1
|
Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, Wahyuningsih ES, Dewi Y, Winarti SA, Dinita ST. Potential Nephroprotective Effect of Kaempferol: Biosynthesis, Mechanisms of Action, and Clinical Prospects. Adv Pharmacol Pharm Sci 2024; 2024:8907717. [PMID: 39377015 PMCID: PMC11458287 DOI: 10.1155/2024/8907717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Kidney is an essential organ that is highly susceptible to cellular injury caused by various toxic substances in the blood. Several studies have shown that untreated injuries to this organ can cause glomerulosclerosis, tubulointerstitial fibrosis, and tubular cell apoptosis, leading to kidney failure. Despite significant advancements in modern treatment, there is no fully effective drug for repairing its function, providing complete protection, and assisting in cell regeneration. Furthermore, some available medications have been reported to exacerbate injuries, showing the need to explore alternative treatments. Natural drugs are currently being explored as a new therapeutic strategy for managing kidney diseases. Kaempferol, a polyphenol found in plants, including vegetables, legumes, and fruits, has been extensively studied in various nephrotoxicity protocols. The compound has been reported to have potential as a nephroprotective agent with beneficial effects on various physiological pathways, such as CPL-induced kidney injury, DOX, LPO, ROS, RCC, and diabetic nephropathy. Therefore, this study aims to provide a brief overview of the current nephroprotective effects of kaempferol, as well as its molecular mechanisms of action, biosynthesis pathways, and clinical prospects.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Asman Sadino
- Department of PharmacyFaculty of Mathematics and Natural ScienceUniversitas Garut, Garut, West Java, Indonesia
| | - Barolym Tri Pamungkas
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Zulpakor Oktoba
- Department of PharmacyFaculty of MedicineUniversitas Lampung, Bandar Lampung, Indonesia
| | - Maya Arfania
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Nia Yuniarsih
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Eko Sri Wahyuningsih
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Yuliani Dewi
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Ayu Winarti
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Tantia Dinita
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| |
Collapse
|
2
|
Qaed E, Almaamari A, Almoiliqy M, Alyafeai E, Sultan M, Aldahmash W, Mahyoub MA, Tang Z. Phosphocreatine attenuates doxorubicin-induced nephrotoxicity through inhibition of apoptosis, and restore mitochondrial function via activation of Nrf2 and PGC-1α pathways. Chem Biol Interact 2024; 400:111147. [PMID: 39043266 DOI: 10.1016/j.cbi.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Doxorubicin (DOX), a chemotherapy drug widely recognized for its efficacy in cancer treatment, unfortunately, has significant nephrotoxic effects leading to kidney damage. This study explores the nephroprotective potential of Phosphocreatine (PCr) in rats, specifically examining its influence on Nrf2 (Nuclear factor erythroid 2-related factor 2) and PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) pathways, its role in apoptosis inhibition, and effectiveness in preserving mitochondrial function. The research employed in vivo experiments in rats, focusing on PCr's capacity to protect renal function against doxorubicin-induced damage. The study entailed evaluating Nrf2 and PGC-1α pathway activation, apoptosis rates, and mitochondrial health in renal tissues. A significant aspect of this research was the use of high-resolution respirometry (HRR) to assess the function of isolated kidney mitochondria, providing in-depth insights into mitochondrial bioenergetics and respiratory efficiency under the influence of PCr and doxorubicin. Results demonstrated that PCr treatment significantly enhanced the activation of Nrf2 and PGC-1α pathways, reduced apoptosis, and preserved mitochondrial structure in doxorubicin-affected kidneys. Observations included upregulated expression of Nrf2 and PGC-1α target genes, stabilization of mitochondrial membranes, and a notable improvement in cellular antioxidant defense, evidenced by the activities of enzymes like superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) This study positions phosphocreatine as a promising agent in mitigating doxorubicin-induced kidney damage in rats. The findings, particularly the insights from HRR on isolated kidney mitochondria, highlight PCr's potential in enhancing mitochondrial function and reducing nephrotoxic side effects of chemotherapy. These encouraging results pave the way for further research into PCr's applications in cancer treatment, aiming to improve patient outcomes by managing chemotherapy-related renal injuries.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Marwan Almoiliqy
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyao Tang
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
3
|
Alherz FA, El-Masry TA, Oriquat GA, Elekhnawy E, Al-Shaalan NH, Gaballa MMS, El Zahaby EI, El-Nagar MMF. Hesperidin Nanoformulation: A Potential Strategy for Reducing Doxorubicin-Induced Renal Damage via the Sirt-1/HIF1-α/VEGF/NF-κB Signaling Cascade. Pharmaceuticals (Basel) 2024; 17:1144. [PMID: 39338308 PMCID: PMC11435365 DOI: 10.3390/ph17091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hesperidin (Hes) functions as a strong antioxidant and anti-inflammatory to guard against damage to the heart, liver, and kidneys. Nevertheless, due to its restricted solubility and bioavailability, a delivery method is required for it to reach a specific organ. In this study, ion gelation was used to synthesize a chitosan/hesperidin nanoformulation. Numerous characterization techniques, such as zeta potential, particle size, XRD, TEM, SEM, and FTIR analyses, were used to corroborate the synthesis of hesperidin nanoparticles (Hes-NPs). Male albino mice were given a pretreatment dose of 100 mg/kg, PO, of Hes or Hes-NPs, which was administered daily for 14 days before the induction of doxorubicin nephrotoxicity on the 12th day. Kidney function (urea and creatinine levels) was measured. Lipid peroxidation (MDA) and antioxidant enzyme (CAT and SOD) activities were estimated. TNF-α, IL-1β, and VEGF content; histopathological examination of kidney tissue; and immunohistochemical staining of NF-κB, Caspase-3, BAX, Bcl-2, and TGF-β1 were evaluated. The gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were also considered. The results showed that pretreatment with Hes or Hes-NPs reduced doxorubicin's nephrotoxic effects, with Hes-NPs showing the greatest reduction. Kidney enzyme and MDA content were lowered in response to the Hes or Hes-NP pretreatment, whereas antioxidant enzyme activities were increased. Hes or Hes-NP pretreatment suppressed the levels of TNF-α, IL-1β, VEGF, NF-κB, Caspase-3, BAX, and TGF-β1; however, pretreatment increased Bcl-2 protein levels. Furthermore, the gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were considerably higher with Hes-NP than with Hes treatment. These results suggest that Hes-NP treatment might reduce DOX-induced nephrotoxicity in mice via modulating Sirt-1/HIF1-α/VEGF/NF-κB signaling to provide antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Ghaleb A. Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
