1
|
Watson A, Shah P, Lee D, Liang S, Joshi G, Metitiri E, Chowdhury WH, Bacich D, Dube P, Xiang Y, Hanley D, Martinez-Sobrido L, Rodriguez R. Valproic acid use is associated with diminished risk of contracting COVID-19, and diminished disease severity: Epidemiologic and in vitro analysis reveal mechanistic insights. PLoS One 2024; 19:e0307154. [PMID: 39093886 PMCID: PMC11296636 DOI: 10.1371/journal.pone.0307154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 pandemic has caused unprecedented worldwide infections from persistent mutant variants with various degrees of infectivity and virulence. The elusiveness of a highly penetrant, worldwide vaccination strategy suggests that the complete eradication of SARS-CoV-2 is unlikely. Even with the advent of new antiviral agents, the disease burden worldwide continues to exceed current preventative and therapeutic strategies. Greater interest has been placed towards the development of affordable,broadly effective antiviral therapeutics. Here, we report that the small branched-chain fatty acid Valproic acid (VPA), approved for maintenance of seizure and bipolar disorder, has a novel anti- coronavirus activity that can be augmented with the addition of a long-chain, polyunsaturated omega-3 fatty acid, Docosahexaenoic acid (DHA). An EMR-based epidemiological study of patients tested for COVID-19 demonstrated a correlation exists between a reduced infection rate in patients treated withVPA of up to 25%, as well as a decreased risk of emergency room visits, hospitalization, ICU admission,and use of mechanical ventilation. In vitro studies have demonstrated that VPA modifies gene expression in MRC5 cells. Interestingly, VPA correlates with the inhibition of several SARS-CoV2 interacting genes and the greater inhibition of alpha-coronavirus HCoV-229E (a "common cold" virus) and SARS-CoV2. The VPA-DHA combination activates pre-existing intracellular antiviral mechanisms normally repressed by coronaviruses. Gene expression profiles demonstrate subtle differences in overall gene expression between VPA-treated and VPA-DHA-treated cells. HCoV-229E infection caused an intensely different response with a marked induction of multiple intracellular inflammatory genes. Changes in gene expression took at least 24 hours to manifest and most likely why prior drug screens failed to identify any antiviral VPA activity despite in silico predictions. This report demonstrates an interaction between HDAC inhibition and the potent activation of cellular antiviral responses. A foundation now exists for a low-cost, highly effective antiviral strategy when supplemented with DHA.
Collapse
Affiliation(s)
- Amanda Watson
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Pankil Shah
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Doug Lee
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sitai Liang
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Geeta Joshi
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Ediri Metitiri
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Wasim H. Chowdhury
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Dean Bacich
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Peter Dube
- Boehringer Ingelheim in Ames, Ames, Iowa, United States of America
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio San Antonio, Texas, United States of America
| | - Daniel Hanley
- Department of Neurology & Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | | | - Ronald Rodriguez
- Department of Medical Education, and Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
2
|
Hyder Pottoo F, Salahuddin M, Khan FA, Albaqshi BT, Gomaa MS, Abdulla FS, AlHajri N, Alomary MN. Trio-Drug Combination of Sodium Valproate, Baclofen and Thymoquinone Exhibits Synergistic Anticonvulsant Effects in Rats and Neuro-Protective Effects in HEK-293 Cells. Curr Issues Mol Biol 2022; 44:4350-4366. [PMID: 36286014 PMCID: PMC9601194 DOI: 10.3390/cimb44100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 10/04/2023] Open
Abstract
Epilepsy is a chronic brain disorder, with anti-epileptic drugs (AEDs) providing relief from hyper-excitability of neurons, but largely failing to restrain neurodegeneration. We investigated a progressive preclinical trial in rats, whereby the test drugs; sodium valproate (SVP; 150 and 300 mg/kg), baclofen (BFN; 5 and 10 mg/kg), and thymoquinone (THQ; 40 and 80 mg/kg) were administered (i.p, once/day for 15 days) alone, and as low dose combinations, and subsequently tested for antiseizure and neuroprotective potential using electrical stimulation of neurons by Maximal electroshock (MES). The seizure stages were monitored, and hippocampal levels of m-TOR, IL-1β, IL-6 were measured. Hippocampal histopathology was also performed. Invitro and Insilco studies were run to counter-confirm the results from rodent studies. We report the synergistic effect of trio-drug combination; SVP (150 mg/kg), BFN (5 mg/kg) and THQ (40 mg/kg) against generalized seizures. The Insilco results revealed that trio-drug combination binds the Akt active site as a supramolecular