1
|
Cui X, Wang Y, Liu J, Liu Z, Zhao M, Yu W, Zhu M, Xu H, Lu B, Peng D, Shi J, Liao N, Niu S, Shen J, Qiu J, Yu L. Dietary limonin alleviates Salmonella Typhimurium-induced colitis via dual targeting virulence SopB and SopE2 and inhibiting RAC1/CDC42/Arp2/3 pathway and regulating gut microbiota. Food Funct 2025; 16:1041-1059. [PMID: 39820212 DOI: 10.1039/d4fo02810d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Salmonella enterica serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity in silico and was verified by CETSA and DARTS assays in vitro. Limonin inhibited the enzyme activities and expression of SopB and SopE2 in vitro. Furthermore, we found that limonin treatment significantly reduced the number of STM colony-forming units (CFUs) in infected HeLa and Raw264.7 cells, which resulted in a decrease in the rate of membrane ruffling mediated by SopB-regulated Arf6/Cyth2/Arf1-, RAC1-, and CDC42-driven Arp2/3-dependent actin polymerization and the SopE2-regulated CDC42/Arp2/3 pathway, and the confocal laser scanning microscopy analysis revealed that limonin treatment repressed the recruitment of the Salmonella-containing vacuole (SCV) biomarkers LC3, Rab7, GAL8 and NDP52. Furthermore, limonin treatment ameliorated STM-induced colitis by reducing the disease activity index (DAI), colon shortening, and MPO and EPO activities; mitigating the severity of S. Typhimurium-induced colitis damage; and influencing the levels of inflammatory factors (IL-1β, IL-6, IL-10, TNF-α and IFN-γ) while increasing the levels of colonic epithelial barrier and tight junction genes (Mucin 1, Mucin 2, Occludin, Claudin-3 and ZO-1). A gut microbiota analysis revealed that limonin treatment influenced α- and β-diversity of the flora and increased the counts of the beneficial bacteria Muribaculum and Faecalibaculum to regulate gut microbiota dysbiosis. Finally, colon SCFA measurements revealed that limonin treatment significantly increased acetate, butyrate, propionate and valerate concentrations. Thus, this study is an important reference for the anti-STM effects of limonin on induced colitis.
Collapse
Affiliation(s)
- Xinhua Cui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Yang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jiajia Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Ziyan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Meng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Wanlu Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Mingmei Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Hongyue Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Baochun Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Danping Peng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jinyang Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Ning Liao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Sijia Niu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Lu Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Hasibuan PAZ, Simanjuntak Y, Hey-Hawkins E, Lubis MF, Rohani AS, Park MN, Kim B, Syahputra RA. Unlocking the potential of flavonoids: Natural solutions in the fight against colon cancer. Biomed Pharmacother 2024; 176:116827. [PMID: 38850646 DOI: 10.1016/j.biopha.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, underscoring the importance of understanding the diverse molecular and genetic underpinnings of CRC to improve its diagnosis, prognosis, and treatment. This review delves into the adenoma-carcinoma-metastasis model, emphasizing the "APC-KRAS-TP53" signature events in CRC development. CRC is categorized into four consensus molecular subtypes, each characterized by unique genetic alterations and responses to therapy, illustrating its complexity and heterogeneity. Furthermore, we explore the role of chronic inflammation and the gut microbiome in CRC progression, emphasizing the potential of targeting these factors for prevention and treatment. This review discusses the impact of dietary carcinogens and lifestyle factors and the critical role of early detection in improving outcomes, and also examines conventional chemotherapy options for CRC and associated challenges. There is significant focus on the therapeutic potential of flavonoids for CRC management, discussing various types of flavonoids, their sources, and mechanisms of action, including their antioxidant properties, modulation of cell signaling pathways, and effects on cell cycle and apoptosis. This article presents evidence of the synergistic effects of flavonoids with conventional cancer therapies and their role in modulating the gut microbiome and immune response, thereby offering new avenues for CRC treatment. We conclude by emphasizing the importance of a multidisciplinary approach to CRC research and treatment, incorporating insights from genetic, molecular, and lifestyle factors. Further research is needed on the preventive and therapeutic potential of natural compounds, such as flavonoids, in CRC, underscoring the need for personalized and targeted treatment strategies.
