1
|
Li J, Ma X, Xu F, Yan Y, Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. PHARMACEUTICAL BIOLOGY 2024; 62:314-325. [PMID: 38571483 PMCID: PMC10997361 DOI: 10.1080/13880209.2024.2331060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 μg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 μg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.
Collapse
Affiliation(s)
- Jiong Li
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Xiangjun Ma
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Faying Xu
- College of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqing Chen
- Department of General Surgery, The First People’s Hospital of Lin’an District, Hangzhou, China
| |
Collapse
|
2
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
4
|
Ren HG, Luu HN, Liu Y, Wang DW, Guo X. High intake of cruciferous vegetables reduces the risk of gastrointestinal cancers: results from observational studies. Crit Rev Food Sci Nutr 2023; 64:8493-8499. [PMID: 38051036 DOI: 10.1080/10408398.2023.2271070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The relationship between cruciferous vegetables (CV) and the risk of gastrointestinal (GI) cancers has been extensively investigated. However, epidemiologic investigations have produced inconsistent results. This meta-analysis investigated the association between CV intake and the risk of GI cancers. Due to the heterogeneity, fixed- or random-effects models were used for the analyses. The final analysis included 81 articles covering 89 studies. In comparison to the lowest consumption categories, the highest consumption categories of CV were associated with a lower risk for all GI cancers [rate ratio (RR): 0.81, 95% confidence interval (95% CI) 0.76-0.87]. Compared to a CV intake of 75 g/day, subjects with CV intake <75 g/day experienced a 7% reduction in risk (RR: 0.93; 95% CI: 0.84-0.96) for each 50 g increase in consumption. A negative correlation was identified between CV intake and the risk of esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer (CRC), but not gallbladder cancer (RR: 0.70; 95% CI: 0.38-1.27). High intake of broccoli and cabbage was associated with a decreased risk of gastric cancer (RR: 0.64; 95% CI: 0.47-0.87) and gallbladder cancer (RR: 0.46; 95% CI: 0.29-0.75). These results confirm the association between high intake of CV with a reduced risk of GI cancers.
Collapse
Affiliation(s)
- Hong-Gang Ren
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hung Nguyen Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ying Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dao Wen Wang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A. Mitochondria Deregulations in Cancer Offer Several Potential Targets of Therapeutic Interventions. Int J Mol Sci 2023; 24:10420. [PMID: 37445598 DOI: 10.3390/ijms241310420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondria play a key role in cancer and their involvement is not limited to the production of ATP only. Mitochondria also produce reactive oxygen species and building blocks to sustain rapid cell proliferation; thus, the deregulation of mitochondrial function is associated with cancer disease development and progression. In cancer cells, a metabolic reprogramming takes place through a different modulation of the mitochondrial metabolic pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeostasis, in particular, of mitochondrial biogenesis, mitophagy, dynamics, redox balance, and protein homeostasis, were also observed in cancer cells. The use of drugs acting on mitochondrial destabilization may represent a promising therapeutic approach in tumors in which mitochondrial respiration is the predominant energy source. In this review, we summarize the main mitochondrial features and metabolic pathways altered in cancer cells, moreover, we present the best known drugs that, by acting on mitochondrial homeostasis and metabolic pathways, may induce mitochondrial alterations and cancer cell death. In addition, new strategies that induce mitochondrial damage, such as photodynamic, photothermal and chemodynamic therapies, and the development of nanoformulations that specifically target drugs in mitochondria are also described. Thus, mitochondria-targeted drugs may open new frontiers to a tailored and personalized cancer therapy.