complex, which could have served as a delivery system that affects the penetration and the binding to the new target. The potential energy of the ternary complex in the Akt active site after dynamics simulation was found to be -370.426 Kcal/mol, while the supramolecular ternary complex alone was -38.732 Kcal/mol, with a potential energy difference of -331.694 Kcal/mol, which favors the supramolecular ternary complex at Akt active site binding. In addition, the said combination increased cell viability by 267% and reduced morphological changes induced by Pentylenetetrazol (PTZ) in HEK-293 cells, which indicates the neuroprotective property of said combination. To conclude, we are the first to report the anti-convulsant and neuroprotective potential of the trio-drug combination.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Batool Taleb Albaqshi
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Noora AlHajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
3
|
Jin N, Gureviciene I, Atalay AN, Häkli S, Ziyatdinova S, Tanila H. Preclinical evaluation of drug treatment options for sleep-related epileptiform spiking in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12291. [PMID: 35415205 PMCID: PMC8982322 DOI: 10.1002/trc2.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Introduction There are no published data on prospective clinical studies on drug treatment options for sleep-related epileptiform spiking in Alzheimer's disease (AD). Methods Using video-EEG with hippocampal electrodes in 17 APP/PS1 transgenic male mice we assessed the effects of donepezil and memantine, anti-seizure drugs levetiracetam and lamotrigine, gamma-secretase inhibitor semagacestat, anti-inflammatory minocycline and adenosine receptor antagonist istradephylline on density of cortical and hippocampal spikes during sleep. Results Levetiracetam decreased the density of hippocampal giant spikes and cortical spikes. Lamotrigine reduced cortical single spikes and spike-wave discharges but dramatically increased hippocampal giant spikes. Memantine increased cortical single spikes and spike-wave discharges dose-dependently. Memantine and istradephylline decreased total sleep time while levetiracetam increased it. Lamotrigine decreased REM sleep duration. Other drugs had no significant effects. Discussion Levetiracetam appears promising for treating sleep-related epileptiform spiking in AD while lamotrigine should be used with caution. Donepezil at low doses appeared neutral but the memantine effects warrant further studies.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Irina Gureviciene
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Aysu Naz Atalay
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Häkli
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sofya Ziyatdinova
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
4
|
Anti-Seizure Activity of 1-Adamantane Carboxylic Acid in Common Experimental Seizure Models: Role of Benzodiazepine-GABAA Receptors. IRANIAN BIOMEDICAL JOURNAL 2021. [PMID: 33653022 PMCID: PMC8183385 DOI: 10.52547/ibj.25.3.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
5
|
Ghanbari E, Gavzan H, Khoshkroodian B, Sayyah M. Anti-Seizure Activity of 1-Adamantane Carboxylic Acid in Common Experimental Seizure Models: Role of Benzodiazepine-GABAA Receptors. IRANIAN BIOMEDICAL JOURNAL 2021; 25:213-9. [PMID: 33653022 PMCID: PMC8183385 DOI: 10.29252/ibj.25.3.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 10/31/2022]
Abstract
BAckground Despite introduction of modern antiepileptic drugs, 30% of epileptic patients are still drug resistant. Remarkable three-dimensional spatial structure of 1-Adamantane carboxylic acid (AdCA), yet the simplicity of the molecule, makes AdCA a promising lead compound. Methods Sedative/motor impairment and 24-h mortality rate of AdCA were determined in mice. Impact of AdCA on (1) threshold and occurrence of clonic seizures induced by pentylenetetrazole (PTZ) in mice, (2) incidence of tonic seizures induced by maximal electroshock (MES) in mice, and (3) incidence of generalized seizures and duration of evoked afterdischarges in amygdala-kindled rats, were determined. The role of benzodiazepine receptors in the AdCA effect on clonic seizure threshold was also assessed. Results AdCA showed sedative effect (median toxic dose [TD50] = 224.5 [190.2-289.9] mg/kg). Median lethal dose (LD50) = 805.5 (715.2–988.1) mg/kg was obtained for AdCA. The compound increased PTZ seizure threshold from 180 mg/kg (p < 0.05) and also inhibited the incidence of clonic seizures (ED50 = 256.3 [107.4-417.3] mg/kg). AdCA also decreased afterdischarge duration (p < 0.01) and the incidence of generalized seizures (ED50 < 50 mg/kg) in the kindled rats. However, AdCA did not protect mice against tonic seizures induced by MES. The benzodiazepine receptor antagonist flumazenil prevented the increase of seizure threshold by AdCA. Conclusion AdCA possesses anticonvulsant activity in kindling and PTZ models through the activation of benzodiazepine/GABAA receptors with acceptable therapeutic index.
