1
|
To KKW, Hu M, Tomlinson B. Expression and activity of ABCG2, but not ABCB1 or OATP1B1, are associated with cholesterol levels: evidence from in vitro and in vivo experiments. Pharmacogenomics 2014; 15:1091-104. [DOI: 10.2217/pgs.14.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: This study investigated whether cholesterol levels influence the expression and function of drug transporters and whether statin treatments could alter this by reducing plasma low-density lipoprotein cholesterol levels. Patients & methods: The mRNA expression and function of OATP1B1, ABCB1 and ABCG2 were assessed in peripheral blood mononuclear cells (PBMCs) of healthy subjects and from patients with familial hypercholesterolemia (FH) before and after statin treatment by real-time PCR and flow cytometric assay, respectively. The effects of statin exposure and cholesterol depletion in PBMCs and in cell lines were assessed. Results: ABCG2 expression and activity in PBMCs in patients with FH were 2-fold and 26-fold higher, respectively, than those of the healthy subjects (p < 0.001 for both). Statin treatment decreased ABCG2 expression and function in patients with FH. Depletion of cholesterol ex vivo reduced ABCG2 expression in PBMCs and reduced ABCG2 activity in liver and colon cells. Conclusion: This study suggested that statins may downregulate ABCG2 expression and function through reducing low-density lipoprotein cholesterol levels. Original submitted 25 November 2013; Revision submitted 21 March 2014
Collapse
Affiliation(s)
- Kenneth KW To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong SAR
| | - Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
2
|
Vilas-Boas V, Silva R, Palmeira A, Sousa E, Ferreira LM, Branco PS, Carvalho F, Bastos MDL, Remião F. Development of novel rifampicin-derived P-glycoprotein activators/inducers. synthesis, in silico analysis and application in the RBE4 cell model, using paraquat as substrate. PLoS One 2013; 8:e74425. [PMID: 23991219 PMCID: PMC3753303 DOI: 10.1371/journal.pone.0074425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (P-gp) is a 170 kDa transmembrane protein involved in the outward transport of many structurally unrelated substrates. P-gp activation/induction may function as an antidotal pathway to prevent the cytotoxicity of these substrates. In the present study we aimed at testing rifampicin (Rif) and three newly synthesized Rif derivatives (a mono-methoxylated derivative, MeORif, a peracetylated derivative, PerAcRif, and a reduced derivative, RedRif) to establish their ability to modulate P-gp expression and activity in a cellular model of the rat’s blood–brain barrier, the RBE4 cell line P-gp expression was assessed by western blot using C219 anti-P-gp antibody. P-gp function was evaluated by flow cytometry measuring the accumulation of rhodamine123. Whenever P-gp activation/induction ability was detected in a tested compound, its antidotal effect was further tested using paraquat as cytotoxicity model. Interactions between Rif or its derivatives and P-gp were also investigated by computational analysis. Rif led to a significant increase in P-gp expression at 72 h and RedRif significantly increased both P-gp expression and activity. No significant differences were observed for the other derivatives. Pre- or simultaneous treatment with RedRif protected cells against paraquat-induced cytotoxicity, an effect reverted by GF120918, a P-gp inhibitor, corroborating the observed P-gp activation ability. Interaction of RedRif with P-gp drug-binding pocket was consistent with an activation mechanism of action, which was confirmed with docking studies. Therefore, RedRif protection against paraquat-induced cytotoxicity in RBE4 cells, through P-gp activation/induction, suggests that it may be useful as an antidote for cytotoxic substrates of P-gp.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- * E-mail: (VVB); (FR)
| | - Renata Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Andreia Palmeira
- Departamento de Química, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Porto, Portugal
| | - Emília Sousa
- Departamento de Química, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Porto, Portugal
| | - Luísa Maria Ferreira
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Sério Branco
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Félix Carvalho
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- * E-mail: (VVB); (FR)
| |
Collapse
|
3
|
