1
|
Kalınlı EM, Akbas E, Yolal Ertural D, Gunes S. Investigation of RhoA, ROCK1, and ROCK2 Gene Expressions in Autism Spectrum Disorders. Cureus 2024; 16:e74810. [PMID: 39737255 PMCID: PMC11683660 DOI: 10.7759/cureus.74810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that emerges in early childhood and is characterized by difficulties in social communication, repetitive behaviors, and restricted interests. The Ras homolog (Rho)/Rho-kinase signaling pathway plays a critical role in maintaining synaptic structure and function, as it regulates the actin cytoskeleton. This study aims to investigate the expression of the Ras homolog (Rho) family member A (RhoA), Rho-kinase 1 (ROCK1), and Rho-kinase 2 (ROCK2) genes within this pathway in relation to ASD. METHODS The study included 82 individuals diagnosed with ASD from the Adıyaman Training and Research Hospital's Department of Child and Adolescent Psychiatry and 82 healthy individuals without a family history of ASD, matched for gender and age. RNA isolation and complementary DNA (cDNA) extraction for RhoA, ROCK1, and ROCK2 genes were performed from blood samples of the patient and control groups. The RhoA, ROCK1, and ROCK2 gene expression levels were analyzed by real-time polymerase chain reaction (PCR) using the comparative CT (ΔΔCT) method. RESULTS Of the 82 individuals in the ASD group, 54 (65.9%) were male, and 28 (34.1%) were female, with a mean age of 7.74 ± 4.35 years. ASD is more common in males (p < 0.001). RhoA gene expression level is lower in patients with ASD (p < 0.001). CONCLUSION The Rho/Rho-kinase signaling pathway genes, including RhoA, ROCK1, and ROCK2, play roles in the neurodevelopmental processes. The lower expression level of RhoA in the ASD group may suggest that these genes could serve as potential biomarkers for the disorder. Further research is needed to explore these genetic markers' roles and their potential as therapeutic targets in ASD treatment.
Collapse
Affiliation(s)
| | - Etem Akbas
- Department of Medical Biology, Mersin University, Mersin, TUR
| | | | - Serkan Gunes
- Child Psychiatry, Adana City Training and Research Hospital, Adana, TUR
| |
Collapse
|
2
|
Lai J, Zhang X, Liang K. In Vitro Experiment Present ROCK2 Inhibition Promotes the Therapeutic Effect of Bevacizumab in the Treatment of Glioblastoma Multiforme. Clin Neuropharmacol 2024; 47:193-200. [PMID: 39792535 DOI: 10.1097/wnf.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy. However, its efficacy remains limited. Rho/Rho-associated kinase (ROCK) is a downstream molecule of small guanosine triphosphatases (GTPases) that regulates multiple cellular processes, including motility, migration, and proliferation. Thus, ROCK has been regarded as a therapeutic target for cardiovascular diseases, neurological diseases, immune diseases, and cancer, and ROCK inhibitors have high potential clinical value. METHODS Viability rate of cells was detected using MTT assay, and apoptosis of cells was detected using FACS. Expression of target genes and proteins was detected using qPCR and western blotting analysis. Concentration of cytokines was detected using ELISA methods. RESULTS Viability and migration of GBM cells were reduced after bevacizumab treatment and that these effects were enhanced by ROCK2 inhibition. We further found that ROCK2 inhibition promoting the effect of bevacizumab was mainly mediated by the RhoA/ROCK2 pathway, further inducing apoptosis in GBM cells. In addition, we found that angiogenesis and degradation of cellular matrix-related cytokines were reduced by ROCK2 inhibition. CONCLUSIONS ROCK2 inhibition contributes to the therapeutic effects of bevacizumab.