Collapse
Affiliation(s)
- Clara Musicco
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, 70126 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
6
|
Akhtar MJ, Ahamed M, Alhadlaq H, Alrokayan S. Pt-Coated Au Nanoparticle Toxicity Is Preferentially Triggered Via Mitochondrial Nitric Oxide/Reactive Oxygen Species in Human Liver Cancer (HepG2) Cells. ACS OMEGA 2021; 6:15431-15441. [PMID: 34151121 PMCID: PMC8210405 DOI: 10.1021/acsomega.1c01882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 05/09/2023]
Abstract
Reactive nitrogen species (RNS) that are formed from the reaction of versatile nitric oxide (NO) with reactive oxygen species (ROS) have been less explored in potential cancer therapy. This may be partly due to the fewer available agents that could induce NO in cells. Here, we report platinum-coated gold nanoparticles (Pt-coated Au NPs; 27 ± 20 nm) as a strong inducer of NO (assessed by live-cell imaging under NO-specific DAR-1 probe labeling and indirectly using a Griess reagent) in human liver carcinoma (HepG2) cells. In addition to NO, this study found a critical role of ROS from mitochondrial sources in the mechanism of toxicity caused by Pt-coated Au NPs. Cotreatment with a thiol-replenishing general antioxidant NAC (N-acetyl cysteine) led to significant amelioration of oxidative stress against NP-induced toxicity. However, NAC did not exhibit as much ameliorative potential against NP-induced oxidative stress as the superoxide radical (O2•-)-scavenging mitochondrial specific antioxidant mito-TEMPO did. The higher protective potential of mito-TEMPO in comparison to NAC reveals mitochondrial ROS as an active mediator of NP-induced toxicity in HepG2 cells. Moreover, the relatively unaltered NP-induced NO concentration under cotreatment of GSH modulators NAC and buthionine sulfoximine (BSO) suggested that NO production due to NP treatment is rather independent of the cellular thiols at least in HepG2 cells. Moreover, toxicity potentiation by exogenous H2O2 again suggested a more direct involvement of ROS/RNS in comparison to the less potentiation of toxicity due to GSH-exhausting BSO. A steeper amelioration in NP-induced NO and ROS and, consequently, cytotoxicity by mito-TEMPO in comparison to NAC reveal a pronounced role of NO and ROS via the mitochondrial pathway in the toxicity of Pt-coated Au NPs in HepG2 cells.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Maqusood Ahamed
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham Alhadlaq
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman Alrokayan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Wandee J, Srinontong P, Prawan A, Senggunprai L, Kongpetch S, Yenjai C, Kukongviriyapan V. Derrischalcone suppresses cholangiocarcinoma cells through targeting ROS-mediated mitochondrial cell death, Akt/mTOR, and FAK pathways. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1929-1940. [PMID: 34086099 DOI: 10.1007/s00210-021-02102-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Chemotherapy is a palliative treatment for unresectable patients with cholangiocarcinoma (CCA). However, drug resistance is a major cause of the failure of this treatment. Derrischalcone (DC), a novel chalcone isolated from Derris indica fruit, has been shown pharmacologically active; though, the effect of DC on CCA is unknown. The present study investigated the cytotoxic, antiproliferative, anti-migration, and anti-invasion effects and underlying mechanisms of DC on CCA KKU-M156 and KKU-100 cells. Cytotoxicity and apoptosis were evaluated by acridine orange and ethidium bromide fluorescent staining. Reactive oxygen species (ROS) was measured by dihydroethidium assay. Cell proliferation and reproductive cell death were assessed by sulforhodamine B staining and colony-forming assay. Migration and invasion were determined by wound healing and transwell chamber assays. Protein expressions associated with cell death, proliferation, migration, and invasion were analyzed by western immunoblotting. We found that DC induced cytotoxicity and apoptosis in association with ROS formation and oxidative stress. Treatment with N-acetylcysteine suppressed ROS formation and attenuated DC-induced cytotoxic and apoptotic effects. DC increased the expression of p53, p21, Bax, and cytochrome c proteins in association with cell death. DC-induced antiproliferation, colony formation, anti-migration, and anti-invasion were associated with the suppression of Akt/mTOR/cyclin D1 and FAK signaling pathways. These findings suggest that the multi-targeting strategies with DC may be a novel treatment for cancer therapy.
