1
|
Hong X, Jiang F. Association Between Dietary Niacin Intake and Rheumatoid Arthritis in American Women: A Study Based on National Health and Nutrition Examination Survey Database. Int J Womens Health 2024; 16:2209-2219. [PMID: 39717391 PMCID: PMC11665156 DOI: 10.2147/ijwh.s482294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024] Open
Abstract
Objective This study aimed to explore the association between dietary niacin intake and rheumatoid arthritis (RA) in American women through the National Health and Nutrition Examination Survey (NHANES) database. Methods A retrospective analysis was conducted based on NHANES 2003-2016 data. Dietary niacin intake was stratified using weighted quartiles and association of dietary niacin intake with RA was explored using weighted logistic regression models and restricted cubic splines (RCS). Subgroup analysis was conducted, adjusting for all confounding factors, and a likelihood ratio test was utilized to determine significant covariates for the interaction term. Stratified analysis was conducted on significant covariates to determine their impact on the association of dietary niacin intake with RA. Results Fourteen thousand five hundred and thirty-nine American women were selected according to inclusion and exclusion criteria, among whom 845 (4.4%) had RA. Compared with American women without RA, American women with RA had significantly lower dietary niacin intake (18.90 vs 21.22, P<0.001). Logistic regression models and RCS analysis reported a significant linear negative correlation between dietary niacin intake and prevalence of RA (Odds Ratio (OR) < 1, P < 0.05, P-non-linear >0.05). The interaction-term P-values showed that this association was significantly influenced by poverty income ratio (PIR), education level, Body Mass Index (BMI), and smoking (P for interaction < 0.05). Stratified analysis unveiled that this association was particularly significant in individuals aged ≥ 40 years (OR: 0.98, 95% Confidence Interval (CI): 0.97-0.99, P < 0.05), PIR > 3.5 (OR: 0.96, 95% CI: 0.93-0.99, P < 0.05), with a college education or higher (OR: 0.97, 95% CI: 0.94-0.99, P < 0.01), BMI ≥ 30kg/m² (OR: 0.98, 95% CI: 0.96-0.99, P < 0.05), non-smokers (OR: 0.97, 95% CI: 0.95-0.99, P < 0.01), or former smokers (OR: 0.95, 95% CI: 0.95-0.99, P < 0.05). Conclusion Increased dietary niacin intake was associated with a reduced prevalence of RA, especially in women aged ≥40, PIR > 3.5, with at least a college education, BMI ≥ 30kg/m², and currently non-smokers.
Collapse
Affiliation(s)
- Xuelian Hong
- Department of Rheumatology and Immunology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, 321000, People’s Republic of China
| | - Fengfeng Jiang
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua City, Zhejiang Province, 321000, People’s Republic of China
| |
Collapse
|
2
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
3
|
Belo MAA, Oliveira MF, Oliveira SL, Aracati MF, Rodrigues LF, Costa CC, Conde G, Gomes JMM, Prata MNL, Barra A, Valverde TM, de Melo DC, Eto SF, Fernandes DC, Romero MGMC, Corrêa Júnior JD, Silva JO, Barros ALB, Perez AC, Charlie-Silva I. Zebrafish as a model to study inflammation: A tool for drug discovery. Biomed Pharmacother 2021; 144:112310. [PMID: 34678720 DOI: 10.1016/j.biopha.2021.112310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
This study aims to demonstrate the applicability and importance of zebrafish (Danio rerio) model to study acute and chronic inflammatory responses induced by different stimuli: carrageenan phlogogen (nonimmune); acute infection by bacteria (immune); foreign body reaction (chronic inflammation by round glass coverslip implantation); reaction induced by xenotransplantation. In addition to the advantages of presenting low breeding cost, high prolificity, transparent embryos, high number of individuals belonging to the same spawning and high genetic similarity that favor translational responses to vertebrate organisms like humans, zebrafish proved to be an excellent tool, allowing the evaluation of edema formation, accumulation of inflammatory cells in the exudate, mediators, signaling pathways, gene expression and production of specific proteins. Our studies demonstrated the versatility of fish models to investigate the inflammatory response and its pathophysiology, essential for the successful development of studies to discover innovative pharmacological strategies.