Collapse
Affiliation(s)
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, Leipzig 04103, Germany
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Ade Sri Rohani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| |
Collapse
|
4
|
Zhang B, Cheng Y, Jian Q, Xiang S, Xu Q, Wang C, Yang C, Lin J, Zheng C. Sishen Pill and its active phytochemicals in treating inflammatory bowel disease and colon cancer: an overview. Front Pharmacol 2024; 15:1375585. [PMID: 38650627 PMCID: PMC11033398 DOI: 10.3389/fphar.2024.1375585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The incidence of inflammatory bowel disease (IBD) and the associated risk of colon cancer are increasing globally. Traditional Chinese medicine (TCM) treatment has unique advantages. The Sishen Pill, a common Chinese patented drug used to treat abdominal pain and diarrhea, consists mainly of Psoraleae Fructus, Myristicae Semen, Euodiae Fructus, and Schisandra Chinensis. Modern research has confirmed that Sishen Pill and its active secondary metabolites, such as psoralen, myristicin, evodiamine, and schisandrin, can improve intestinal inflammation and exert antitumor pharmacological effects. Common mechanisms in treating IBD and colon cancer mainly include regulating inflammation-related signaling pathways such as nuclear factor-kappa B, mitogen-activated protein kinase, phosphatidylinositol 3-kinase, NOD-like receptor heat protein domain-related protein 3, and wingless-type MMTV integration site family; NF-E2-related factor 2 and hypoxia-inducible factor 1α to inhibit oxidative stress; mitochondrial autophagy and endoplasmic reticulum stress; intestinal immune cell differentiation and function through the Janus kinase/signal transducer and activator of transcription pathway; and improving the gut microbiota and intestinal barrier. Overall, existing evidence suggests the potential of the Sishen pill to improve IBD and suppress inflammation-to-cancer transformation. However, large-scale randomized controlled clinical studies and research on the safety of these clinical applications are urgently required.
Collapse
Affiliation(s)
- Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Yang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Simanjuntak MV, Jauhar MM, Syaifie PH, Arda AG, Mardliyati E, Shalannanda W, Hermanto BR, Anshori I. Revealing Propolis Potential Activity on Inhibiting Estrogen Receptor and Heat Shock Protein 90 Overexpressed in Breast Cancer by Bioinformatics Approaches. Bioinform Biol Insights 2024; 18:11779322231224187. [PMID: 38274992 PMCID: PMC10809879 DOI: 10.1177/11779322231224187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha (ERα) and heat shock protein 90 (HSP90) overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism. Propolis, a natural bee product, has been explored for its anticancer activity. However, there is lack of studies that evaluated the potential inhibitor from propolis compounds to the ERα and HSP90 proteins. Therefore, this article focuses on examining the correlation between ERα and HSP90's role in breast cancer and investigating the potential of 93 unique propolis compositions in inhibiting these genes in breast cancer using in silico approaches. This study revealed the positive correlation between ERα and HSP90 genes in breast cancer disease development. Furthermore, we also found novel potential bioactive compounds of propolis against breast cancer through binding with ERα and HSP90; they were 3',4',7-trihydroxyisoflavone and baicalein-7-O-β-D glucopyranoside, respectively. Further research on these compounds is needed to elucidate deeper mechanisms and activity in the real biological system to develop new breast cancer drug treatments.