Collapse
Affiliation(s)
- Jaroon Wandee
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand. .,Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Piyarat Srinontong
- Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand.,Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
8
|
Nazari A, Mirian M, Aghaei M, Aliomrani M. 4-Hydroxyhalcone effects on cisplatin-induced genotoxicity model. Toxicol Res (Camb) 2021; 10:11-17. [PMID: 33613968 PMCID: PMC7885192 DOI: 10.1093/toxres/tfaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The genotoxicity of cisplatin (CP) as a platinum-based antineoplastic agent due to its oxidative stress induction was well known. In this research, we examined 4-hydroxychalcone (4-HCH) as a natural food that presents flavonoid effects on reactive oxygen species (ROS) production and CP-induced in vivo genotoxicity. METHOD AND MATERIALS Cytotoxicity of CP and 4-HCH was measured on human embryonic kidney 293 cells with MTT assay. Then, intracellular ROS content at IC50 concentration of CP was measured with 2',7'-dichlorofluorescein diacetate (DCFDA) dye. Finally, 4-HCH was administered intraperitoneally at 10 and 40 mg/kg/BW doses as a pre and post-treatment schedule in a mice model of CP genotoxicity (7 mg/kg). Acridine-orange-stained bone marrow cells were quantified for micronucleus presence examination. RESULTS The calculated IC50 of CP and 4-HCH were reported around 19.4 and 133.6 μM, respectively, on HEK293 cells. Also, it was observed that 4-HCH at 0.2, 2 and 10 μM concentrations did not show obvious cytotoxicity. The fluorimetry confirmed that pre-treatment with 10 μM and co-treatment with 2 μM of 4-HCH could attenuate the CP-induced ROS production (P < 0.05 and P < 0.01, respectively). Also, the lowest micronucleated cells were seen in 10 mg/kg 4-HCH-treated group after CP exposure (39 ± 7.9, P < 0.0001). DISCUSSION Our results demonstrated the antigenotoxic action of 4-HCH in CP-treated mice bone marrow cells for the first time in both concentrations of 10 and 40 mg/kg especially in the form of co-treatment. Further studies required clinical application of this compound in a combination of CP to attenuate the normal cells' genotoxicity side effects.
Collapse
Affiliation(s)
- Aref Nazari
- Toxicology M.SC Candidate, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 83714, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| |
Collapse
|
9
|
Tusskorn O, Khunluck T, Prawan A, Senggunprai L, Kukongviriyapan V. Mitochondrial division inhibitor-1 potentiates cisplatin-induced apoptosis via the mitochondrial death pathway in cholangiocarcinoma cells. Biomed Pharmacother 2018; 111:109-118. [PMID: 30579250 DOI: 10.1016/j.biopha.2018.12.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
AIMS Mdivi-1, a selective Drp-1 inhibitor, impedes mitochondrial dynamics and suppresses cancer proliferation and progression. Cholangiocarcinoma (CCA) is a very aggressive malignancy which is refractory to chemotherapy. The study investigated the mechanism of the chemosensitizing effect of mdivi-1 in cholangiocarcinoma. MAIN METHODS CCA cells and HEK293 T cells were employed in the study. Cell viability and induction of apoptotic cell death were determined by the MTT and acridine orange-ethidium bromide methods. Cellular glutathione content and reactive oxygen species (ROS) formation were assessed using thiol green and 2',7'-dichlorofluorescin diacetate fluorescent probes, respectively. Mitochondrial transmembrane potential and autophagy were detected by JC-1 dye and autophagy assay. Cell cycle progression was analyzed by flow cytometry. Cell migration was measured using the wound healing assay. Proteins involved in cell proliferation and cell cycle were analyzed by western immunoblotting. KEY FINDINGS Mdivi-1 enhanced cisplatin-induced cytotoxicity in CCA cells but not in HEK293 T cells. Mdivi-1 enhanced cisplatin induced glutathione redox stress, ROS formation, and loss of mitochondrial transmembrane potential. Moreover, mdivi-1 also inhibited autophagic flux and suppressed CCA cell migration. SIGNIFICANCE Mdivi-1 sensitized CCA cells to cytotoxicity of cisplatin in association with increases of oxidative stress and autophagosomes, and induced cell death via the mitochondrial pathway. Disruption of mitochondrial dynamics may be a novel strategy to improve the efficacy of chemotherapy to treat CCA.