Collapse
Affiliation(s)
- Jun Lai
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
| | - Xiaojing Zhang
- Department of Neurosurgery, Linfen Central Hospital of Shanxi Province, Shanxi, China
| | - Kaixin Liang
- Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China
| |
Collapse
|
3
|
Lu W, Chen Z, Wen J. The role of RhoA/ROCK pathway in the ischemic stroke-induced neuroinflammation. Biomed Pharmacother 2023; 165:115141. [PMID: 37437375 DOI: 10.1016/j.biopha.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
It is widely known that ischemic stroke is the prominent cause of death and disability. To date, neuroinflammation following ischemic stroke represents a complex event, which is an essential process and affects the prognosis of both experimental stroke animals and stroke patients. Intense neuroinflammation occurring during the acute phase of stroke contributes to neuronal injury, BBB breakdown, and worse neurological outcomes. Inhibition of neuroinflammation may be a promising target in the development of new therapeutic strategies. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of RhoA/ROCK pathway possesses important roles in promoting the neuroinflammation and mediating brain injury. In addition, nuclear factor-kappa B (NF-κB) is another vital regulator of ischemic stroke-induced neuroinflammation through regulating the functions of microglial cells and astrocytes. After stroke onset, the microglial cells and astrocytes are activated and undergo the morphological and functional changes, thereby deeply participate in a complicated neuroinflammation cascade. In this review, we focused on the relationship among RhoA/ROCK pathway, NF-κB and glial cells in the neuroinflammation following ischemic stroke to reveal new strategies for preventing the intense neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Feng G, Liu X, Wang B, Li R, Chang Y, Guo N, Li Y, Chen T, Ma B. Exploring the mechanism of Chaihujia Longgu Muli decoction in the treatment of epilepsy in rats based on the RhoA/ROCK signaling pathway. Mol Biol Rep 2023; 50:3389-3399. [PMID: 36739316 DOI: 10.1007/s11033-023-08301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Chinese herbal formula Chaihujia Longgu Muli Decoction (CD) has a good antiepileptic effect, but its mechanisms remain unclear. Therefore, in this study we explored the molecular mechanisms of CD against epilepsy. METHODS Twelve-day-old SD rats were randomly divided into a normal group, model group, valproic acid group, and CD high, medium, and low groups. Except for the normal group, the other groups were given an intraperitoneal injection of pentylenetetrazol (PTZ) to establish epilepsy models, and the Racine score was applied for model judgment. After 14 consecutive days of dosing, the Morris water maze test was performed. Then, hippocampal Nissl staining and immunofluorescence staining were performed, and synaptic ultrastructure was observed by transmission electron microscopy (TEM). RhoA/ROCK signaling pathway proteins were detected. RESULTS In PTZ model rats, the passing times were reduced, and the escape latency was prolonged in the Morris water maze test. Nissl staining showed that some hippocampal neurons swelled and ruptured, Nissl bodies in the cytoplasm were significantly reduced, and neurons were lost. Immunofluorescence detection revealed that the expression of PSD95 and SYP was significantly reduced. Electron microscopy results revealed that the number of synapses in hippocampal neurons was significantly reduced and the postsynaptic membrane length was significantly reduced. Western blot analysis showed that the RhoA/ROCK signaling pathway was activated, while SYP, SPD95, and PTEN expression was significantly decreased. After treatment with CD, neurobehavioral abnormalities and neuronal damage caused by epileptic seizures were improved. CONCLUSION CD exerted an antiepileptic effect by inhibiting the activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Gang Feng
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xianghua Liu
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Baoying Wang
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ruixing Li
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yaxin Chang
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Nannan Guo
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yawei Li
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Tiantian Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Shanghai, 450099, China
| | - Bingxiang Ma
- College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,The First Affiliated Hospital of Henan University of Chinese Medicine, Shanghai, 450099, China. .,, No. 19, Renmin Road, Jinshui District, Zhengzhou, 450099, China.
