] [Indexed: 11/27/2022]
Abstract
New series of N-modified analogues of the N/OFQ(1-13)NH(2) with aminophosphonate moiety have been synthesized and investigated for biological activity. These peptides were prepared by solid-phase peptide synthesis-Fmoc-strategy. The N/OFQ(1-13)NH(2) analogues were tested for agonistic activity in vitro on electrically stimulated rat vas deferens smooth-muscle preparations isolated from Wistar albino rats. Our study has shown that the selectivity of the peptides containing 1-[(methoxyphosphono)methylamino]cycloalkanecarboxylic acids to the N-side of Phe is not changed-they remain selective agonists of NOP receptors. The derivative with the largest ring (NOC-6) demonstrated efficacy similar to that of N/OFQ(1-13)NH(2), but in a 10-fold higher concentration. The agonistic activity of newly synthesized N-modified analogues of N/OFQ(1-13)NH(2) with aminophosphonate moiety was investigated for the first time.
Collapse
Affiliation(s)
- Petar T Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
8
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
9
|
Mustazza C, Bastanzio G. Development of nociceptin receptor (NOP) agonists and antagonists. Med Res Rev 2011; 31:605-48. [PMID: 20099319 DOI: 10.1002/med.20197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nociceptin opioid (NOP) receptor is the most recently discovered member of the family of the opioid receptors; its endogenous agonist is the peptide nociceptin. Due to the subsequent elucidation of its physiological role in both central and peripheral nervous system and in some non-neural tissues, there is a rapidly growing interest in the pharmacological application of substances active on this receptor. Despite the current clinical use of a morphinane-based NOP/MOP mixed ligand (buprenorphine) as an analgesic and in the treatment of drug addictions, so far just a few clinical trials have been made with selective NOP ligands. However, the perspective of their utilization is rapidly growing. Agonists can find applications in the treatment of neuropathic pain, anxiety, cough, drug addition, urinary incontinence, anorexia, congestive heart failure, hypertension; and antagonists for pain, depression, Parkinson's disease, obesity, and as memory enhancers. Besides peptide ligands, which are still subjected to many pharmacological investigations, many different chemical classes of NOP ligands have been discovered: piperidines, nortropanes, spiropiperidines, 4-amino-quinolines and quinazolines, and others. The new advances in establishing structure-activity relationships, also with the help of modeling studies, can permit the development of more active and selective molecules.
Collapse
Affiliation(s)
- Carlo Mustazza
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena, Roma, Italy.
| | | |
Collapse
|
10
|
Centrally Administered Nociceptin/Orphanin FQ and the Neuroprotective Effect of Electroacupuncture Against Cerebral Ischemia Following Middle Cerebral Artery Occlusion/Reperfusion in Rats. Med Acupunct 2009. [DOI: 10.1089/acu.2009.0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Charoenchai L, Wang H, Wang JB, Aldrich JV. High affinity conformationally constrained nociceptin/orphanin FQ(1-13) amide analogues. J Med Chem 2008; 51:4385-7. [PMID: 18624395 DOI: 10.1021/jm800394v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of cyclic analogues with a lactam linkage were prepared by solid phase peptide synthesis to explore possible biologically active conformation(s) of nociceptin/orphanin FQ (N/OFQ). cyclo[D-Asp(7),Lys(10)]- and cyclo[Asp (6),Lys(10)]N/OFQ(1-13)NH2 exhibit high affinity (Ki = 0.27 and 0.34 nM, respectively) and high potency in the GTPgammaS assay (EC 50 = 1.6 and 4.1 nM, respectively) at human nociceptin/orphanin FQ peptide (NOP) receptors. These analogues exhibit 2- to 3-fold higher affinity and 2- to 5-fold higher potency than the parent peptide.
Collapse
Affiliation(s)
- Laksana Charoenchai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
13
|
The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 2008; 7:694-710. [DOI: 10.1038/nrd2572] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|