Collapse
Affiliation(s)
- Ornanong Tusskorn
- Chulabhorn International College of Medicine, Thammasat University, 12120, Thailand.
| | - Tueanjai Khunluck
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| |
Collapse
|
10
|
Cucurbitacin B induces mitochondrial-mediated apoptosis pathway in cholangiocarcinoma cells via suppressing focal adhesion kinase signaling. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:271-278. [DOI: 10.1007/s00210-018-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
|
11
|
Metformin enhances cisplatin induced inhibition of cholangiocarcinoma cells via AMPK-mTOR pathway. Life Sci 2018; 207:172-183. [DOI: 10.1016/j.lfs.2018.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/13/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
|
12
|
Suthiwong J, Wandee J, Pitchuanchom S, Sojikul P, Kukongviriyapan V, Yenjai C. Cytotoxicity against cholangiocarcinoma and HepG2 cell lines of lignan derivatives from Hernandia nymphaeifolia. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2214-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Suppression of glutathione S-transferases potentiates the cytotoxic effect of phenethyl isothiocyanate in cholangiocarcinoma cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:657-667. [PMID: 29666895 DOI: 10.1007/s00210-018-1492-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
Phenethyl isothiocyanate (PEITC) is a potential cancer prevention agent that is found in cruciferous vegetables. Previous studies have shown that the effect of PEITC-induced cell death declines rapidly after administration. The metabolic fate of PEITC is modulated by glutathione S-transferases (GST). In this study, we investigated whether GST activity modulates PEITC-induced cytotoxicity on cholangiocarcinoma (CCA) cells. The sensitivity of KKU-M214 and KKU-100 cells to PEITC was associated with GST activity. Two GST inhibitors, ethacrynic acid (EA) and cibacron blue, potentiated the cytotoxic effect of PEITC in CCA cells. PEITC-induced glutathione (GSH) depletion and redox stress, whereas EA itself or in combination with PEITC did not alter GSH redox status. The enhanced cytotoxic effect of EA may be due to inhibition of GST activity. This idea was validated by using siRNA directed against GSTP1 mRNA in KKU-M214 cells, and GSTP1 and GSTT1 mRNA in KKU-100 cells. These GST isoforms were abundantly expressed in the cell lines. Knockdown of GSTs in CCA cell lines potentiated the cytotoxic effect of PEITC. The present study shows that the antitumor effect of PEITC was potentiated by the suppression of GST activity. The inhibition of GST could be a crucial strategy to potentiate chemotherapeutic effect of PEITC on CCA.
Collapse
|
14
|
Sombatsri A, Thummanant Y, Sribuhom T, Boonmak J, Youngme S, Phusrisom S, Kukongviriyapan V, Yenjai C. New limonophyllines A-C from the stem of Atalantia monophylla and cytotoxicity against cholangiocarcinoma and HepG2 cell lines. Arch Pharm Res 2018; 41:431-437. [PMID: 29546611 DOI: 10.1007/s12272-018-1021-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
Three new limonoids, limonophyllines A-C (1, 4 and 5), along with two known limonoids (2 and 3) and 11 acridone alkaloids (6-16) were isolated from the stems of Atalantia monophylla. All isolates were evaluated against cholangiocarcinoma, KKU-M156, and HepG2 cancer cell lines. Compounds 12, 14 and 16 displayed cytotoxicity against KKU-M156 cell line with IC50 ranging from 3.39 to 4.1 μg/mL while cytotoxicity against HepG2 cell line with IC50 ranging from 1.43 to 8.4 μg/mL. The structures of all isolated compounds were established by spectroscopic methods including 1D and 2D NMR, IR and mass spectrometry.