Collapse
Affiliation(s)
- Marco A A Belo
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil; Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Melque F Oliveira
- Laboratory of Animal Pharmacology and Toxicology, Brazil University (UB), Descalvado, Brazil
| | - Susana L Oliveira
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Mayumi F Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Letícia F Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Camila C Costa
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Juliana M M Gomes
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana N L Prata
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ayslan Barra
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thalita M Valverde
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniela C de Melo
- Department of zootechnics at the Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Silas F Eto
- Postgraduate Program in Health Sciences - PROCISA, Federal University of Roraima, Brazil
| | | | - Marina G M C Romero
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - José D Corrêa Júnior
- Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana O Silva
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andre L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Andrea C Perez
- Department of Physiology and Pharmacology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, University of São Paulo (ICB-USP), São Paulo, Brazil.
| |
Collapse
|
4
|
Lima KSB, Silva MEGDC, Araújo TCDL, Silva CPDF, Santos BL, Ribeiro LADA, Menezes PMN, Silva MG, Lavor ÉM, Silva FS, Nunes XP, Rolim LA. Cannabis roots: Pharmacological and toxicological studies in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113868. [PMID: 33503453 DOI: 10.1016/j.jep.2021.113868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are many studies and therapeutic properties attributed to the flowers and leaves of the Cannabis species, but even with few pharmacological studies, Cannabis sativa L. (Cannabaceae) roots presents several therapeutic indications in folk medicine. AIM OF THE STUDY This study aimed to evaluate the anti-inflammatory and spasmolytic effects as well as the toxicological profile of the aqueous extract of Cannabis sativa roots (CsAqEx) in mice. MATERIALS AND METHODS We assessed the anti-inflammatory effect with carrageenan-induced leukocyte migration assay, and carrageenan and histamine-induced paw edema methods; The spasmolytic effect was assessed through in vitro assays with isolated mice trachea. To assess motor coordination and mobility, mice went through the rotarod and open field tests, respectively. For the single-dose toxicity study, we administered CsAqEx at the dose of 1000 mg/kg by gavage. In a repeated dose toxicity study, animals received CsAqEx at doses of 25 mg or 100 mg/kg for 28 days. RESULTS The CsAqEx inhibited the migration of leukocytes at the doses of 25, 50, and 100 mg/kg. The CsAqEx showed anti-inflammatory activity after the intraplantar injection of carrageenan, presenting a reduction in edema formation at all tested doses (12.5, 25, 50 and 100 mg/kg). The dose of 12.5 mg/kg of CsAqEx prevented edema formation after intraplantar injection of histamine. In an organ bath, 729 μg/mL of CsAqEx did not promote spasmolytic effect on isolated mice tracheal rings contracted by carbachol (CCh) or potassium chloride (KCl). We did not observe clinical signs of toxicity in the animals after acute treatment with CsAqEx, which suggested that the median lethal dose (LD50) is greater than 1000 mg/kg. Repeated dose exposure to the CsAqEx did not produce significant changes in hematological, biochemical, or organ histology parameters. CONCLUSIONS The results suggest that the anti-inflammatory effect of CsAqEx is related to the reduction of vascular extravasation and migration of inflammatory cells, without effects on the central nervous system. Moreover, there was no spasmolytic effect on airway smooth muscle and no toxicity was observed on mice.
Collapse
Affiliation(s)
- Kátia Simoni Bezerra Lima
- Universidade Federal Do Vale Do São Francisco (UNIVASF), Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Brazil.
| | | | | | | | | | | | | | | | | | | | - Xirley Pereira Nunes
- Universidade Federal Do Vale Do São Francisco (UNIVASF), Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Brazil.
| | - Larissa Araújo Rolim
- Universidade Federal Do Vale Do São Francisco (UNIVASF), Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Brazil.