| |
Collapse
|
5
|
Wang Z, Ren D, Zheng P. The role of Rho/ROCK in epileptic seizure-related neuronal damage. Metab Brain Dis 2022; 37:881-887. [PMID: 35119588 PMCID: PMC9042975 DOI: 10.1007/s11011-022-00909-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Epilepsy is one of the most severe neurological disorders characterized by spontaneous recurrent seizures. Although more than two-thirds of patients can be cured with anti-epileptic drugs (AEDs), the rest one-third of epilepsy patients are resistant to AEDs. A series of studies have demonstrated Rho/Rho-associated kinase (ROCK) pathway might be involved in the pathogenesis of epilepsy in the recent twenty years. Several related pathway inhibitors of Rho/ROCK have been used in the treatment of epilepsy. We searched PubMed from Jan 1, 2000 to Dec 31, 2020, using the terms "epilepsy AND Rho AND ROCK" and "seizure AND Rho AND ROCK". We selected articles that characterized Rho/ROCK in animal models of epilepsy and patients. We then chose the most relevant research studies including in-vitro, in-vivo and clinical trials. The expression of Rho/ROCK could be a potential non-invasive biomarker to apply in treatment for patients with epilepsy. RhoA and ROCK show significant upregulation in the acute and chronic stage of epilepsy. ROCK inhibitors can reduce the epilepsy, epileptic seizure-related neuronal death and comorbidities. These findings demonstrate the novel development for diagnosis and treatment for patients with epilepsy. Rho/ROCK signaling pathway inhibitors may show more promising effects in epilepsy and related neurological diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Dabin Ren
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China
| | - Ping Zheng
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
6
|
Song LJ, Zhang H, Qu XP, Jin JG, Wang C, Jiang X, Gao L, Li G, Wang DL, Shen LL, Liu B. Increased expression of Rho-associated protein kinase 2 confers astroglial Stat3 pathway activation during epileptogenesis. Neurosci Res 2021; 177:25-37. [PMID: 34740726 DOI: 10.1016/j.neures.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Patients with TLE are prone to tolerance to antiepileptic drugs. Based on the perspective of molecular targets for drug resistance, it is necessary to explore effective drug resistant genes and signaling pathways for the treatment of TLE. We performed gene expression profiles in hippocampus of patients with drug-resistant TLE and identified ROCK2 as one of the 20 most significantly increased genes in hippocampus. In vitro and in vivo experiments were performed to identify the potential role of ROCK2 in epileptogenesis. In addition, the activity of Stat3 pathway was tested in rat hippocampal tissues and primary cultured astrocytes. The expression levels of ROCK2 in the hippocampus of TLE patients were significantly increased compared with the control group, which was due to the hypomethylation of ROCK2 promoter. Fasudil, a specific Rho-kinase inhibitor, alleviated epileptic seizures in the pilocarpine rat model of TLE. Furthermore, ROCK2 activated the Stat3 pathway in pilocarpine-treated epilepsy rats, and the spearman correlation method confirmed that ROCK2 is associated with Stat3 activation in TLE patients. In addition, ROCK2 was predominantly expressed in astrocytes during epileptogenesis, and induced epileptogenesis by activating astrocyte cell cycle progression via Stat3 pathway. The overexpressed ROCK2 plays an important role in the pathogenesis of drug-resistant epilepsy. ROCK2 accelerates astrocytes cell cycle progression via the activation of Stat3 pathway likely provides the key to explaining the process of epileptogenesis.
