1
|
Cattani-Cavalieri I, Trombetta-Lima M, Yan H, Manzano-Covarrubias AL, Baarsma HA, Oun A, van der Veen MM, Oosterhout E, Dolga AM, Ostrom RS, Valenca SS, Schmidt M. Diesel exhaust particles alter mitochondrial bioenergetics and cAMP producing capacity in human bronchial epithelial cells. FRONTIERS IN TOXICOLOGY 2024; 6:1412864. [PMID: 39118833 PMCID: PMC11306203 DOI: 10.3389/ftox.2024.1412864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Air pollution from diesel combustion is linked in part to the generation of diesel exhaust particles (DEP). DEP exposure induces various processes, including inflammation and oxidative stress, which ultimately contribute to a decline in lung function. Cyclic AMP (cAMP) signaling is critical for lung homeostasis. The impact of DEP on cAMP signaling is largely unknown. Methods: We exposed human bronchial epithelial (BEAS-2B) cells to DEP for 24-72 h and evaluated mitochondrial bioenergetics, markers of oxidative stress and inflammation and the components of cAMP signaling. Mitochondrial bioenergetics was measured at 72 h to capture the potential and accumulative effects of prolonged DEP exposure on mitochondrial function. Results: DEP profoundly altered mitochondrial morphology and network integrity, reduced both basal and ATP-linked respiration as well as the glycolytic capacity of mitochondria. DEP exposure increased gene expression of oxidative stress and inflammation markers such as interleukin-8 and interleukin-6. DEP significantly affected mRNA levels of exchange protein directly activated by cAMP-1 and -2 (Epac1, Epac2), appeared to increase Epac1 protein, but left phospho-PKA levels unhanged. DEP exposure increased A-kinase anchoring protein 1, β2-adrenoceptor and prostanoid E receptor subtype 4 mRNA levels. Interestingly, DEP decreased mRNA levels of adenylyl cyclase 9 and reduced cAMP levels stimulated by forskolin (AC activator), fenoterol (β2-AR agonist) or PGE2 (EPR agonist). Discussion: Our findings suggest that DEP induces mitochondrial dysfunction, a process accompanied by oxidative stress and inflammation, and broadly dampens cAMP signaling. These epithelial responses may contribute to lung dysfunction induced by air pollution exposure.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ana L. Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hoeke A. Baarsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Asmaa Oun
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | | | - Emily Oosterhout
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Samuel Santos Valenca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
3
|
Zuo H, Cattani-Cavalieri I, Valença SS, Musheshe N, Schmidt M. Function of cAMP scaffolds in obstructive lung disease: Focus on epithelial-to-mesenchymal transition and oxidative stress. Br J Pharmacol 2019; 176:2402-2415. [PMID: 30714124 PMCID: PMC6592852 DOI: 10.1111/bph.14605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, research has defined cAMP as one of the central cellular nodes in sensing and integrating multiple pathways and as a pivotal role player in lung pathophysiology. Obstructive lung disorders, such as chronic obstructive pulmonary disease (COPD), are characterized by a persistent and progressive airflow limitation and by oxidative stress from endogenous and exogenous insults. The extent of airflow obstruction depends on the relative deposition of different constituents of the extracellular matrix, a process related to epithelial-to-mesenchymal transition, and which subsequently results in airway fibrosis. Oxidative stress from endogenous and also from exogenous sources causes a profound worsening of COPD. Here we describe how cAMP scaffolds and their different signalosomes in different subcellular compartments may contribute to COPD. Future research will require translational studies to alleviate disease symptoms by pharmacologically targeting the cAMP scaffolds. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Isabella Cattani-Cavalieri
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
5
|
Salimian J, Mirzaei H, Moridikia A, Harchegani AB, Sahebkar A, Salehi H. Chronic obstructive pulmonary disease: MicroRNAs and exosomes as new diagnostic and therapeutic biomarkers. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2018; 23:27. [PMID: 29692824 PMCID: PMC5894277 DOI: 10.4103/jrms.jrms_1054_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is known as a progressive lung disease and the fourth leading cause of death worldwide. Despite valuable efforts, there is still no accurate diagnostic and prognostic tool for COPD. Hence, it seems that finding new biomarkers could contribute to provide better therapeutic platforms for COPD patients. Among various biomarkers, microRNAs (miRNAs) have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. It has been shown that deregulation of miRNAs targeting a variety of cellular and molecular pathways such as Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad could be involved in COPD pathogenesis. Multiple lines of evidence have indicated that extracellular vesicles such as exosomes could carry a variety of cargos (i.e., mRNAs, miRNAs, and proteins) which transfer various cellular and molecular signals to recipient cells. Here, we summarized various miRNAs which could be applied as diagnostic and prognostic biomarkers in the treatment of patients with COPD. Moreover, we highlighted the role of extracellular vesicles containing miRNAs as diagnostic and prognostic biomarkers in COPD patients.