Collapse
Affiliation(s)
- Aonnicha Sombatsri
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yutthapong Thummanant
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thurdpong Sribuhom
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suphanthip Phusrisom
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
15
|
Suthiwong J, Boonloh K, Kukongviriyapan V, Yenjai C. Cytotoxicity against Cholangiocarcinoma and HepG2 Cell Lines of Lignans from Hernandia nymphaeifolia. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Eleven lignans (1-11) were isolated from the seed of Hernandia nymphaeifolia. Most of the lignans exhibited strong to moderate cytotoxicity against cholangiocarcinoma KKU-M156 and HepG2 cell lines. Compounds 4 and 8 showed cytotoxicity against the KKU-M156 cell line with IC50 values of 5.2 μ M (Emax 96%) and 5.4 (Emax 59%) μM, respectively. In the cases of cytotoxicity against the HepG2 cell line, compounds 2, 3, 4, and 8 showed cytotoxicity with IC50 values of 1.7 M (Emax 84%), 4.1 μM (Emax 74%), 4.5 μM (Emax 68%), and 5.2 μM (Emax 78%), respectively.
Collapse
Affiliation(s)
- Jittra Suthiwong
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kampeebhorn Boonloh
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Saraphon C, Boonloh K, Kukongviriyapan V, Yenjai C. Cytotoxic flavonoids from the fruits of Derris indica. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1198-1203. [PMID: 28436687 DOI: 10.1080/10286020.2017.1317750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Chemical investigation of the ethyl acetate extract from the fruits of Derris indica has led to the isolation of a new furanoflavonoid derivative, 4'-hydroxypinnatin (1), and five known compounds. Pinnatin (2) showed strong cytotoxicity against cholangiocarcinoma (KKU-100) and human hepatoma (HepG2) cell lines with IC50 values of 6.0 ± 2.7 and 9.0 ± 4.1 μg/ml, respectively, and showed maximal cell killing effect of about 88-90%. Flavone 5 exhibited the most cytotoxicity against KKU-100 but it showed moderate efficacy (Emax = 50.7%).
Collapse
Affiliation(s)
- Chalotorn Saraphon
- a Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Faculty of Science, Department of Chemistry , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Kampeebhorn Boonloh
- b Faculty of Medicine, Department of Pharmacology , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Veerapol Kukongviriyapan
- b Faculty of Medicine, Department of Pharmacology , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Chavi Yenjai
- a Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Faculty of Science, Department of Chemistry , Khon Kaen University , Khon Kaen 40002 , Thailand
| |
Collapse
|
17
|
Kittiratphatthana N, Kukongviriyapan V, Prawan A, Senggunprai L. Luteolin induces cholangiocarcinoma cell apoptosis through the mitochondrial-dependent pathway mediated by reactive oxygen species. ACTA ACUST UNITED AC 2016; 68:1184-92. [PMID: 27334841 DOI: 10.1111/jphp.12586] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/14/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To investigate the apoptosis-inducing effect and underlying mechanisms of luteolin in cholangiocarcinoma (CCA) cells. METHODS Cell viability was determined by sulphorhodamine B. Apoptosis was detected using acridine orange/ethidium bromide dye staining and annexin V/PI staining followed by flow cytometry. The effect of luteolin on the oxidative status of CCA cells was evaluated by measuring intracellular reactive oxygen species (ROS) levels using the dihydroethidium method and quantifying glutathione levels. The mitochondria transmembrane potential (ΔΨm) was examined through JC-1 staining. The protein levels were determined by Western blot. Caspase activity was determined using specific fluorogenic substrates. KEY FINDINGS Luteolin decreased KKU-100 CCA cells' viability by induction of apoptosis. Luteolin treatment increased ROS production and decreased glutathione levels. These changes were associated with the decrease of Nrf2, γ-glutamylcysteine ligase and heme oxygenase-1 proteins. Moreover, luteolin induced mitochondrial depolarization, which was accompanied by the release of cytochrome c and a decrease of Bcl-2 and Bcl-XL proteins. Pretreatment with antioxidants, 4-hydroxy-TEMPO and N-acetyl-L-cysteine significantly prevented luteolin-induced CCA cell death and loss of ΔΨm. In addition, luteolin induced the activation of caspase-9 and caspase-3. CONCLUSIONS Luteolin exerts its pro-apoptotic action partly through generating intracellular ROS that then contributes to the activation of mitochondria-mediated apoptotic cell death.