Collapse
Affiliation(s)
- Li-Jia Song
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Peng Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun-Gong Jin
- Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue Jiang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Li Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang-Liang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Xiang Y, Niu Y, Xie Y, Chen S, Zhu F, Shen W, Zeng LH. Inhibition of RhoA/Rho kinase signaling pathway by fasudil protects against kainic acid-induced neurite injury. Brain Behav 2021; 11:e2266. [PMID: 34156163 PMCID: PMC8413774 DOI: 10.1002/brb3.2266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
AIM RhoA/Rho kinase pathway is essential for regulating cytoskeletal structure. Although its effect on normal neurite outgrowth has been demonstrated, the role of this pathway in seizure-induced neurite injury has not been revealed. The research examined the phosphorylation level of RhoA/Rho kinase signaling pathway and to clarify the effect of fasudil on RhoA/Rho kinase signaling pathway and neurite outgrowth in kainic acid (KA)-treated Neuro-2A cells and hippocampal neurons. METHOD Western blotting analysis was used to investigate the expression of key proteins of RhoA/Rho kinase signaling pathway and the depolymerization of actin. After incubated without serum to induce neurite outgrowth, Neuro-2A cells were fixed, and immunofluorescent assay of rhodamine-phalloidin was applied to detect the cellular morphology and neurite length. The influence of KA on neurons was detected in primary hippocampal neurons. Whole-cell patch clamp was conducted in cultured neurons or hippocampal slices to record action potentials. RESULT KA at the dose of 100-200 μmol/L induced the increase in phosphorylation of Rho-associated coiled-coil-containing protein kinase and decrease in phosphorylation of Lin11, Isl-1 and Mec-3 kinase and cofilin. The effect of 200 μmol/L KA was peaked at 1-2 hours, and then gradually returned to baseline after 8 hours. Pretreatment with Rho kinase inhibitor fasudil reversed KA-induced activation of RhoA/Rho kinase pathway and increase in phosphorylation of slingshot and 14-3-3, which consequently reduced the ratio of G/F-actin. KA treatment induced inhibition of neurite outgrowth and decrease in spines both in Neuro-2a cells and in cultured hippocampal neurons, and pretreatment with fasudil alleviated KA-induced neurite outgrowth inhibition and spine loss. CONCLUSION These data indicate that inhibiting RhoA/Rho kinase pathway might be a potential treatment for seizure-induced injury.
Collapse
Affiliation(s)
- Yingchun Xiang
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yumiao Niu
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yacong Xie
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Shishuo Chen
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Weida Shen
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Ling-Hui Zeng
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China.,Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Yu N, Lin XJ, Di Q. How to Find Candidate Drug-targets for Antiepileptogenic Therapy? Curr Neuropharmacol 2021; 18:624-635. [PMID: 31989901 PMCID: PMC7457424 DOI: 10.2174/1570159x18666200128124338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Abstract
Although over 25 antiepileptic drugs (AEDs) have become currently available for clinical use, the incidence of epilepsy worldwide and the proportions of drug-resistant epilepsy among them are not significantly reduced during the past decades. Traditional screens for AEDs have been mainly focused on their anti-ictogenic roles, and their efficacies primarily depend on suppressing neuronal excitability or enhancing inhibitory neuronal activity, almost without the influence on the epileptogenesis or with inconsistent results from different studies. Epileptogenesis refers to the pathological process of a brain from its normal status to the alterations with the continuous prone of unprovoked spontaneous seizures after brain insults, such as stroke, traumatic brain injury, CNS infectious, and autoimmune disorders, and even some specific inherited conditions. Recently growing experimental and clinical studies have discovered the underlying mechanisms for epileptogenesis, which are multi-aspect and multistep. These findings provide us a number of interesting sites for antiepileptogenic drugs (AEGDs). AEGDs have been evidenced as significantly roles of postponing or completely blocking the development of epilepsy in experimental models. The present review will introduce potential novel candidate drug-targets for AEGDs based on the published studies.
