1
|
Wang TF, Liou YS, Yang SH, Lin GL, Chiang YW, Lien TS, Li CC, Wang JH, Chang HH, Sun DS. Platelet-derived circulating soluble P-selectin is sufficient to induce hematopoietic stem cell mobilization. Stem Cell Res Ther 2023; 14:300. [PMID: 37864264 PMCID: PMC10589967 DOI: 10.1186/s13287-023-03527-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.
Collapse
Grants
- MOST103-2321-B-320-001 Ministry of Science and Technology, Taiwan
- MOST105-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST106-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST108-2311-B-320-001 Ministry of Science and Technology, Taiwan
- TCMMP104-06 Buddhist Tzu Chi Medical Foundation
- TCMMP108-04 Buddhist Tzu Chi Medical Foundation
- TCMMP111-01 Buddhist Tzu Chi Medical Foundation
- TCRD106-42 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD108-55 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD110-61 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD111-082 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD112-054 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCAS-112-02 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
Collapse
Affiliation(s)
- Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Shang-Hsien Yang
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Pediatric Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Guan-Ling Lin
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Ya-Wen Chiang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| |
Collapse
|
2
|
DeRogatis JM, Viramontes KM, Neubert EN, Tinoco R. PSGL-1 Immune Checkpoint Inhibition for CD4 + T Cell Cancer Immunotherapy. Front Immunol 2021; 12:636238. [PMID: 33708224 PMCID: PMC7940186 DOI: 10.3389/fimmu.2021.636238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibition targeting T cells has shown tremendous promise in the treatment of many cancer types and are now standard therapies for patients. While standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily known for its role in cellular migration, has also been shown to function as a negative regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly expressed on T cells and can engage numerous ligands that impact signaling pathways, which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may represent a new cancer therapy approach to eradicate tumors.
Collapse
Affiliation(s)
| | | | | | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis. Stem Cell Res Ther 2018; 9:119. [PMID: 29720275 PMCID: PMC5930863 DOI: 10.1186/s13287-018-0877-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 11/24/2022] Open
Abstract
Background Red blood cells are the most abundant cells in the blood that deliver oxygen to the whole body. Erythropoietin (EPO), a positive regulator of erythropoiesis, is currently the major treatment for chronic anemia. Granulocyte colony-stimulating factor (G-CSF) is a multifunctional cytokine and a well-known regulator of hematopoietic stem cell proliferation, differentiation, and mobilization. The use of EPO in combination with G-CSF has been reported to synergistically improve erythroid responses in a group of patients with myelodysplastic syndromes who did not respond to EPO treatment alone; however, the mechanism remains unclear. Methods C57BL/6 J mice injected with G-CSF or EPO were used to compare the erythropoiesis status and the efficiency of erythroid mobilization by flow cytometry. Results In this study, we found that G-CSF induced more orthochromatophilic erythroblast production than did EPO in the bone marrow and spleen. In addition, in contrast to EPO treatments, G-CSF treatments enhanced the efficiency of the mobilization of newly synthesized reticulocytes into peripheral blood. Our results demonstrated that the effects of G-CSF on erythropoiesis and erythrocytic mobilization were independent of EPO secretion and, in contrast to EPO, G-CSF promoted progression of erythropoiesis through transition of early stage R2 (basophilic erythroblasts) to late stage R4 (orthochromatophilic erythroblasts). Conclusions We demonstrate for the first time that G-CSF treatments induce a faster erythropoiesis-enhancing response than that of EPO. These findings suggest an alternative approach to treating acute anemia, especially when patients are experiencing a clinical emergency in remote areas without proper blood bank supplies.
Collapse
|
4
|
The Interaction of Selectins and PSGL-1 as a Key Component in Thrombus Formation and Cancer Progression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6138145. [PMID: 28680883 PMCID: PMC5478826 DOI: 10.1155/2017/6138145] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
Cellular interaction is inevitable in the pathomechanism of human disease. Formation of heterotypic cellular aggregates, between distinct cells of hematopoietic and nonhematopoietic origin, may be involved in events leading to inflammation and the complex process of cancer progression. Among adhesion receptors, the family of selectins with their ligands have been considered as one of the major contributors to cell-cell interactions. Consequently, the inhibition of the interplay between selectins and their ligands may have potential therapeutic benefits. In this review, we focus on the current evidence on the selectins as crucial modulators of inflammatory, thrombotic, and malignant disorders. Knowing that there is promiscuity in selectin binding, we outline the importance of a key protein that serves as a ligand for all selectins. This dimeric mucin, the P-selectin glycoprotein ligand 1 (PSGL-1), has emerged as a major player in inflammation, thrombus, and cancer development. We discuss the interaction of PSGL-1 with various selectins in physiological and pathological processes with particular emphasis on mechanisms that lead to severe disease.
Collapse
|
5
|
Ponnusamy K, Kohrs N, Ptasinska A, Assi SA, Herold T, Hiddemann W, Lausen J, Bonifer C, Henschler R, Wichmann C. RUNX1/ETO blocks selectin-mediated adhesion via epigenetic silencing of PSGL-1. Oncogenesis 2015; 4:e146. [PMID: 25867177 PMCID: PMC5399174 DOI: 10.1038/oncsis.2015.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022] Open
Abstract
RUNX1/ETO (RE), the t(8;21)-derived leukemic transcription factor associated with acute myeloid leukemia (AML) development, deregulates genes involved in differentiation, self-renewal and proliferation. In addition, these cells show differences in cellular adhesion behavior whose molecular basis is not well understood. Here, we demonstrate that RE epigenetically silences the gene encoding P-Selectin Glycoprotein Ligand-1 (PSGL-1) and downregulates PSGL-1 expression in human CD34+ and murine lin− hematopoietic progenitor cells. Levels of PSGL-1 inversely and dose-dependently correlate with RE oncogene levels. However, a DNA-binding defective mutant fails to downregulate PSGL-1. We show by ChIP experiments that the PSGL-1 promoter is a direct target of RE and binding is accompanied by high levels of the repressive chromatin mark histone H3K27me3. In t(8;21)+ Kasumi-1 cells, PSGL-1 expression is completely restored at both the mRNA and cell surface protein levels following RE downregulation with short hairpin RNA (shRNA) or RE inhibition with tetramerization-blocking peptides, and at the promoter H3K27me3 is replaced by the activating chromatin mark H3K9ac as well as by RNA polymerase II. Upregulation of PSGL-1 restores the binding of cells to P- and E-selectin and re-establishes myeloid-specific cellular adhesion while it fails to bind to lymphocyte-specific L-selectin. Overall, our data suggest that the RE oncoprotein epigenetically represses PSGL-1 via binding to its promoter region and thus affects the adhesive behavior of t(8;21)+ AML cells.
Collapse
Affiliation(s)
- K Ponnusamy
- 1] Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany [2] Institute of Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - N Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - A Ptasinska
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - S A Assi
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - T Herold
- Department of Internal Medicine 3, Ludwig-Maximilian University Hospital, Munich, Germany
| | - W Hiddemann
- Department of Internal Medicine 3, Ludwig-Maximilian University Hospital, Munich, Germany
| | - J Lausen
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - C Bonifer
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - R Henschler
- 1] Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany [2] Institute of Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
| | - C Wichmann
- 1] Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany [2] Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|