Collapse
Affiliation(s)
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
18
|
Kongpetch S, Puapairoj A, Ong CK, Senggunprai L, Prawan A, Kukongviriyapan U, Chan-On W, Siew EY, Khuntikeo N, Teh BT, Kukongviriyapan V. Haem oxygenase 1 expression is associated with prognosis in cholangiocarcinoma patients and with drug sensitivity in xenografted mice. Cell Prolif 2016; 49:90-101. [PMID: 26726846 DOI: 10.1111/cpr.12228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Haem oxygenase-1 (HO-1) plays important roles in cytoprotection and tumour growth. Cholangiocarcinoma (CCA) is a deadly malignancy with very poor prognosis. The role of HO-1 in tumour progression in CCA up to now has been relatively unexplored, thus, its possible therapeutic implications in CCA have been investigated here. MATERIALS AND METHODS HO-1 expression in tumour tissues from 50 CCA patients was determined by immunohistochemical analysis and its association with survival time was evaluated using the Kaplan-Meier method. Its role in CCA cells in vitro was evaluated by transwell and wound healing assays and suppression of HO-1 expression by siRNA. Effects of HO-1 inhibition on gemicitabine (GEM)-mediated tumour suppression was evaluated in nude mice xenografted with CCA cells. RESULTS HO-1 expression was inversely associated with median overall survival time. Hazard ratio of patients with high HO-1 expression was 2.42 (95% CI: 1.16-5.08) with reference to low expression and HO-1 knock-down expression inhibited transwell cell migration. Suppression of HO-1 by Zn-protoporphyrin (ZnPP) enhanced cytotoxicity to GEM in CCA cells, validated in CCA xenografts. Treatment with GEM and ZnPP almost completely arrested tumour growth, whereas treatment with only a single reagent, retarded it. Tumour inhibition was associated with reduction in expression of Ki-67 and microvascular density, and enhanced p53 and p21 immunohistochemical staining. CONCLUSION High HO-1 expression was associated with poor prognosis of CCA. Synergistic role of HO-1 inhibition in chemotherapy of CCA is a promising insight for treatment of this tumour and warrants further investigation.