Collapse
Affiliation(s)
- Elham Ghanbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Hakimeh Gavzan
- Department of Basic Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Bahar Khoshkroodian
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Impacts of Drug Interactions on Pharmacokinetics and the Brain Transporters: A Recent Review of Natural Compound-Drug Interactions in Brain Disorders. Int J Mol Sci 2021; 22:ijms22041809. [PMID: 33670407 PMCID: PMC7917745 DOI: 10.3390/ijms22041809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Natural compounds such as herbal medicines and/or phyto-compounds from foods, have frequently been used to exert synergistic therapeutic effects with anti-brain disorder drugs, supplement the effects of nutrients, and boost the immune system. However, co-administration of natural compounds with the drugs can cause synergistic toxicity or impeditive drug interactions due to changes in pharmacokinetic properties (e.g., absorption, metabolism, and excretion) and various drug transporters, particularly brain transporters. In this review, natural compound–drug interactions (NDIs), which can occur during the treatment of brain disorders, are emphasized from the perspective of pharmacokinetics and cellular transport. In addition, the challenges emanating from NDIs and recent approaches are discussed.
Collapse
|
7
|
The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors. Brain Res Bull 2021; 170:74-80. [PMID: 33581310 DOI: 10.1016/j.brainresbull.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most recognized omega-3 unsaturated fatty acids showing neuroprotective activity in animal and clinical studies. Docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) are non-oxygenated endogenous metabolites of DHA and EPA, which might be in charge of the anti-seizure activity of the parent molecules. We examined the effect of these metabolites on the threshold of clonic seizures induced by pentylenetetrazole (PTZ). DHEA and EPEA possess similar chemical structure to the endogenous cannabinoids. Therefore, involvement of cannabinoid (CB) receptors in the anti-seizure effect of these metabolites was also investigated. DHA, DHEA, EPEA, AM251 (CB1 receptor antagonist), and AM630 (CB2 receptor antagonist) were administered to mice by intracerebroventricular (i.c.v.) route. Threshold of clonic seizures was determined 10 and/or 15 min thereafter by intravenous infusion of PTZ. The effect of DHA and DHEA on seizure threshold was then determined in mice, which were pretreated with AM251 and/or AM630. DHA (300μM), and DHEA (100 and 300 μM) significantly increased seizure threshold, 15 (p < 0.05) and 10 min (p < 0.01) after administration, respectively. DHEA was more potent than its parent lipid, DHA in decreasing seizure susceptibility. EPEA (300 and 1000 μM) did not change seizure threshold. AM251 fully prevented the increasing effect of DHA and DHEA on seizure threshold (p < 0.05). AM630 did not inhibit the effect of DHA and DHEA on seizure threshold. This is the first report indicating that DHEA but not EPEA, possesses anti-seizure action via activating CB1 receptors. DHEA is more potent than its parent ω-3 fatty acid DHA in diminishing seizure susceptibility.