4
|
Bilginaylar K, Melahat Donmezer C, Ozer Sehirli A. In vitro studies support clinical trials showing platelet-rich fibrin-mediated local delivery of antibiotics improves outcomes in impacted mandibular third molar surgery. J Drug Target 2024:1-12. [PMID: 39169888 DOI: 10.1080/1061186x.2024.2396355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Our previous clinical observations showed that platelet rich fibrin (PRF) can be used to deliver antibiotics to attenuate postoperative complications after unilaterally impacted mandibular third molar surgery (IMTMS). In order to begin understanding the mechanism involved in the beneficial in vivo effects of PRF-mediated delivery of antibiotics, in vitro studies were performed, which showed that PRF preparations containing amoxicillin/clavulanic acid or clindamycin significantly inhibited the growth of S. aureus bacteria. In our previous study, comparisons were made between control and treated groups. However, since variations among individual patients could possibly affect the results, the current study included patients with bilaterally symmetric impacted mandibular third molars, allowing us to compare control and antibiotic treatment within each patient. The effects of PRF preparations containing amoxicillin/clavulanic acid or clindamycin on IMTMS was tested in 60 clinical cases. Antibiotic-injected PRF treatment after bilaterally IMTMS resulted in significantly reduced pain, less use of analgesics, and reduced swelling and trismus compared to the control group (PRF without antibiotics) confirming our previous results after unilaterally IMTMS. The in vitro results support the hypothesis that in vivo delivery of antibiotics using PRF produces therapeutic effects after IMTMS by attenuating bacterial infection and inflammation.
Collapse
Affiliation(s)
- Kani Bilginaylar
- Department of Oral and Maxillofacial Surgery, Final International University Faculty of Dentistry, Nicosia, Turkey
| | - Ceren Melahat Donmezer
- Department of Oral and Maxillofacial Surgery, Near East University Faculty of Dentistry, Nicosia, Turkey
| | - Ahmet Ozer Sehirli
- Department of Pharmacology, Near East University Faculty of Dentistry, Nicosia, Turkey
| |
Collapse
|
5
|
Abohashem RS, Ahmed HH, Sayed AH, Effat H. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys 2024; 82:1353-1366. [PMID: 38743136 DOI: 10.1007/s12013-024-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Collapse
Affiliation(s)
- Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Alaa H Sayed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Botros SR, Matouk AI, Amin A, Heeba GH. Comparative effects of incretin-based therapy on doxorubicin-induced nephrotoxicity in rats: the role of SIRT1/Nrf2/NF-κB/TNF-α signaling pathways. Front Pharmacol 2024; 15:1353029. [PMID: 38440177 PMCID: PMC10910313 DOI: 10.3389/fphar.2024.1353029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: Nephrotoxicity represents a major complication of using doxorubicin (DOX) in the management of several types of cancers. Increased oxidative stress and the activation of inflammatory mediators play outstanding roles in the development of DOX-induced kidney damage. This study aimed to investigate whether the two pathways of incretin-based therapy, glucagon-like peptide-1 receptor agonist (presented as semaglutide, SEM) and dipeptidyl peptidase-4 inhibitor (presented as alogliptin, ALO), differentially protect against DOX-induced nephrotoxicity in rats and to clarify the underlying molecular mechanisms. Methods: Adult male rats were divided into six groups: control (received the vehicle), DOX (20 mg/kg, single I.P. on day 8), DOX + ALO (20 mg/kg/day, P.O. for 10 days), DOX + SEM (12 μg/kg/day, S.C. for 10 days), ALO-alone, and SEM-alone groups. At the end of the study, the animals were sacrificed and their kidney functions, oxidative stress, and inflammatory markers were assessed. Kidney sections were also subjected to histopathological examinations. Results: The co-treatment with either ALO or SEM manifested an improvement in the kidney functions, as evidenced by lower serum concentrations of creatinine, urea, and cystatin C compared to the DOX group. Lower levels of MDA, higher levels of GSH, and increased SOD activity were observed in either ALO- or SEM-treated groups than those observed in the DOX group. DOX administration resulted in decreased renal expressions of sirtuin 1 (SIRT1) and Nrf2 with increased NF-κB and TNF-α expressions, and these effects were ameliorated by treatment with either ALO or SEM. Discussion: Co-treatment with either ALO or SEM showed a renoprotective effect that was mediated by their antioxidant and anti-inflammatory effects via the SIRT1/Nrf2/NF-κB/TNF-α pathway. The fact that both pathways of the incretin-based therapy demonstrate an equally positive effect in alleviating DOX-induced renal damage is equally noteworthy.
Collapse
Affiliation(s)
- Sandy R. Botros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Asmaa I. Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Gehan H. Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
7
|
Yalcın T, Kaya S, Kuloğlu T. Resveratrol may dose-dependently modulate nephrin and OTULIN levels in a doxorubicin-induced nephrotoxicity model. Toxicol Mech Methods 2024; 34:98-108. [PMID: 37807854 DOI: 10.1080/15376516.2023.2268717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
One of the most important side effects of Doxorubicin (DOX), a chemotherapeutic agent, is nephrotoxicity. The purpose of this study is to determine whether different doses of natural polyphenol Resveratrol (RSV) show antioxidative, anti-inflammatory or antiapoptotic effects in kidney tissue in DOX-induced nephrotoxicity and to detect how nephrin and OTULIN levels are affected in this process. A total of six equal groups made up of the 42 Sprague-Dawley rats utilized in the study (n = 7) were randomly assigned. Except for the control group (no treatment), all treatments were given intraperitoneally to the DOX (15 mg/kg), DOX + RSV I (15 mg/kg DOX+ 1 mg/kg/day RSV), DOX + RSV II (15 mg/kg DOX+ 5 mg/kg/day RSV), RSV I and RSV II groups. Kidney tissues taken from rats sacrificed on the fifteenth day were analyzed biochemically, histologically and immunohistochemically. Accordingly, it was determined that nephrin and OTULIN levels decreased in kidney tissue in DOX-induced nephrotoxicity. Furthermore, DOX caused oxidative stress, inflammation, and apoptosis, as well as histopathological changes in kidney tissue. However, it was observed that DOX-induced changes were regulated by RSV application. RSV was demonstrated to have antioxidant, anti-inflammatory and anti-apoptotic properties in dose-dependent DOX-induced nephrotoxicity. RSV may exert nephroprotective effects by modulating DOX-induced altered nephrin and OTULIN levels.