| |
Collapse
|
5
|
Al Mansoori A, Shakoor H, Ali HI, Feehan J, Al Dhaheri AS, Cheikh Ismail L, Bosevski M, Apostolopoulos V, Stojanovska L. The Effects of Bariatric Surgery on Vitamin B Status and Mental Health. Nutrients 2021; 13:1383. [PMID: 33923999 PMCID: PMC8073305 DOI: 10.3390/nu13041383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Diet is a modifiable factor that ensures optimal growth, biochemical performance, improved mood and mental functioning. Lack of nutrients, notably vitamin B, has an impact on human health and wellbeing. The United Arab Emirates is facing a serious problem of micronutrient deficiencies because of the growing trend for bariatric surgery, including Roux-en-Y gastric bypass and sleeve gastrectomy. People undergoing bariatric surgery are at high risk of developing neurological, cognitive, and mental disabilities and cardiovascular disease due to deficiency in vitamin B. Vitamin B is involved in neurotransmitter synthesis, including γ-aminobutyric acid, serotonin, dopamine, and noradrenaline. Deficiency of vitamin B increases the risk of depression, anxiety, dementia and Alzheimer's disease. In addition, vitamin B deficiency can disrupt the methylation of homocysteine, leading to hyperhomocysteinemia. Elevated homocysteine levels are detrimental to human health. Vitamin B deficiency also suppresses immune function, increases the production of pro-inflammatory cytokines and upregulates NF-κB. Considering the important functions of vitamin B and the severe consequences associated with its deficiency following bariatric surgery, proper dietary intervention and administration of adequate supplements should be considered to prevent negative clinical outcomes.
Collapse
Affiliation(s)
- Amna Al Mansoori
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Hira Shakoor
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Habiba I. Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
- Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC 8001, Australia
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
| | - Leila Cheikh Ismail
- Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
| | - Marijan Bosevski
- Faculty of Medicine Skopje, University Clinic of Cardiology, University of Ss. Cyril and Methodius, 1010 Skopje, North Macedonia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.M.); (H.S.); (H.I.A.); (A.S.A.D.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (J.F.); (V.A.)
| |
Collapse
|
6
|
B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020; 12:nu12113380. [PMID: 33158037 PMCID: PMC7693142 DOI: 10.3390/nu12113380] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
B group vitamins represent essential micronutrients for myriad metabolic and regulatory processes required for human health, serving as cofactors used by hundreds of enzymes that carry out essential functions such as energy metabolism, DNA and protein synthesis and other critical functions. B vitamins and their corresponding vitamers are universally essential for all cellular life forms, from bacteria to humans. Humans are unable to synthesize most B vitamins and are therefore dependent on their diet for these essential micronutrients. More recently, another source of B vitamins has been identified which is derived from portions of the 1013 bacterial cells inhabiting the gastrointestinal tract. Here we review the expanding literature examining the relationship between B vitamins and the immune system and diverse cancers. Evidence of B vitamin’s role in immune cell regulation has accumulated in recent years and may help to clarify the disparate findings of numerous studies attempting to link B vitamins to cancer development. Much work remains to be carried out to fully clarify these relationships as the complexity of B vitamins’ essential functions complicates an unequivocal assessment of their beneficial or detrimental effects in inflammation and cancers.
Collapse
|
7
|
Anti-inflammatory and antinociceptive activity profile of a new lead compound - LQFM219. Int Immunopharmacol 2020; 88:106893. [PMID: 32892073 DOI: 10.1016/j.intimp.2020.106893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
LQFM219 is a molecule designed from celecoxibe (COX-2 inhibitor) and darbufelone (inhibitor of COX-2 and 5-LOX) lead compounds through a molecular hybridisation strategy. Therefore, this work aimed to investigate the antinociceptive and anti-inflammatory activities of this new hybrid compound. The acute oral systemic toxicity of LQFM219 was evaluated via the neutral red uptake assay. Acetic acid-induced abdominal writhing and CFA-induced mechanical hyperalgesia were performed to evaluate the antinociceptive activity, and the anti-oedematogenic activity was studied by CFA-induced paw oedema and croton oil-induced ear oedema. Moreover, the acute anti-inflammatory activity was determined by carrageenan-induced pleurisy. In addition, cell migration, myeloperoxidase enzyme activity, and TNF-α and IL-1β levels were determined in pleural exudate. Moreover, a redox assay was conducted using electroanalytical and DPPH methods. The results demonstrated that LQFM219 was classified as GHS category 4, and it showed better free radical scavenger activity compared to BHT. Besides, LQFM219 decreased the number of writhings induced by acetic acid and the response to the mechanical stimulus in the CFA-induced mechanical hyperalgesia test. Furthermore, LQFM219 reduced oedema formation, cell migration, and IL-1β and TNF-α levels in the pleural cavity and inhibited myeloperoxidase enzyme activity. Thus, our study provides that the new pyrazole derivative, LQFM219, demonstrated low toxicity, antinociceptive and anti-inflammatory potential in vitro and in vivo.