Collapse
Affiliation(s)
- Nian Yu
- Department of Neurology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Xing-Jian Lin
- Department of Neurology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Qing Di
- Department of Neurology, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, 210029, Nanjing, China
| |
Collapse
|
9
|
Liao Z, Li J, Miao L, Huang Z, Huang W, Liu Y, Li Y. Inhibition of RhoA Activity Does Not Rescue Synaptic Development Abnormalities and Long-Term Cognitive Impairment After Sevoflurane Exposure. Neurochem Res 2021; 46:468-481. [PMID: 33237472 DOI: 10.1007/s11064-020-03180-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
General anesthetics interfere with dendritic development and synaptogenesis, resulting in cognitive impairment in the developing animals. RhoA signal pathway plays important roles in dendritic development by regulating cytoskeleton protein such as tubulin and actin. However, it's not clear whether RhoA pathway is involved in inhaled general anesthetics sevoflurane-induced synaptic development abnormalities and long-term cognitive dysfunction. Rats at postnatal day 7 (PND7) were injected intraperitoneally with RhoA pathway inhibitor Y27632 or saline 20 min before exposed to 2.8% sevoflurane for 4 h. The apoptosis-related proteins and RhoA/CRMP2 pathway proteins in the hippocampus were measured 6 h after sevoflurane exposure. Cognitive functions were evaluated by the open field test on PND25 rats and contextual fear conditioning test on PND32-33 rats. The dendritic morphology and density of dendritic spines in the pyramidal neurons of hippocampus were determined by Golgi staining and the synaptic plasticity-related proteins were also measured on PND33 rats. Long term potentiation (LTP) from hippocampal slices was recorded on PND34-37 rats. Sevoflurane induced caspase-3 activation, decreased the ratio of Bcl-2/Bax and increased TUNEL-positive neurons in hippocampus of PND7 rats, which were attenuated by inhibition of RhoA. However, sevoflurane had no significant effects on activity of RhoA/CRMP2 pathway. Sevoflurane disturbed dendritic morphogenesis, reduced the number of dendritic spines, decreased proteins expression of PSD-95, drebrin and synaptophysin, inhibited LTP in hippocampal slices and impaired memory ability in the adolescent rats, while inhibition of RhoA activity did not rescue the changes above induced by sevoflurane. RhoA signal pathway did not participate in sevoflurane-induced dendritic and synaptic development abnormalities and cognitive dysfunction in developing rats.
Collapse
Affiliation(s)
- Zhaoxia Liao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junhua Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liping Miao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeqi Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wujian Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
11
|
Ci C, Tang B, Lyu D, Liu W, Qiang D, Ji X, Qiu X, Chen L, Ding W. Overexpression of CDCA8 promotes the malignant progression of cutaneous melanoma and leads to poor prognosis. Int J Mol Med 2019; 43:404-412. [PMID: 30431060 PMCID: PMC6257860 DOI: 10.3892/ijmm.2018.3985] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is very aggressive and results in high mortality rates for cancer patients. Determining molecular targets is important for developing novel therapies for cutaneous melanoma. Cell division cycle associated 8 (CDCA8) is a putative oncogene that is upregulated in multiple types of cancer. The present study aimed to examine the role of CDCA8 in cutaneous melanoma, with a focus on the association of its expression to prognosis and metastasis. First, the mRNA expression of CDCA8 in cutaneous melanoma tissues was investigated using the ONCOMINE and Gene Expression Omnibus (GEO) databases. Furthermore, the relationship between the expression of CDCA8 and cutaneous melanoma patient survival was analyzed using a Kaplan‑Meier plot and Log Rank test. In addition, the effects of CDCA8 on proliferation, migration and invasion of cutaneous melanoma cell lines were investigated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), Cell Counting kit‑8, colony formation assay, wound healing and Matrigel assay. Finally, the expression levels of key proteins related to the Rho‑associated coiled‑coil‑containing protein kinase (ROCK) signaling pathway were measured by western blot assay. The results demonstrated that CDCA8 was overexpressed in cutaneous melanoma tissues and cells lines compared with normal tissues, and high expression of CDCA8 was significantly associated with poorer prognosis in patients with cutaneous melanoma. In in vitro experiments, CDCA8 knockdown inhibited A375 and MV3 cell proliferation, migration and invasion. In addition, CDCA8 knockdown reduced the phosphorylation levels of ROCK1 and myosin light chain, two downstream effector proteins of the ROCK pathway. In summary, the present findings suggested that CDCA8 may be a promising therapeutic target for the treatment of cutaneous melanoma.
Collapse
Affiliation(s)
| | | | - Dalun Lyu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | | | | | | | | | - Lei Chen
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wei Ding
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|