Collapse
Affiliation(s)
- Tuba Yalcın
- Vocational School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational School of Healthcare Studies, Batman University, Batman, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
8
|
Zheng B, Lu D, Chen X, Yin Y, Chen W, Wang X, Lin H, Xu P, Wu A, Liu B. Tripterygium glycosides improve abnormal lipid deposition in nephrotic syndrome rat models. Ren Fail 2023; 45:2182617. [PMID: 36876728 PMCID: PMC10013393 DOI: 10.1080/0886022x.2023.2182617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
OBJECTIVE The purpose of this study was to determine the effect of tripterygium glycosides (TGs) on regulating abnormal lipid deposition in nephrotic syndrome (NS) rats. METHODS Sprague-Dawley (SD) rats were injected with 6 mg/kg doxorubicin to construct nephrotic syndrome models (n = 6 per group), and then administered with TGs (10 mg/kg·d-1), prednisone (6.3 mg/kg·d-1), or pure water for 5 weeks. Biomedical indexes, such as urine protein/creatinine ratio (PCR), blood urea nitrogen (BUN), serum creatinine (Scr), serum albumin (SA), triglycerides (TG), total cholesterol (TC)were investigated to evaluate the renal injury of rats. H&E staining experiment was used to assess the pathological alterations. Oil Red O staining was used to assess the level of renal lipid deposition. Malondialdehyde (MDA) and glutathione (GSH) were measured to assess the extent of oxidative damage to the kidney. TUNEL staining was used to assess the status of apoptosis in the kidney. Western blot analysis was performed to examine the levels of relevant intracellular signaling molecules. RESULTS After treatment with TGs, those tested biomedical indexes were significantly improved, and the extent of kidney tissue pathological changes and lipid deposition in the kidney was diminished. Treatment with TGs decreased renal oxidative damage and apoptosis. Regarding the molecular mechanism, TGs significantly increased the protein expression levels of Bcl-2 but decreased the levels of CD36, ADFP, Bax, and Cleaved caspase-3. CONCLUSION TGs alleviates renal injury and lipid deposition induced by doxorubicin, suggesting that it may be a new strategy for reducing renal lipotoxicity in NS.
Collapse
Affiliation(s)
- Bidan Zheng
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfang Lu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuping Chen
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinghua Yin
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiying Chen
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanmei Lin
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aihua Wu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Anjuwon TM, Ehinmidu JO, Anigo KM, James DB. In Vitro Antimalarial Susceptibility of Plasmodium falciparum and Plasmodium berghei Isolates to Selected Antimalarial Agents, Column Chromatographic Subfractions of Glyphaea brevis Leaves Extract and FTIR and GCMS of SF8. Trop Life Sci Res 2023; 34:279-297. [PMID: 38144385 PMCID: PMC10735266 DOI: 10.21315/tlsr2023.34.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/02/2023] [Indexed: 12/26/2023] Open
Abstract
Malaria still remains a life-threatening parasitic disease with universal targets set for control and elimination. This study aimed to evaluate the in vitro antimalarial susceptibility of Plasmodium falciparum isolates and Plasmodium berghei to selected antimalarial agents and column chromatographic subfractions of Glyphaea brevis leaves extract and FTIR and GCMS of SF8. Trager and Jensen as well as World Health Organisation (WHO) standardised in vitro micro-test system methods were used to determine susceptibility on the patients' blood samples; Column chromatographic procedure was carried out to obtain 11 pooled fractions; FTIR and GCMS were used to determine functional groups and phytochemicals respectively. In vitro anti-plasmodial activity against P. falciparum clinical isolates had IC50 range of 1.03 μg/mL-7.63 μg/mL while their IC50 against P. berghei ranges from 4.32 μg/mL-7.89 μg/mL. Subfraction 8 (SF8) had the least IC50 of 4.32 μg/mL. The FTIR spectrum showed the presence of isoprenoid, alcohol, phenol, alkane, alkenes, ester, carboxylic acids, aromatics and nitro compounds while GCMS identified dodecanoic acid, methyl ester; carotol; hexadecanoic acid, methyl ester; 9-octadecenoic acid (Z)-, methyl ester (oleic acid); methyl stearate; heptadecanoic acid, 16-methyl-, methyl ester; all with their antimalarial reported activities. In conclusion, G. brevis has a great potential for drug development against malaria parasite since it inhibited schizont growth and possesses phytocompounds with antimalarial report.
Collapse
Affiliation(s)
- Tayo Micheal Anjuwon
- Department of Biochemistry, Ahmadu Bello University, P.M.B 1069 Zaria, Kaduna State, Nigeria
| | - Joseph Olorunmola Ehinmidu
- Department of Pharmaceutical Microbiology, Ahmadu Bello University, P.M.B 1069 Zaria, Kaduna State, Nigeria
| | | | - Dorcas Bolanle James
- Department of Biochemistry, Ahmadu Bello University, P.M.B 1069 Zaria, Kaduna State, Nigeria
| |
Collapse
|
10
|
Di Paola R, De A, Capasso A, Giuliana S, Ranieri R, Ruosi C, Sciarra A, Vitagliano C, Perna AF, Capasso G, Simeoni M. Impact of Thyroid Cancer Treatment on Renal Function: A Relevant Issue to Be Addressed. J Pers Med 2023; 13:jpm13050813. [PMID: 37240983 DOI: 10.3390/jpm13050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thyroid cancers require complex and heterogeneous therapies with different impacts on renal function. In our systematic literature review, we analyzed several aspects: renal function assessment, the impact of radiotherapy and thyroid surgery on kidney functioning, and mechanisms of nephrotoxicity of different chemotherapy, targeted and immunologic drugs. Our study revealed that the renal impact of thyroid cancer therapy can be a limiting factor in all radiotherapy, surgery, and pharmacological approaches. It is advisable to conduct a careful nephrological follow-up imposing the application of body surface based estimated Glomerular Filtration Rate (eGFR) formulas for the purpose of an early diagnosis and treatment of renal failure, guaranteeing the therapy continuation to thyroid cancer patients.