Collapse
Affiliation(s)
- Jafar Salimian
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdullah Moridikia
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Asghar Beigi Harchegani
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Laudette M, Zuo H, Lezoualc'h F, Schmidt M. Epac Function and cAMP Scaffolds in the Heart and Lung. J Cardiovasc Dev Dis 2018; 5:jcdd5010009. [PMID: 29401660 PMCID: PMC5872357 DOI: 10.3390/jcdd5010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Evidence collected over the last ten years indicates that Epac and cAMP scaffold proteins play a critical role in integrating and transducing multiple signaling pathways at the basis of cardiac and lung physiopathology. Some of the deleterious effects of Epac, such as cardiomyocyte hypertrophy and arrhythmia, initially described in vitro, have been confirmed in genetically modified mice for Epac1 and Epac2. Similar recent findings have been collected in the lung. The following sections will describe how Epac and cAMP signalosomes in different subcellular compartments may contribute to cardiac and lung diseases.
Collapse
Affiliation(s)
- Marion Laudette
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III, 31432 Toulouse, France.
| | - Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III, 31432 Toulouse, France.
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
7
|
Long YJ, Liu XP, Chen SS, Zong DD, Chen Y, Chen P. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir Res 2018; 19:21. [PMID: 29373969 PMCID: PMC5787261 DOI: 10.1186/s12931-018-0722-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
Background Abnormal apoptosis of lung endothelial cells has been observed in emphysematous lung tissue and has been suggested to be an important upstream event in the pathogenesis of chronic obstructive pulmonary disease (COPD). Studies have shown that microRNAs (miRNAs) contribute to the pathogenesis of pulmonary diseases by regulating cell apoptosis. The present study was designed to investigate the expression of microRNA-34a (miR-34a) in human pulmonary microvascular endothelial cells (HPMECs) exposed to cigarette smoke extract (CSE), and the potential regulatory role of miR-34a in endothelial cell apoptosis. Results Our results showed that the expression of miR-34a was significantly increased in CSE-treated HPMECs, and inhibiting miR-34a attenuated CSE-induced HPMEC apoptosis. Furthermore, expression of Notch-1, a receptor protein in the Notch signalling pathway, was decreased and was inversely correlated with miR-34a expression in HPMECs treated with CSE. Computational miRNA target prediction confirmed that Notch-1 is a target of miR-34a. Luciferase reporter assay further confirmed the direct interaction between miR-34a and the 3’-untranslated region (UTR) of Notch-1. Restoration of Notch-1 pathway was able to partially block the effect of miR-34a on HPMEC apoptosis. These results indicate that Notch-1 is a critical downstream target of miR-34a in regulating the CSE-induced HPMEC apoptosis. Conclusions Our results suggest that miR-34a plays a key role in CSE-induced endothelial cell apoptosis by directly regulating its target gene Notch-1 in endothelial cells.