Collapse
|
8
|
Prata MNL, Charlie-Silva I, Gomes JMM, Barra A, Berg BB, Paiva IR, Melo DC, Klein A, Romero MGMC, Oliveira CC, Pimenta LPS, Júnior JDC, Perez AC. Anti-inflammatory and immune properties of the peltatoside, isolated from the leaves of Annona crassiflora Mart., in a new experimental model zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 101:234-243. [PMID: 32240748 DOI: 10.1016/j.fsi.2020.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Establishing new animal models for the study of inflammation is very important in the process of discovering new drugs, since the inflammatory event is the basis of many pathological processes. Whereas rodent models have been the primary focus of inflammation research, we defend the zebrafish (Danio rerio) test as a feasible alternative for preclinical studies. Moreover, despite all the technological development already achieved by humanity, nature can still be considered a relevant source of new medicines. In this context, the aim of this work was to evaluate the anti-inflammatory effect of a substance isolated from the medicinal plant Annona crassilfora Mart, the peltatoside, in an inflammatory model of zebrafish. It was determined: (i) total leukocyte count in the coelomate exudate; (ii) N-acetyl-β-d-glucuronidase (NAG); (iii) myeloperoxidase (MPO); (iv) and the histology of liver, intestine and mesentery. Peltotoside (25, 50 and 100 μg) and dexamethasone (25 μg) were administered intracelomatically (i.c.) 30 min before carrageenan (i.c.). Pretreatment with peltatoside at three doses significantly inhibited leukocyte recruitment in the coelomic cavity, and inhibited NAG and MPO activity against the action of Cg, in a similar manner as dexamethasone. However, some microlesions in the evaluated organs were detected. The dose of 25 μg showed an anti-inflammatory effect with lower undesirable effects in the tissues. Our results suggest that the zebrafish test was satisfactory in performing our analyzes and that the peltotoside has a modulatory action in reducing leukocyte migration.
Collapse
Affiliation(s)
- M N L Prata
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - I Charlie-Silva
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - J M M Gomes
- Department of Morphology, Federal University of Minas Gerais (UFMG), Brazil
| | - A Barra
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - B B Berg
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - I R Paiva
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - D C Melo
- Department of Zootechnics- Federal University of Minas Gerais (UFMG), Brazil
| | - A Klein
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - M G M Castor Romero
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - C C Oliveira
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - L P S Pimenta
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Brazil
| | - J D Corrêa Júnior
- Department of Morphology, Federal University of Minas Gerais (UFMG), Brazil
| | - A C Perez
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
9
|
Antipleuritic and Vascular Permeability Inhibition of the Ethyl Acetate-Petroleum Ether Stem Bark Extract of Maerua angolensis DC (Capparaceae) in Murine. Int J Inflam 2018; 2018:6123094. [PMID: 30112161 PMCID: PMC6077359 DOI: 10.1155/2018/6123094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Maerua angolensis has been used traditionally in the management of pain, arthritis, and rheumatism in Ghana and Nigeria but no scientific evidence is currently available to give credence to its folkloric use. The aim of this study was therefore to evaluate the anti-inflammatory effects of a stem bark extract of Maerua angolensis DC (MAE) in acute inflammatory models. The effects of MAE (30-300 mg kg−1) on neutrophil infiltration, exudate volume, and endogenous antioxidant enzymes in lung tissues and lung morphology were evaluated with the carrageenan induced pleurisy model in Sprague Dawley rats. The effects of MAE (30-300 mg kg−1) on vascular permeability were also evaluated in the acetic acid induced vascular permeability in ICR mice. MAE significantly reduced neutrophil infiltration, exudate volume, and lung tissue damage in carrageenan induced pleurisy. MAE increased the activities of antioxidant enzymes glutathione, superoxide dismutase, and catalase in lung tissues. The extract was also able to reduce myeloperoxidase activity and lipid peroxidation in lung tissues in carrageenan induced rat pleurisy. Vascular permeability was also attenuated by the extract with marked reduction of Evans blue dye leakage in acetic acid induced permeability assay. The results indicated that Maerua angolensis is effective in ameliorating inflammation induced by carrageenan and acetic acid. It also has the potential of increasing the activity of endogenous antioxidant enzymes.