Collapse
Affiliation(s)
- Rossella Di Paola
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ananya De
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX 75063, USA
| | - Sofia Giuliana
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Roberta Ranieri
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Carolina Ruosi
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Antonella Sciarra
- Department of Oncologic Surgery, Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Caterina Vitagliano
- Nephrology Unit, Department of Specialist General Surgery, University Hospital "Luigi Vanvitelli", 80131 Naples, Italy
| | - Alessandra F Perna
- Nephrology and Dialysis Unit, Department of Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | - Mariadelina Simeoni
- Nephrology and Dialysis Unit, Department of Translational Medical Sciences at University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| |
Collapse
|
11
|
Kuşçu GC, Gürel Ç, Buhur A, Karabay Yavaşoğlu NÜ, Köse T, Yavaşoğlu A, Oltulu F. Fluvastatin alleviates doxorubicin-induced cardiac and renal toxicity in rats via regulation of oxidative stress, inflammation, and apoptosis associated genes expressions. Drug Chem Toxicol 2023; 46:400-411. [PMID: 35209778 DOI: 10.1080/01480545.2022.2043351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Doxorubicin (DOXO) is a cytostatic agent used in the chemotherapy protocol of several cancers for more than 40 years, but usage of this drug in cancer treatment has been limited due to severe renal and cardiac tissue toxicities that may result in death in patients. Fluvastatin (FV) is a fully synthetic hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitor used as a cholesterol-lowering agent in patients with hypercholesterolemia. Previous studies revealed that FV also exhibits antioxidant, anti-inflammatory, and antitumor activity. Additionally, our previous study indicated that FV exerts a prophylactic effect on DOXO-induced testicular toxicity by preventing lipid peroxidation, supporting the antioxidant system, and regulating the blood-testis barrier-associated genes expression. Herein, we purposed to evaluate the possible therapeutic and the protective effects of FV on the DOXO-induced cardiac and renal toxicitiy model by histochemical, immunohistochemical, biochemical, and real-time polymerase chain reaction (real-time PCR) analyses. Results point out protective use of FV exerts a beneficial effect by repressing lipid peroxidation and by regulating the inducible nitric oxide synthase (iNOS), nitric oxide synthase endothelial (eNOS), nuclear factor kappa-B (NF-κB), and Caspase-3 (Casp3) protein and mRNA expressions, which play an important role in mediating DOXO-induced renal and cardiac toxicity mechanisms. In conclusion, FV may be a candidate agent for the prevention of renal and cardiac toxicities in cancer patients receiving DOXO chemotherapy.
Collapse
Affiliation(s)
- Gökçe Ceren Kuşçu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Çevik Gürel
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Altuğ Yavaşoğlu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
12
|
Shaker AM, Shahin MI, AboulMagd AM, Abdel Aleem SA, Abdel-Rahman HM, Abou El Ella DA. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2. Bioorg Chem 2022; 129:106143. [DOI: 10.1016/j.bioorg.2022.106143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/20/2022]
|
13
|
Atta AH, Atta SA, Khattab M, El-aziz THA, Mouneir SM, Ibrahim M, Nasr SM, Ramadan S. Ceratonia siliqua pods (Carob) methanol extract alleviates doxorubicin – induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways.. [DOI: 10.21203/rs.3.rs-2217042/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Doxorubicin (DOX) is an effective antitumor therapy but its use is limited by its deleterious toxic effects including nephrotoxicity and cardiotoxicity. The aim of this work was to assess the potential protective effect of Ceratonia siliqua methanol extract (CME) on DOX-induced nephrotoxicity in 5 groups of rats. Rats in groups 1and 2 were given normal saline while groups 3–5 were given Vitamin C (reference antioxidant, 250mg/kg), CME (500mg/kg) and CME (1000 mg/kg) for 5 days. On the 5th day, 1 hour after the last treatment dose, rats of groups 2–5 were given DOX in a dose of 15 mg/kg IP. DOX increased serum creatinine, urea, sodium and potassium and decreased GSH concentration, GST, CAT, SOD and MPO activities but increased MDA. It increased the inflammatory mediators (COX-2, IL-6, TNF-α, and NF-κβ) but decreased the anti-inflammatory cytokine (IL-10) and the Transforming growth factor-β (TGF-β). DOX has up-regulated COX-2, Caspase-3, Caspase-9, Bax and NF- κβ transcripts and down-regulated the anti-apoptotic Bcl-2 as assessed by immunohistochemistry and gene expression analysis. CME significantly improved the levels of kidney function parameters and restored the levels of the oxidative stress markers. It also decreased the level of COX-2, IL-6, TNF-α, and NF-κβ and stimulated the production of IL-10 and TGF-β. CME down-regulated the expression levels of the Bax, Cox-2 and caspases and up-regulated the anti-apoptotic Bcl-2. Microscopically, CME alleviated the DOX-induced renal damage in dose dependent manner. Phytochemical analysis revealed the presence of 26 compounds among which 4 major compounds (over 5%) in the CME. Acute toxicity test revealed that CME is not toxic up to 5 g/kg orally into rats. In conclusion, CME could effectively alleviate the deleterious effects of DOX on the kidney. The safety of carob extract encourages its use in the preparation of valuable therapeutic agents.