Collapse
Affiliation(s)
- Ying-Jiao Long
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Xiao-Peng Liu
- Department of Intensive Care Unit, The Want Want Hospital, Changsha, Hunan, 410013, China
| | - Shan-Shan Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Dan-Dan Zong
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Yan Chen
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Ping Chen
- Division of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Division of Respiratory Medicine, Department of Internal Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
8
|
Garcia-Morales V, Friedrich J, Jorna LM, Campos-Toimil M, Hammes HP, Schmidt M, Krenning G. The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy. Acta Diabetol 2017; 54:581-591. [PMID: 28353063 PMCID: PMC5429352 DOI: 10.1007/s00592-017-0985-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
Abstract
AIMS To investigate the consequences of oxidative stress and hypoxia on EPAC-1 expression during retinopathy. METHODS Oxygen-induced retinopathy was induced in mice and EPAC-1 expression investigated by immunofluorescence. In silico analyses were used to identify a link between EPAC-1 expression and microRNA-7-5p in endothelial cells and confirmed by western blot analyses on cells expressing microRNA-7-5p. In vitro, endothelial cells were either incubated at 2% oxygen or transfected with microRNA-7-5p, and the effects of these treatments on EPAC-1 expression, endothelial hyperpermeability and NO production were assessed. In the Ins2Akita mouse model, levels of EPAC-1 expression as well as microRNA-7-5p were assessed by qPCR. Endothelial nitric oxide synthase was assessed by immunoblotting in the Ins2Akita model. RESULTS Hypoxia induces the expression of microRNA-7-5p that translationally inhibits the expression of EPAC-1 in endothelial cells, resulting in hyperpermeability and the loss of eNOS activity. Activation of EPAC-1 by the cAMP analogue 8-pCPT-2'-O-Me-cAMP reduced the sensitivity of EPAC-1 to oxidative stress and restored the endothelial permeability to baseline levels. Additionally, 8-pCPT-2'-O-Me-cAMP rescued eNOS activity and NO production. In mouse models of retinopathy, i.e., oxygen-induced retinopathy and the spontaneous diabetic heterozygous Ins2Akita mice, EPAC-1 levels are decreased which is associated with an increase in microRNA-7-5p expression and reduced eNOS activity. CONCLUSION/INTERPRETATION In retinopathy, EPAC-1 expression is decreased in a microRNA-7-mediated manner, contributing to endothelial dysfunction. Pharmacological activation of remnant EPAC-1 rescues endothelial function. Collectively, these data indicate that EPAC-1 resembles an efficacious and druggable target molecule for the amelioration of (diabetic) retinopathy.
Collapse
Affiliation(s)
- Veronica Garcia-Morales
- Group of Research in Pharmacology of Chronic Diseases (CDPHARMA), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
| | - Julian Friedrich
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
- Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lysanne M Jorna
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
| | - Manuel Campos-Toimil
- Group of Research in Pharmacology of Chronic Diseases (CDPHARMA), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Hans-Peter Hammes
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martina Schmidt
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Guido Krenning
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany.
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands.
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
9
|
Soares do Amaral N, Cruz E Melo N, de Melo Maia B, Malagoli Rocha R. Noncoding RNA Profiles in Tobacco- and Alcohol-Associated Diseases. Genes (Basel) 2016; 8:genes8010006. [PMID: 28025544 PMCID: PMC5295001 DOI: 10.3390/genes8010006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/20/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Tobacco and alcohol are the leading environmental risk factors in the development of human diseases, such as cancer, cardiovascular disease, and liver injury. Despite the copious amount of research on this topic, by 2030, 8.3 million deaths are projected to occur worldwide due to tobacco use. The expression of noncoding RNAs, primarily microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), is modulated by tobacco and alcohol consumption. Drinking alcohol and smoking cigarettes can modulate the expression of miRNAs and lncRNAs through various signaling pathways, such as apoptosis, angiogenesis, and inflammatory pathways—primarily interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3), which seems to play a major role in the development of diseases associated with these risk factors. Since they may be predictive and prognostic biomarkers, they can be used both as predictors of the response to therapy and as a targeted therapy. Further, circulating miRNAs might be valuable noninvasive tools that can be used to examine diseases that are related to the use of tobacco and alcohol. This review discusses the function of noncoding RNAs in cancer and other human tobacco- and alcohol-associated diseases.