Collapse
|
8
|
Hu C, Chen X, Huang Y, Chen Y. Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 2019; 23:132-142. [PMID: 29397453 DOI: 10.1007/s10495-018-1443-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a peptide-peptide co-administration therapy between hybrid peptide kla-TAT and cationic anticancer peptide HPRP-A1 was designed to increase the anticancer activity of the combination peptides through synergistic effect. kla is a pro-apoptotic peptide which could induce rapid cancer cell apoptosis by disruption the mitochondrial membrane when internalized the cells. To enhance more kla peptides pass through cell membrane, a double improvement strategy was designed by chemically conjugation with cell penetration peptide TAT as well as co-administration with cationic membrane active peptide HPRP-A1, and the double anticancer mechanism of the kla-TAT peptide and HPRP-A1 including membrane disruption and apoptosis induction was verified through in vitro experiments. The CompuSyn synergism/antagonism analysis showed that kla-TAT acted synergistically with HPRP-A1 against a non-small cell lung cancer (NSCLC) A549 cell line. The anticancer activities of the two peptides were dramatically increased by co-administration, under the mechanism of cell membrane disruption, caspase-dependent apoptosis induction, as well as cyclin-D1 down-regulation based G1 phase arrest. We believe that the synergic therapeutic strategy would be a meaningful method for the anticancer peptides used in cancer treatment.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.,College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.,College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.,College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China. .,College of Life Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Ibrahim FAS, Ghebremeskel K, Abdel-Rahman ME, Ahmed AAM, Mohmed IM, Osman G, Elseed M, Hamed A, Rabinowicz AL, Salih MAM, Elbashir MI, Daak AA. The differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on seizure frequency in patients with drug-resistant epilepsy - A randomized, double-blind, placebo-controlled trial. Epilepsy Behav 2018; 87:32-38. [PMID: 30170260 DOI: 10.1016/j.yebeh.2018.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to play an important role in maintenance and modulation of neuronal functions. There is evidence that omega-3 fatty acids may have anticonvulsant effects. The effect of DHA and EPA on seizure rate in patients with drug-resistant epilepsy (DRE) was investigated. METHODS A double-blind, randomized, placebo-controlled clinical trial included ninety-nine (n = 99) subjects with DRE, aged 5-16 years (n = 85) and 17-45 years (n = 14). After randomization, subjects were given two, four, or six capsules per day of DHA (417.8 mg DHA and 50.8 mg EPA/capsule, n = 33), EPA (385.6 mg EPA and 81.2 mg DHA/capsule, n = 33), or placebo (high oleic acid sunflower oil, n = 33) for one year. The primary endpoint was the effect of treatment on rate of seizure. Random-effects negative binomial regression models were fitted to model the patients' total count of seizures per month. The treatment effects on seizure incidence rate ratio (IRR) were tested after controlling for the covariate effects of gender, age, rate of seizure per week at enrollment, type of seizure, and number of antiepileptic drug (AED) combinations used at enrollment. RESULTS Fifty-nine subjects (n = 59) completed the study (59.6%). The average number of seizures per month were 9.7 ± 1.2 in the EPA group, 11.7 ± 1.5 in the DHA group, and 16.6 ± 1.5 in the placebo group. Age, gender, and seizure-type adjusted seizure IRRs of the EPA and DHA groups compared with the placebo group were 0.61 (CI = 0.42-0.88, p = 0.008, 42% reduction) and 0.67 (CI = 0.46-1.0, p = 0.04, 39% reduction), respectively. There was no difference in IRR between the EPA and DHA groups (p = 0.56). Both treatment groups had a significantly higher number of seizure-free days compared with the placebo group (p < 0.05). SIGNIFICANCE This study demonstrates that EPA and DHA are effective in reducing seizure frequency in patients with DRE.
Collapse
Affiliation(s)
| | - Kebreab Ghebremeskel
- Lipidomics and Nutrition Research Centre, London Metropolitan University, London, UK
| | - Manar E Abdel-Rahman
- College of Health Sciences, Department of Public Health, Qatar University, Qatar
| | - Amar A M Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam M Mohmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ghada Osman
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahlam Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Adrian L Rabinowicz
- Sancilio Pharmaceuticals Company, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University (FAU), USA
| | | | | | - Ahmed A Daak
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan; Lipidomics and Nutrition Research Centre, London Metropolitan University, London, UK; Sancilio Pharmaceuticals Company, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University (FAU), USA.
| |
Collapse
|
10
|
Gavzan H, Hashemi F, Babaei J, Sayyah M. A role for peroxisome proliferator-activated receptor α in anticonvulsant activity of docosahexaenoic acid against seizures induced by pentylenetetrazole. Neurosci Lett 2018; 681:83-86. [DOI: 10.1016/j.neulet.2018.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
|
11
|
Moezifar M, Sayyah M, Zendehdel M, Gavzan H. Docosahexaenoic acid prevents resistance to antiepileptic drugs in two animal models of drug-resistant epilepsy. Nutr Neurosci 2018; 22:616-624. [DOI: 10.1080/1028415x.2017.1422903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Melika Moezifar
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hakimeh Gavzan
- Department of Basic Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
12
|
Gharibi Loron A, Sardari S, Narenjkar J, Sayyah M. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures. IRANIAN BIOMEDICAL JOURNAL 2016; 21:32-9. [PMID: 27592363 PMCID: PMC5141252 DOI: 10.6091/.21.1.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Methods: Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Results: Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Conclusion: Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA.
Collapse
Affiliation(s)
- Ali Gharibi Loron
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Narenjkar
- Department of Pharmacology and Biochemistry, School of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|