Collapse
|
14
|
Abd-Ellatif RN, Nasef NA, El-Horany HES, Emam MN, Younis RL, El Gheit REA, Elseady W, Radwan DA, Hafez YM, Eissa A, Aboalsoud A, Shalaby RH, Atef MM. Adrenomedullin Mitigates Doxorubicin-Induced Nephrotoxicity in Rats: Role of Oxidative Stress, Inflammation, Apoptosis, and Pyroptosis. Int J Mol Sci 2022; 23:14570. [PMID: 36498902 PMCID: PMC9741179 DOI: 10.3390/ijms232314570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 μg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1β, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Biochemistry Department, College of Medicine, Ha’il University, Ha’il 2440, Saudi Arabia
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reham Lotfy Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmad Eissa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rania H. Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Dubai Medical College for Girls, Dubai 20170, United Arab Emirates
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
15
|
Amarasiri SS, Attanayake AP, Mudduwa LKB, Jayatilaka KAPW. Asparagus falcatus L. (Asparagaceae) leaf extracts attenuate doxorubicin-induced renal toxicity via antioxidant, anti-inflammatory, and anti-apoptotic pathways. Drug Chem Toxicol 2022:1-15. [PMID: 35637614 DOI: 10.1080/01480545.2022.2080218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The search for therapeutic agents that improve kidney function against doxorubicin-induced renal toxicity is important. Herein, the potential nephroprotective activity by Asparagus falcatus L. (AF, Asparagaceae) leaf extracts against doxorubicin-induced renal toxicity (5 mg/kg, ip) in Wistar rats (n = 6/group) after oral administration of hexane (55 mg/kg), ethyl acetate (35 mg/kg), butanol (75 mg/kg), and aqueous (200 mg/kg) extracts of AF for 28 consecutive days was investigated. It was noticed that the treatment with the selected extracts of AF significantly attenuated doxorubicin-induced elevations of serum creatinine, urea nitrogen, β2-microglobulin, cystatin C, and proteinuria in experimental rats. The histology showed attenuation of the features of acute tubular injury. Treatment regimens significantly reversed the doxorubicin-induced reduction in total antioxidant status, glutathione peroxidase, and glutathione reductase activity in renal tissue homogenates. A suppression in lipid peroxidation was noted with hexane, ethyl acetate, and butanol extracts of AF. Moreover, a reduction in the concentration of the pro-inflammatory mediator TNF-α (p < 0.05), and immunohistochemical expression of COX-2 were observed. The immunohistochemical expression of pro-apoptotic Bax protein was decreased and the anti-apoptotic BCL-2 was increased in renal tissues following the treatments. In conclusion, it was revealed that, hexane, ethyl acetate, butanol, and aqueous extracts of AF attenuate doxorubicin-induced renal toxicity in Wistar rats through antioxidant, anti-inflammatory, and anti-apoptotic pathways. The plant, AF could be recommended as a promising therapeutic agent to minimize renal toxicity induced by doxorubicin in cancer patients, however, subsequent clinical trials are warranted.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
16
|
AlAsmari AF, Ali N, Alharbi M, Alqahtani F, Alasmari F, Almoqbel D, AlSwayyed M, Alshammari A, Alanazi MM, Alhoshani A, Al-Harbi NO. Geraniol Ameliorates Doxorubicin-Mediated Kidney Injury through Alteration of Antioxidant Status, Inflammation, and Apoptosis: Potential Roles of NF-κB and Nrf2/Ho-1. Nutrients 2022; 14:nu14081620. [PMID: 35458182 PMCID: PMC9031157 DOI: 10.3390/nu14081620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
Doxorubicin-mediated kidney impairment is a serious problem in cancer treatment. Accordingly, this work investigated the ability of geraniol to modulate doxorubicin-induced kidney damage using a rat model. Rats were randomly assigned to four groups: control, doxorubicin (20 mg/kg, intraperitoneal, i.p.), doxorubicin plus 100 mg/kg of geraniol, and doxorubicin plus 200 mg/kg of geraniol. A single doxorubicin injection triggered kidney impairment, as evidenced by the altered serum creatinine, blood urea nitrogen, and albumin values; it also caused histological changes in the kidney architecture. Additionally, doxorubicin enhanced lipid peroxidation while lowering reduced glutathione, catalase activity, and the expression of glutathione peroxidase and superoxide dismutase. Interestingly, pre-treatment with geraniol rescued doxorubicin-induced alterations in kidney antioxidant parameters, enzymatic activity, and the expression of inflammatory and apoptosis-mediating gene and proteins. Moreover, prophylactic treatment with geraniol preserved most kidney histological characteristics in a dose-dependent manner. These findings support that geraniol could protect against doxorubicin-mediated kidney dysfunction. However, further research is needed to clarify the mechanisms of geraniol’s protective effects against doxorubicin-mediated kidney dysfunction.
Collapse
Affiliation(s)
- Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
- Correspondence: ; Tel.: +966-114677180
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Daad Almoqbel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Mohammed AlSwayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| |
Collapse
|
17
|
Xing W, Wen C, Wang D, Shao H, Liu C, He C, Olatunji OJ. Cardiorenal Protective Effect of Costunolide against Doxorubicin-Induced Toxicity in Rats by Modulating Oxidative Stress, Inflammation and Apoptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072122. [PMID: 35408518 PMCID: PMC9000510 DOI: 10.3390/molecules27072122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DXB) is one of the most commonly used anticancer agents for treating solid and hematological malignancies; however, DXB-induced cardiorenal toxicity presents a limiting factor to its clinical usefulness in cancer patients. Costunolide (COST) is a naturally occurring sesquiterpene lactone with excellent anti-inflammatory, antioxidant and antiapoptotic properties. This study evaluated the effect of COST on DXB-induced cardiorenal toxicity in rats. Rats were orally treated with COST for 4 weeks and received weekly 5 mg/kg doses of DXB for three weeks. Cardiorenal biochemical biomarkers, lipid profile, oxidative stress, inflammatory cytokines, histological and immunohistochemical analyses were evaluated. DXB-treated rats displayed significantly increased levels of lipid profiles, markers of cardiorenal dysfunction (aspartate aminotransferase, creatine kinase, lactate dehydrogenase, troponin T, blood urea nitrogen, uric acid and creatinine). In addition, DXB markedly upregulated cardiorenal malondialdehyde, tumor necrosis factor-α, interleukin-1β, interleukin-6 levels and decreased glutathione, superoxide dismutase and catalase activities. COST treatment significantly attenuated the aforementioned alterations induced by DXB. Furthermore, histopathological and immunohistochemical analyses revealed that COST ameliorated the histopathological features and reduced p53 and myeloperoxidase expression in the treated rats. These results suggest that COST exhibits cardiorenal protective effects against DXB-induced injury presumably via suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen Xing
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu 241001, China;
| | - Deguo Wang
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Hui Shao
- Department of Clinical Laboratory, East China Normal University Affiliated Wuhu Hospital, Wuhu 241001, China;
| | - Chunhong Liu
- The Second Peoples Hospital of Wuhu City, Wuhu 241001, China;
| | - Chunling He
- Department of Endocrinology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China
- Correspondence: (C.H.); (O.J.O.)