Collapse
Affiliation(s)
- Masriana Vivi Simanjuntak
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Biomedical Engineering, The Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Adzani Gaisani Arda
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wervyan Shalannanda
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Beni Rio Hermanto
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
6
|
Limonin mitigates cardiometabolic complications in rats with metabolic syndrome through regulation of the IRS-1/GLUT4 signalling pathway. Biomed Pharmacother 2023; 161:114448. [PMID: 36857910 DOI: 10.1016/j.biopha.2023.114448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Limonin is a natural triterpenoid isolated from citrus fruit. In the present study, we examined the effects of limonin on cardiometabolic alterations in diet-induced metabolic syndrome. Metabolic syndrome was induced in rats by feeding them a high-fat (HF) diet plus 15% fructose in drinking water for 16 weeks. They were treated with limonin (50 or 100 mg/kg) (n = 8/group) for the final 4 weeks. Increases in body weight (BW), fasting blood glucose (FBG), serum insulin, total cholesterol (TC), blood pressure (BP), liver fat accumulation, and adipocyte hypertrophy, as well as oral glucose tolerance in rats with metabolic syndrome were alleviated by limonin treatment (p < 0.05). Limonin improved ejection fraction and left ventricular (LV) hypertrophy, and reduced angiotensin converting enzyme (ACE) activity and angiotensin II (Ang II) concentration in rats with metabolic syndrome (p < 0.05). It also reduced plasma tumour necrosis factor (TNF)-α, interleukin (IL)- 6, leptin, malonaldehyde (MDA), and superoxide generation, and increased catalase activity in rats with metabolic syndrome compared to controls (p < 0.05). Downregulation of insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expression in epididymal fat pads and cardiac, liver, and gastrocnemius tissues was present in metabolic syndrome, and these were restored by limonin treatment (p < 0.05). In conclusion, limonin shows a potential effect in alleviating symptoms and improving cardiometabolic disorders. These beneficial effects are linked to the reduction of the renin-angiotensin system, inflammation, oxidative stress, and improvement of IRS-1/GLUT4 protein expression in the target tissue.
Collapse
|
7
|
Jia B, Zhao L, Liu P, Li M, Tian Z. Limonin ameliorates indomethacin-induced intestinal damage and ulcers through Nrf2/ARE pathway. Immun Inflamm Dis 2023; 11:e787. [PMID: 36840501 PMCID: PMC9958512 DOI: 10.1002/iid3.787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause intestinal damage and ulcers and the incidence is increasing. Limonin plays an important role in the regulation of inflammatory diseases, but it has not been reported in the treatment of intestinal injury and ulcers. METHODS Indomethacin (INDO) induced intestinal injury and ulcer model in rats. The indexes related to intestinal injury were detected. Western blot and molecular docking techniques were used to detect the docking between Limonin and Nrf2. Next, ML385, an inhibitor of Nrf2/ARE signaling pathway, was applied to treat intestinal epithelial IEC-6 cells induced by INDO. And CCK8, Western blot, TUNEL, ELISA, DCFH-DA assay, kits, and immunofluorescence were conducted to detect cell activity, apoptosis, inflammatory response, oxidative stress, and tight junction again. RESULTS INDO can significantly induce intestinal ulcerative lesions in rats. Limonin could improve intestinal ulcerative lesions induced by INDO in rats. Limonin could reduce INDO-induced inflammatory response and oxidative stress in the small intestine of rats, and improve the intestinal barrier dysfunction induced by INDO. Limonin could dock with Nrf2 structure and activate Nrf2/ARE signaling pathway. ML385 could reverse the protective effect of Limonin against INDO-induced cell damage. CONCLUSION Limonin ameliorates INDO-induced intestinal damage and ulcers through Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Bo Jia
- Department of Spleen and Stomach Diseases, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Leyi Zhao
- Qihuang CollegeBeijing University of Chinese MedicineBeijingChina
| | - Pengpeng Liu
- School of PharmacyLiaoning University of Traditional Chinese MedicineDalianChina
| | - Meng Li
- Department of Spleen and Stomach Diseases, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Zhilei Tian