Stieger B, Meier PJ. Pharmacogenetics of drug transporters in the enterohepatic circulation. Pharmacogenomics 2012; 12:611-31. [PMID: 21619426 DOI: 10.2217/pgs.11.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article summarizes the impact of the pharmacogenetics of drug transporters expressed in the enterohepatic circulation on the pharmacokinetics and pharmacodynamics of drugs. The role of pharmacogenetics in the function of drug transporter proteins in vitro is now well established and evidence is rapidly accumulating from in vivo pharmacokinetic studies, which suggests that genetic variants of drug transporter proteins can translate into clinically relevant phenotypes. However, a large amount of conflicting information on the clinical relevance of drug transporter proteins has so far precluded the emergence of a clear picture regarding the role of drug transporter pharmacogenetics in medical practice. This is very well exemplified by the case of P-glycoprotein (MDR1, ABCB1). The challenge is now to develop pharmacogenetic models with sufficient predictive power to allow for translation into drug therapy. This will require a combination of pharmacogenetics of drug transporters, drug metabolism and pharmacodynamics of the respective drugs.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology & Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | |
Collapse
|
4
|
Vilas-Boas V, Silva R, Gaio AR, Martins AM, Lima SC, Cordeiro-da-Silva A, de Lourdes Bastos M, Remião F. P-glycoprotein activity in human Caucasian male lymphocytes does not follow its increased expression during aging. Cytometry A 2011; 79:912-9. [DOI: 10.1002/cyto.a.21135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 08/04/2011] [Indexed: 01/07/2023]
|
5
|
Jeannesson E, Siest G, Herbeth B, Albertini L, Shahabi P, Pfister M, Visvikis-Siest S. Biological and genetic factors associated with ABCB1 and pregnane-X-receptor expressions in peripheral blood mononuclear cells in the STANISLAS cohort. ACTA ACUST UNITED AC 2011; 26:27-32. [DOI: 10.1515/dmdi.2011.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Rodrigues AC, Hirata MH, Hirata RDC. Impact of cholesterol on ABC and SLC transporters expression and function and its role in disposition variability to lipid-lowering drugs. Pharmacogenomics 2009; 10:1007-16. [DOI: 10.2217/pgs.09.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This report focuses on the effects of cholesterol on the expression and function of the ATP-binding cassette (ABCB1, ABCG2 and ABCC2) and solute-linked carrier (SLCO1B1 and SLCO2B1) drug transporters with a particular focus on the potential impact of cholesterol on lipid-lowering drug disposition. Statins are the most active agents in the treatment of hypercholesterolemia. However, considerable interindividual variation exists in the response to statin therapy. Therefore, it would be huge progress if factors were identified that reliably differentiate between responders and nonresponders. Many studies have suggested that plasma lipid concentrations can affect drug disposition of compounds, such as ciclosporin and amphotericin B. Both compounds are able to affect the expression and function of ABC transporters. Although still speculative, these effects might be owing to the regulation of drug transporters by plasma cholesterol levels. Studies with normo- and hyper-cholesterolemic individuals, before and after atorvastatin treatment, have demonstrated that plasma cholesterol levels are correlated with drug transporter expression, as well as being related to atorvastatin’s cholesterol-lowering effect. The mechanism influencing the correlation between cholesterol levels and the expression and function of drug transporters remains unclear. Some studies provide strong evidence that nuclear receptors, such as the pregnane X receptor and the constitutive androstane receptor, mediate this effect. In the near future, pharmacogenomic studies with individuals in a pathological state should be performed in order to identify whether high plasma cholesterol levels might be a factor contributing to interindividual oral drug bioavailability.
Collapse
Affiliation(s)
- Alice Cristina Rodrigues
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B17, Sao Paulo, SP, 05508-900, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B17, Sao Paulo, SP, 05508-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 580, B17, Sao Paulo, SP, 05508-900, Brazil
| |
Collapse
|
8
|
Rebecchi IMM, Rodrigues AC, Arazi SS, Genvigir FDV, Willrich MAV, Hirata MH, Soares SA, Bertolami MC, Faludi AA, Bernik MMS, Dorea EL, Dagli MLZ, Avanzo JL, Hirata RDC. ABCB1 and ABCC1 expression in peripheral mononuclear cells is influenced by gene polymorphisms and atorvastatin treatment. Biochem Pharmacol 2008; 77:66-75. [PMID: 18851956 DOI: 10.1016/j.bcp.2008.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/13/2008] [Accepted: 09/15/2008] [Indexed: 12/11/2022]
Abstract
This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. One hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p<0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p<0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p=0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4+/-12.4%) and apolipoprotein B (apoB) (17.0+/-31.3%) when compared with the higher quartile (>0.085: LDL-c=40.3+/-14.3%; apoB=32.5+/-10.7%; p<0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin.
Collapse
|