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: (C.H.); (O.J.O.)
| |
Collapse
|
18
|
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Diosmin Alleviates Doxorubicin-Induced Liver Injury via Modulation of Oxidative Stress-Mediated Hepatic Inflammation and Apoptosis via NfkB and MAPK Pathway: A Preclinical Study. Antioxidants (Basel) 2021; 10:antiox10121998. [PMID: 34943101 PMCID: PMC8698866 DOI: 10.3390/antiox10121998] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatotoxicity caused by chemotherapeutic drugs (e.g., doxorubicin) is of critical concern in cancer therapy. This study focused on investigating the modulatory effects of diosmin against doxorubicin-induced hepatotoxicity in Male Wistar rats. Male Wistar rats were randomly divided into four groups: Group I was served as control, Group II was treated with doxorubicin (20 mg/kg, intraperitoneal, i.p.), Group III was treated with a combination of doxorubicin and low-dose diosmin (100 mg/kg orally), and Group IV was treated with a combination of doxorubicin and high-dose diosmin (200 mg/kg orally) supplementation. A single dose of doxorubicin (i.p.) caused hepatic impairment, as shown by increases in the concentrations of serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Doxorubicin produced histological abnormalities in the liver. In addition, a single injection of doxorubicin increased lipid peroxidation and reduced glutathione, catalase, and superoxide dismutase (SOD) levels. Importantly, pre-treatment with diosmin restored hepatic antioxidant factors and serum enzymatic activities and reduced the inflammatory and apoptotic-mediated proteins and genes. These findings demonstrate that diosmin has a protective effect against doxorubicin-induced hepatotoxicity.
Collapse
|
20
|
Ibrahim Fouad G, Ahmed KA. The protective impact of berberine against doxorubicin-induced nephrotoxicity in rats. Tissue Cell 2021; 73:101612. [PMID: 34371291 DOI: 10.1016/j.tice.2021.101612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023]
Abstract
Doxorubicin (DOX) is a well-known anti-neoplastic agent that is widely employed to treat several types of malignancies. The current study was designed to investigate the renoprotective potential of berberine (BEB) on the doxorubicin (DOX)-induced nephrotoxicity and renal fibrosis. Rats were allocated into four groups; Negative Control, DOX nephrotoxic-induced group received a single dose of DOX (20 mg/kg, i.p.), BEB-group received (50 mg/kg, p.o.) for 14 days, and co-treatment group BEB + DOX where rats were pre-treated with BEB for 10 successive days, then received a single dose of DOX on the 11th day, followed by 4 days of receiving BEB. DOX resulted in nephrotoxicity manifested by significant increments in urea, creatinine, and kidney injury molecule (KIM-1), these biochemical findings were supported with the histopathological lesions in renal tissues. Moreover, DOX provoked oxidative stress through enhancing renal malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, and decreased renal catalase (CAT) activity. DOX triggered renal fibrosis represented by increased transforming growth factor beta-1 (TGF-β1) and elevated collagen deposition. DOX stimulated apoptosis and inflammation in renal tissues as confirmed by increased immunoexpression of caspase-3 and NF-κB, respectively. These effects were alleviated by BEB co-treatment. Co-treatment with BEB markedly prohibited DOX-induced oxidative damage, inflammation, apoptosis, and fibrosis in renal tissue. Histopathological and immunohistochemical investigations showed the nephroprotective potential of BEB on renal injury, which was consistent with the biochemical findings. Accordingly, it could be concluded that the nephroprotective potential of BEB against DOX-induced kidney injury and fibrosis might be mediated by the anti-oxidant, anti-inflammatory and anti-fibrosis activities.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
21
|
Doxorubicin Paradoxically Ameliorates Tumor-Induced Inflammation in Young Mice. Int J Mol Sci 2021; 22:ijms22169023. [PMID: 34445729 PMCID: PMC8396671 DOI: 10.3390/ijms22169023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin (DOX) is one of the most widely used chemo-therapeutic agents in pediatric oncology. DOX elicits an inflammatory response in multiple organs, which contributes to DOX-induced adverse effects. Cancer itself causes inflammation leading to multiple pathologic conditions. The current study investigated the inflammatory response to DOX and tumors using an EL4-lymphoma, immunocompetent, juvenile mouse model. Four-week old male C57BL/6N mice were injected subcutaneously with EL4 lymphoma cells (5 × 104 cells/mouse) in the flank region, while tumor-free mice were injected with vehicle. Three days following tumor implantation, both tumor-free and tumor-bearing mice were injected intraperitoneally with either DOX (4 mg/kg/week) or saline for 3 weeks. One week after the last DOX injection, the mice were euthanized and the hearts, livers, kidneys, and serum were harvested. Gene expression and serum concentration of inflammatory markers were quantified using real-time PCR and ELISA, respectively. DOX treatment significantly suppressed tumor growth in tumor-bearing mice and caused significant cardiac atrophy in tumor-free and tumor-bearing mice. EL4 tumors elicited a strong inflammatory response in the heart, liver, and kidney. Strikingly, DOX treatment ameliorated tumor-induced inflammation paradoxical to the effect of DOX in tumor-free mice, demonstrating a widely divergent effect of DOX treatment in tumor-free versus tumor-bearing mice.