Collapse
Affiliation(s)
| | - Natalia Cruz E Melo
- Molecular Gynecology Laboratory, Gynecologic Department, Federal University of São Paulo, São Paulo, Brazil.
| | - Beatriz de Melo Maia
- Molecular Morphology Laboratory, AC Camargo Cancer Center, São Paulo 01508-010, Brazil.
| | - Rafael Malagoli Rocha
- Molecular Gynecology Laboratory, Gynecologic Department, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Regulation of GAPDH expression by treatment with the β-adrenoceptor agonist isoprenaline--is GADPH a suitable loading control in immunoblot experiments? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:1119-20. [PMID: 26278281 DOI: 10.1007/s00210-015-1166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
11
|
Osei ET, Florez-Sampedro L, Timens W, Postma DS, Heijink IH, Brandsma CA. Unravelling the complexity of COPD by microRNAs: it's a small world after all. Eur Respir J 2015; 46:807-18. [PMID: 26250493 DOI: 10.1183/13993003.02139-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/15/2015] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease and is currently the fourth leading cause of death worldwide. Chronic inflammation and repair processes in the small airways are characteristic of COPD. Despite extensive efforts from researchers and industry, there is still no cure for COPD, hence an urgent need for new therapeutic alternatives. MicroRNAs are such an option; they are small noncoding RNAs involved in gene regulation. Their importance has been shown with respect to maintaining the balance between health and disease. Although previous reviews have discussed the expression of microRNAs related to lung disease, a detailed discussion regarding the function of differential miRNA expression in the pathogenesis of COPD is lacking.In this review we link the expression of microRNAs to different features of COPD and explain their importance in the pathogenesis of this disease. We further discuss their potential to contribute to the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Emmanuel T Osei
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands Both authors contributed equally as first authors
| | - Laura Florez-Sampedro
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands Both authors contributed equally as first authors
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands University of Groningen, University Medical Center Groningen, Dept of Pulmonology, Groningen, The Netherlands Both authors contributed equally as last authors
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, Groningen, The Netherlands University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands Both authors contributed equally as last authors
| |
Collapse
|
12
|
Poppinga WJ, Heijink IH, Holtzer LJ, Skroblin P, Klussmann E, Halayko AJ, Timens W, Maarsingh H, Schmidt M. A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 308:L766-75. [PMID: 25637608 DOI: 10.1152/ajplung.00301.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/29/2015] [Indexed: 01/13/2023] Open
Abstract
β2-Agonist inhibitors can relieve chronic obstructive pulmonary disease (COPD) symptoms by stimulating cyclic AMP (cAMP) signaling. A-kinase-anchoring proteins (AKAPs) compartmentalize cAMP signaling by establishing protein complexes. We previously reported that the β2-agonist fenoterol, direct activation of protein kinase A (PKA), and exchange factor directly activated by cAMP decrease cigarette smoke extract (CSE)-induced release of neutrophil attractant interleukin-8 (IL-8) from human airway smooth muscle (ASM) cells. In the present study, we tested the role of AKAPs in CSE-induced IL-8 release from ASM cells and assessed the effect of CSE on the expression levels of different AKAPs. We also studied mRNA and protein expression of AKAPs in lung tissue from patients with COPD. Our data show that CSE exposure of ASM cells decreases AKAP5 and AKAP12, both capable of interacting with β2-adrenoceptors. In lung tissue of patients with COPD, mRNA levels of AKAP5 and AKAP12 were decreased compared with lung tissue from controls. Using immunohistochemistry, we detected less AKAP5 protein in ASM of patients with COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage II compared with control subjects. St-Ht31, which disrupts AKAP-PKA interactions, augmented CSE-induced IL-8 release from ASM cells and diminished its suppression by fenoterol, an effect mediated by disturbed ERK signaling. The modulatory role of AKAP-PKA interactions in the anti-inflammatory effects of fenoterol in ASM cells and the decrease in expression of AKAP5 and AKAP12 in response to cigarette smoke and in lungs of patients with COPD suggest that cigarette smoke-induced changes in AKAP5 and AKAP12 in patients with COPD may affect efficacy of pharmacotherapy.
Collapse
Affiliation(s)
- Wilfred J Poppinga
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany;
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Laura J Holtzer
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | - Enno Klussmann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Andrew J Halayko
- University of Manitoba, Departments of Physiology and Pathophysiology, and Internal Medicine, Winnipeg, Manitoba, Canada
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Harm Maarsingh
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Palm Beach Atlantic University, Lloyd L. Gregory School of Pharmacy, Department of Pharmaceutical Sciences, West Palm Beach, Florida
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| |
Collapse
|