- Department of GastroenterologyAir Force Specialty Medical CenterBeijingChina
| |
Collapse
|
8
|
Wang W, Yang L, Hu M, Yang Y, Ma Q, Chen J. Network Pharmacology to Reveal the Molecular Mechanisms of Rutaceous Plant-derived Limonin Ameliorating Non-alcoholic Steatohepatitis. Crit Rev Immunol 2023; 43:11-23. [PMID: 37831520 DOI: 10.1615/critrevimmunol.2023050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Limonin shows promise in alleviating non-alcoholic fatty liver disease. We investigated the mechanisms of limonin against non-alcoholic steatohepatitis (NASH) using network pharmacology and molecular docking. METHODS Public databases provided NASH- and limonin-associated targets. VennDiagram identified potential limonin targets for NASH. Enrichment analysis explored the limonin-NASH relationship. PPI network analysis, CytoHubba models, and bioinformatics identified hub genes for NASH treatment. Molecular docking assessed limonin's binding ability to hub targets. RESULTS We found 37 potential limonin targets in NASH, involved in oxidative stress, inflammation, and signaling pathways. PPI network analysis revealed seven hub genes (STAT3, NFKBIA, MTOR, TLR4, CASP8, PTGS2, NFKB1) as NASH treatment targets. Molecular docking confirmed limonin's binding to STAT3, CASP8, and PTGS2. Animal experiments on high-fat diet mice showed limonin reduced hepatic steatosis, lipid accumulation, and expression of p-STAT3/STAT3, CASP8, and PTGS2. CONCLUSION Limonin's therapeutic effects in NASH may stem from its antioxidant and anti-inflammatory properties. STAT3, CASP8, and PTGS2 are potential key targets for NASH treatment, warranting further investigation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Li Yang
- Northwest Minzu University, Lanzhou, Gansu, China
| | - Minjie Hu
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Yonglin Yang
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Qiang Ma
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Jiayu Chen
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
10
|
Gao L, Gou N, Amakye WK, Wu J, Ren J. Bioactivity guided isolation and identification of phenolic compounds from Citrus aurantium L. with anti-colorectal cancer cells activity by UHPLC-Q-TOF/MS. Curr Res Food Sci 2022; 5:2251-2260. [DOI: 10.1016/j.crfs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
|
11
|
Li Y, Yang M, Lin H, Yan W, Deng G, Ye H, Shi H, Wu C, Ma G, Xu S, Tan Q, Gao Z, Gao L. Limonin Alleviates Non-alcoholic Fatty Liver Disease by Reducing Lipid Accumulation, Suppressing Inflammation and Oxidative Stress. Front Pharmacol 2022; 12:801730. [PMID: 35046824 PMCID: PMC8762292 DOI: 10.3389/fphar.2021.801730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and continues to rise in the worldwide. Limonin is a triterpenoid compound widely found in the fruits of citrus plants with a wide range of pharmacological effects, including anti-cancer, anti-inflammation, anti-viral, anti-oxidation and liver protection properties. However, the potential molecular mechanism of limonin on NAFLD in zebrafish remains unknown. In this study, zebrafish larvae were exposed to thioacetamide to establish an NAFLD model and the larvae were treated with limonin for 72 h simultaneously. The human liver cell line was stimulated with lipid mixture and meanwhile incubated with limonin for 24 h. The results showed that Limonin significantly reduced the accumulation of lipid droplets in the liver and down-regulated the levels of lipogenic transcription factors FASN and SREBP1 in NAFLD. Limonin suppressed macrophages infiltration and the down-regulated the relative expression levels of the pro-inflammatory factors IL-6, IL-1β and TNF-α secreted by macrophages. Besides, limonin could reversed the reduction of glutathione and the accumulation of reactive oxygen species through up-regulating NRF2/HO-1 signaling pathway in the liver. In conclusion, this study revealed that limonin has a protective effect on NAFLD due to its resistance to lipid deposition as well as antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan Lin
- Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guoliang Ma
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shu Xu
- Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qinxiang Tan
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Zhuowei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shunde Hospital, Guangzhou University of Chinese Medicine, Foshan, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|