Collapse
|
22
|
Amarasiri SS, Attanayake AP, Arawwawala LDAM, Jayatilaka KAPW, Mudduwa LKB. Nephroprotective activity of Vetiveria zizanioides (L.) Nash supplement in doxorubicin-induced nephrotoxicity model of Wistar rats. J Food Biochem 2021; 45:e13901. [PMID: 34396545 DOI: 10.1111/jfbc.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The nephroprotective effect of standardized aqueous root extract of Vetiveria zizanioides (L.) Nash (Family: Poaceae) was investigated in doxorubicin-induced (20 mg/kg, ip) experimental nephrotoxicity model of Wistar rats. The freeze-dried aqueous refluxed (4 hr) root extract of V. zizanioides (25, 50; equivalent human therapeutic dose and 100 mg/kg) was administered separately to nephrotoxic Wistar rats (n = 6/group). Supplement of V. zizanioides resulted a dose-dependent reduction in raised serum creatinine, β2 -microglobulin, and blood urea nitrogen and a subsequent increase in serum total protein and albumin in nephrotoxic rats (p < .05). An attenuation of the doxorubicin-induced features of renal parenchymal injury was observed on H- and E-stained sections of the kidney tissues. Nootkatone, dehydroaromadendrene, isokhusenic acid, α-vetivone, and isolongifolene were identified in the methanol extract of V. zizanioides based on the GC-MS chromatogram analysis. The findings revealed that the supplement of standardized aqueous root extract of V. zizanioides had a significant dose-dependent nephroprotective activity against doxorubicin-induced experimental nephrotoxicity. PRACTICAL APPLICATIONS: Vetiveria zizanioides is a medicinal plant with a variety of therapeutic applications in kidney-related diseases. Apparently, it is used as a food ingredient due to its fresh and elegant scent and potential bioactivities. The aqueous root extract of V. zizanioides exerted relatively high antioxidant potential in vitro, substantiating the health effects of the plant pertaining to kidney diseases as a potential source of dietary antioxidant. The administration of the plant extract resulted in significant nephroprotection against doxorubicin-induced experimental nephrotoxicity revealing the significance of V. zizanioides as a promising dietary supplement in the management of kidney disease.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | | | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
23
|
Abdou RM, El-Maadawy WH, Hassan M, El-Dine RS, Aboushousha T, El-Tanbouly ND, El-Sayed AM. Nephroprotective activity of Aframomum melegueta seeds extract against diclofenac-induced acute kidney injury: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113939. [PMID: 33610709 DOI: 10.1016/j.jep.2021.113939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Africa, Aframomum species have been traditionally used to treat illnesses such as inflammation, hypertension, diarrhea, stomachache and fever. Moreover, Aframomum melegueta seed extracts (AMSE) are used in traditional medicine to relieve stomachaches and inflammatory diseases. AIM Chronic administration of diclofenac (DIC) has been reported to cause acute kidney injury (AKI), which is a serious health condition. The nephroprotective effect of AMSE is yet to be elucidated. Accordingly, this study aims to investigate the phytoconstituents of standardized AMSE, evaluate its nephroprotective effects against DIC-induced AKI in rats, and elaborate its underlying molecular mechanisms. MATERIALS AND METHODS The quantitative estimation of major AMSE constituents and profiling of its secondary metabolites were conducted via RP-HPLC and LC-ESI/Triple TOF/MS, respectively. Next, DIC (50 mg/kg)-induced AKI was achieved in Sprague-Dawley rats and DIC-challenged rats were administered AMSE (100 and 200 mg/kg) orally. All treatments were administered for five consecutive days. Blood samples were collected and the sera were used for estimating creatinine, urea and, kidney injury molecule (KIM)-1 levels. Kidney specimens were histopathologically assessed and immunohistochemically examined for c-Myc expression. A portion of the kidney tissue was homogenized and examined for levels of oxidative stress markers (MDA and GSH). Heme oxygenase (HO)-1, TNF-α, IL-6, Bax, Bcl2 and caspase-3 renal levels were quantified by ELISA. Moreover, the protein expression levels of NF-ҡB p65 was quantified using Western blot analysis, whereas mRNA expression levels of AMPK, SIRT-1, nuclear factor erythroid-2-related factor (Nrf2) and STAT3 were detected using qRT-PCR in the remaining kidney tissues. RESULTS Standardized AMSE was shown to primarily contain 6-gingerol, 6-shogaol and 6-paradol among the 73 compounds that were detected via LC-ESI/Triple TOF/MS including phenolic acids, hydroxyphenylalkanes, diarylheptanoids and fatty acids. Relative to DIC-intoxicated rats, AMSE modulated serum creatinine, urea, KIM-1, renal MDA, TNF-α, IL-6, Bax, and caspase-3 levels. AMSE has also improved renal tissue architecture, enhanced GSH and HO-1 levels, and upregulated renal Nrf2, AMPK, and SIRT-1 mRNA expression levels. Furthermore, AMSE suppressed NF-ҡB p65 protein and STAT3 mRNA expression, and further reduced c-Myc immunohistochemical expression in renal tissues. Overall, our findings revealed that AMSE counteracted DIC-induced AKI via its antioxidant, anti-inflammatory, and antiapoptotic activities. Moreover, AMSE activated Nrf2/HO1 and AMPK/SIRT1, and inhibited NF-ҡB/STAT3 signaling pathways. Therefore, AMSE is a promising agent for inhibiting DIC-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rabab M Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Walaa H El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt.
| | - Marwa Hassan
- Department of Immunology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt
| | - Riham S El-Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt
| | - Nebal D El-Tanbouly
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Aly M El-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
24
|
Ali N, AlAsmari AF, Imam F, Ahmed MZ, Alqahtani F, Alharbi M, AlSwayyed M, AlAsmari F, Alasmari M, Alshammari A, Fantoukh OI, Alanazi MM. Protective effect of diosmin against doxorubicin-induced nephrotoxicity. Saudi J Biol Sci 2021; 28:4375-4383. [PMID: 34354422 PMCID: PMC8324953 DOI: 10.1016/j.sjbs.2021.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Dox induces kidney damage. Dox leads to a decrease in antioxidant defense mechanism. Diosmin administration restores antioxidant properties.
Doxorubicin (Dox) is an anthracycline antibiotic that is primarily used for treating various solid tumors including that of pulmonary, ovary, breast, uterine, cervix, and several blood cancers. However, nephrotoxicity associated with Dox treatment limits its clinical use. Administration of Dox in combination with compounds exhibiting antioxidant properties are being used to minimize the side effects of Dox. Diosmin is a flavonoid glycoside with numerous beneficial properties that is found in the pericarp of many citrus fruits. Diosmin has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic effects in response to various insults, although the exact mechanism remains unknown. Therefore, this study was designed to evaluate the effect of diosmin in preventing kidney damage in response to Dox treatment. Male Wistar rats were randomly divided into four groups: control group, Dox group (20 mg/kg, i.p.), Dox plus low-dose diosmin group (100 mg/kg orally), and Dox plus high-dose diosmin group (200 mg/kg orally). A single intraperitoneal injection of Dox resulted in kidney damage as evidenced by significant alterations in kidney markers, histological abnormalities, and the attenuation of antioxidant defense mechanisms (GSH, SOD, and CAT). Moreover, Dox treatment significantly altered the expression of oxidative stress, inflammatory, and anti-apoptotic protein markers. Diosmin pretreatment alleviated Dox-induced nephrotoxicity by ameliorating the antioxidant mechanism, decreasing inflammation and apoptosis, and restoring kidney architecture. In conclusion, our results indicate that diosmin is a promising therapeutic agent for the prevention of nephrotoxicity associated with DOX.