Collapse
Affiliation(s)
- S Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - A Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - C K Ong
- Laboratory of Cancer Epigenome, National Cancer Centre of Singapore, Singapore.,Division of Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore
| | - L Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - A Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - U Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - W Chan-On
- Laboratory of Cancer Epigenome, National Cancer Centre of Singapore, Singapore
| | - E Y Siew
- Laboratory of Cancer Epigenome, National Cancer Centre of Singapore, Singapore.,Division of Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore
| | - N Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - B T Teh
- Laboratory of Cancer Epigenome, National Cancer Centre of Singapore, Singapore.,Division of Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - V Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
19
|
Qin CZ, Zhang X, Wu LX, Wen CJ, Hu L, Lv QL, Shen DY, Zhou HH. Advances in molecular signaling mechanisms of β-phenethyl isothiocyanate antitumor effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3311-3322. [PMID: 25798652 DOI: 10.1021/jf504627e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
β-Phenethyl isothiocyanate (PEITC) is an important phytochemical from cruciferous vegetables and is being evaluated for chemotherapeutic activity in early phase clinical trials. Moreover, studies in cell culture and in animals found that the anticarcinogenic activities of PEITC involved all the major stages of tumor growth: initiation, promotion, and progression. A number of mechanisms have been proposed for the chemopreventive activities of this compound. Here, we focus on the major molecular signaling pathways for the anticancer activities of PEITC. These include (1) activation of apoptosis pathways; (2) induction of cell cycle arrest; and (3) inhibition of the survival pathways. Furthermore, we also discussed the regulation of drug-metabolizing enzymes, including cytochrome P450s, metabolizing enzymes, and multidrug resistance.
Collapse
Affiliation(s)
- Chong-Zhen Qin
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Xue Zhang
- §Institute of Life Sciences, Chongqing Medical University, Chongqing, Chongqing 400016, China
| | - Lan-Xiang Wu
- §Institute of Life Sciences, Chongqing Medical University, Chongqing, Chongqing 400016, China
| | - Chun-Jie Wen
- §Institute of Life Sciences, Chongqing Medical University, Chongqing, Chongqing 400016, China
| | - Lei Hu
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Qiao-Li Lv
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Dong-Ya Shen
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| |
Collapse
|
20
|
Abstract
INTRODUCTION Caspase-9 is the apoptotic initiator protease of the intrinsic or mitochondrial apoptotic pathway, which is activated at multi-protein activation platforms. Its activation is believed to involve homo-dimerization of the monomeric zymogens. It binds to the apoptosome to retain substantial catalytic activity. Variety of apoptotic stimuli can regulate caspase-9. However, the mechanism of action of various regulators of caspase-9 has not been summarized and compared yet. In this article, we elucidate the regulators of caspase-9 including microRNAs, natural compounds that are related to caspase-9 and ongoing clinical trials with caspase-9 to better understand the caspase-9 in suppressing cancer. AREAS COVERED In this study, the basic mechanism of apoptosis pathways, regulators of caspase-9 and the development of drugs to regulate caspase-9 are reviewed. Also, ongoing clinical trials for caspase-9 are discussed. EXPERT OPINION Apoptosis has crucial role in cancer, brain disease, aging and heart disease to name a few. Since caspase-9 is an initiator caspase of apoptosis, it is an important therapeutic target of various diseases related to apoptosis. Therefore, a deep understanding on the roles as well as regulators of caspase-9 is required to find more effective ways to conquer apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Bonglee Kim
- Kyunghee University, College of Korean Medicine, Cancer Preventive Material Development Research Center , 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701 , South Korea
| | | | | |
Collapse
|
21
|
Yeh YT, Yeh H, Su SH, Lin JS, Lee KJ, Shyu HW, Chen ZF, Huang SY, Su SJ. Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations. Free Radic Biol Med 2014; 74:1-13. [PMID: 24952138 DOI: 10.1016/j.freeradbiomed.2014.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM-Chk2-p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.
Collapse
Affiliation(s)
- Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Hua Yeh
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Shu-Hui Su
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jian-Sheng Lin
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Kuo-Jui Lee
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Huey-Wen Shyu
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Zi-Feng Chen
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Sheng-Yun Huang
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Shu-Jem Su
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan.
| |
Collapse
|
22
|
Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta Rev Cancer 2014; 1846:405-24. [PMID: 25152445 DOI: 10.1016/j.bbcan.2014.08.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
Abstract
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen E Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
23
|
Cytotoxicity of compounds from the fruits of Derris indica against cholangiocarcinoma and HepG2 cell lines. J Nat Med 2014; 68:730-6. [DOI: 10.1007/s11418-014-0851-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/25/2014] [Indexed: 11/27/2022]
|