Collapse
|
10
|
Morais SB, Figueiredo BC, Assis NRG, Alvarenga DM, de Magalhães MTQ, Ferreira RS, Vieira AT, Menezes GB, Oliveira SC. Schistosoma mansoni SmKI-1 serine protease inhibitor binds to elastase and impairs neutrophil function and inflammation. PLoS Pathog 2018; 14:e1006870. [PMID: 29425229 PMCID: PMC5823468 DOI: 10.1371/journal.ppat.1006870] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/22/2018] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Protease inhibitors have important function during homeostasis, inflammation and tissue injury. In this study, we described the role of Schistosoma mansoni SmKI-1 serine protease inhibitor in parasite development and as a molecule capable of regulating different models of inflammatory diseases. First, we determine that recombinant (r) SmKI-1 and its Kunitz domain but not the C-terminal region possess inhibitory activity against trypsin and neutrophil elastase (NE). To better understand the molecular basis of NE inhibition by SmKI-1, molecular docking studies were also conducted. Docking results suggest a complete blockage of NE active site by SmKI-1 Kunitz domain. Additionally, rSmKI-1 markedly inhibited the capacity of NE to kill schistosomes. In order to further investigate the role of SmKI-1 in the parasite, we designed specific siRNA to knockdown SmKI-1 in S. mansoni. SmKI-1 gene suppression in larval stage of S. mansoni robustly impact in parasite development in vitro and in vivo. To determine the ability of SmKI-1 to interfere with neutrophil migration and function, we tested SmKI-1 anti-inflammatory potential in different murine models of inflammatory diseases. Treatment with SmKI-1 rescued acetaminophen (APAP)-mediated liver damage, with a significant reduction in both neutrophil recruitment and elastase activity. In the model of gout arthritis, this protein reduced neutrophil accumulation, IL-1β secretion, hypernociception, and overall pathological score. Finally, we demonstrated the ability of SmKI-1 to inhibit early events that trigger neutrophil recruitment in pleural cavities of mice in response to carrageenan. In conclusion, SmKI-1 is a key protein in S. mansoni survival and it has the ability to inhibit neutrophil function as a promising therapeutic molecule against inflammatory diseases. Schistosoma mansoni is one of the main agents of schistosomiasis, which is the most important human helminthic infection in terms of global morbidity and mortality. Although schistosomiasis represents a major public health problem in endemic countries, evidences show that S. mansoni downregulates inflammatory responses in many diseases. Fortunately, the control of inflammatory responses is extended to pathogen-derived antigens, leading us to study one S. mansoni Kunitz type protease inhibitor (SmKI-1), found in larval and adult phases of the parasite. We demonstrate that SmKI-1 inhibits trypsin and neutrophil elastase (NE). Additionally, live parasites that SmKI-1 gene has been suppressed using siRNA displayed an impaired schistosome development both in vitro and in vivo. Further, we demonstrate that SmKI-1 possesses an anti-inflammatory potential in three different murine models of inflammatory diseases: acetaminophen (APAP)-mediated liver damage, gout arthritis, and pleural inflammation in response to carrageenan. In these inflammatory disease models, we evaluated SmKI-1 effect on neutrophil and our results demonstrate this molecule is able to inhibit neutrophil migration and function, regulating inflammation. Thus, our data suggest that SmKI-1 is a promising therapeutic molecule against inflammatory diseases.
Collapse
Affiliation(s)
- Suellen B. Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil
| | - Barbara C. Figueiredo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Natan R. G. Assis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil
| | - Debora M. Alvarenga
- Centro de Biologia Gastrointestinal, Departamento de Morfologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana T. Q. de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela S. Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angélica T. Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo B. Menezes
- Centro de Biologia Gastrointestinal, Departamento de Morfologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
11
|
Matsui TC, Coura GM, Melo IS, Batista CR, Augusto PSA, Godin AM, Araújo DP, César IC, Ribeiro LS, Souza DG, Klein A, de Fátima Â, Machado RR, Coelho MM. Nicorandil inhibits neutrophil recruitment in carrageenan-induced experimental pleurisy in mice. Eur J Pharmacol 2015; 769:306-12. [DOI: 10.1016/j.ejphar.2015.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
|
12
|
|