Collapse
Affiliation(s)
- Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author at: Dept. of Pharmacology & Toxicology, College of Pharmacy, Building 23, second floor, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Z. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed AlSwayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Yao L, Gui M, Li J, Lu B, Wang J, Zhou X, Fu D. Shengxian decoction decreases doxorubicin‑induced cardiac apoptosis by regulating the TREM1/NF‑κB signaling pathway. Mol Med Rep 2021; 23:219. [PMID: 33495812 PMCID: PMC7845587 DOI: 10.3892/mmr.2021.11858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Shengxian decoction (SXT) is a traditional Chinese medicine that is clinically used for treating cardiovascular diseases. It is known for its beneficial effect on cardiomyocyte injuries, some of which can be induced by anticancer agents including doxorubicin (DOX). To determine the molecular mechanisms involved in the cardioprotective effects of SXT, DOX‑induced H9c2 cells were analyzed for apoptosis and expression levels of apoptosis biomarkers. Cell viability and apoptosis were measured by CCK‑8 and flow cytometry. Triggering receptors expressed on myeloid cells 1 (TREM1), cleaved caspase‑3, survivin and NF‑κBp65 expression levels were measured by reverse transcription‑quantitative PCR and/or western blotting. A total of 30 adult male Sprague‑Dawley rats were randomly allocated into five groups (n=6 each); control group receiving 0.9% saline, 1 DOX group receiving 2.5 mg/kg of DOX and 3 DOX + SXT groups, receiving a DOX dose equivalent to the DOX‑only group and either 0.4, 0.8 or 1.6 g/kg of SXT. It was found that DOX increased apoptosis and NF‑κB activation of H9c2 cells by increasing TREM1 expression and that SXT inhibited apoptosis and NF‑κB activation of H9c2 cells induced by DOX or Trem1 overexpression. SXT also significantly reversed DOX‑induced cardiotoxicity in rats. The results suggested that the protective effects of SXT against DOX‑induced apoptosis may be attributed to its downregulation of TREM1.
Collapse
Affiliation(s)
- Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jing Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
26
|
Shati AA, El-Kott AF. Acylated ghrelin protects against doxorubicin-induced nephropathy by activating silent information regulator 1. Basic Clin Pharmacol Toxicol 2021; 128:805-821. [PMID: 33547742 DOI: 10.1111/bcpt.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the nephroprotective role of acylated ghrelin (AG) against DOX-induced nephropathy and examined whether the protection involves silent information regulator 1 (SIRT1). Rats were divided into control, control + AG, DOX, DOX + AG, DOX + AG + [D-Lys3]-GHRP-6 (a ghrelin receptor antagonist), and DOX + AG + EX-527 (a sirt1 inhibitor). DOX was given over the first 2 weeks. AG (10 ng/kg) and both inhibitors were given as 3 doses/wk for 5 weeks. AG improved the structure and the function of the kidneys; down-regulated the renal expression of TGF-β1, collagen 1A1 and α-SMA; and inhibited the renal collagen deposition in the kidneys of DOX-treated rats. Concomitantly, it reduced the renal levels of ROS, MDA, TNF-α, and IL-6 and protein levels of cytochrome-c, TGF-β1, Smad3 and α-SMA in these rats. In both the control and DOX-treated rats, AG significantly increased the renal levels of SOD and GSH, decreased the expression of cleaved caspase-3 and Bax, increased the total levels and the nuclear activity of SIRT1 and reduced the deacetylation of p53, NF-κB and FOXO-31. All the effects were abolished by the concurrent administration of EX-527 and [D-Lys3]-GHRP-6. In conclusion, AG prevents DOX-induced nephropathy in SIRT1 and GSHRa1-dependent mechanism.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
27
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|
28
|
Amarasiri SS, Attanayake AP, Arawwawala LDAM, Jayatilaka KAPW, Mudduwa LKB. Standardized aqueous stem bark extract of Gmelina arborea roxb. possesses nephroprotection against adriamycin-induced nephrotoxicity in Wistar rats. Drug Chem Toxicol 2020; 45:1214-1224. [PMID: 32865030 DOI: 10.1080/01480545.2020.1811721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nephrotoxicity is a major limitation of adriamycin (ADR) chemotherapy. We hypothesized that administration of standardized aqueous bark extract of Gmelina arborea Roxb. (GA) (Family; Verbenaceae), a traditional therapeutic agent, may reduce the nephrotoxicity caused by ADR in Wistar rats. The dose-dependent nephroprotective activity of the standardized GA extract was investigated in ADR-induced (20 mg/kg, ip) nephrotoxicity in male Wistar rats (n = 6/group). The lyophilized powder of the aqueous refluxed (4 h) GA extract was administered at 100, 300 and 500 mg/kg doses orally for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the positive control. Assessment of biochemical parameters on serum, urine and histopathology on H and E stained kidney sections were done at the end of the intervention. The treatment with GA and fosinopril decreased the elevation of serum creatinine, blood urea nitrogen, cystatin C, β2-microglobulin and loss of total protein in urine in nephrotoxic rats in a dose-dependent manner (p < 0.05). In contrast, serum concentrations of albumin and total protein were increased significantly (p < 0.05). H and E stained kidney sections showed an attenuation of renal parenchymal injury following the treatment. The aqueous extract of GA demonstrated antioxidant potential in vitro. Present findings conclude that the standardized aqueous extract of GA stem bark exerted a dose-dependent protection against ADR-induced nephrotoxicity in vivo and may be a promising adjunct in ADR chemotherapy.
Collapse
Affiliation(s)
- Sachinthi S Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | | | - Lakmini K B Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|