1
|
Brempou D, Montibus B, Izatt L, Andoniadou CL, Oakey RJ. Using parenclitic networks on phaeochromocytoma and paraganglioma tumours provides novel insights on global DNA methylation. Sci Rep 2024; 14:29958. [PMID: 39622952 PMCID: PMC11612305 DOI: 10.1038/s41598-024-81486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Despite the prevalence of sequencing data in biomedical research, the methylome remains underrepresented. Given the importance of DNA methylation in gene regulation and disease, it is crucial to address the need for reliable differential methylation methods. This work presents a novel, transferable approach for extracting information from DNA methylation data. Our agnostic, graph-based pipeline overcomes the limitations of commonly used differential methylation techniques and addresses the "small n, big k" problem. Pheochromocytoma and Paraganglioma (PPGL) tumours with known genetic aetiologies experience extreme hypermethylation genome wide. To highlight the effectiveness of our method in candidate discovery, we present the first phenotypic classifier of PPGLs based on DNA methylation achieving 0.7 ROC-AUC. Each sample is represented by an optimised parenclitic network, a graph representing the deviation of the sample's DNA methylation from the expected non-aggressive patterns. By extracting meaningful topological features, the dimensionality and, hence, the risk of overfitting is reduced, and the samples can be classified effectively. By using an explainable classification method, in this case logistic regression, the key CG loci influencing the decision can be identified. Our work provides insights into the molecular signature of aggressive PPGLs and we propose candidates for further research. Our optimised parenclitic network implementation improves the potential utility of DNA methylation data and offers an effective and complete pipeline for studying such datasets.
Collapse
Affiliation(s)
- Dimitria Brempou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Bertille Montibus
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
2
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Mazzio E, Barnes A, Badisa R, Fierros-Romero G, Williams H, Council S, Soliman K. Functional immune boosters; the herb or its dead microbiome? Antigenic TLR4 agonist MAMPs found in 65 medicinal roots and algae's. J Funct Foods 2023; 107:105687. [PMID: 37654434 PMCID: PMC10469438 DOI: 10.1016/j.jff.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background Humans have been consuming medicinal plants (as herbs/ spices) to combat illness for centuries while ascribing beneficial effects predominantly to the plant/phytochemical constituents, without recognizing the power of obligatory resident microorganism' communities (MOCs) (live/dead bacteria, fungus, yeast, molds etc.) which remain after industrial microbial reduction methods. Very little is known about the taxonomic identity of residual antigenic microbial associated molecular patterns (MAMPs) debris in our botanical over the counter (OTC) products, which if present would be recognized as foreign (non-self) antigenic matter by host pattern recognition receptors (PRRs) provoking a host immune response; this the basis of vaccine adjuvants. As of today, only few research groups have removed the herbal MAMP biomass from herbs, all suggesting that immune activation may not be from the plant but rather its microbial biomass; a hypothesis we corroborate. Purpose The purpose of this work was to conduct a high through put screening (HTPS) of over 2500 natural plants, OTC botanical supplements and phytochemicals to elucidate those with pro-inflammatory; toll like receptor 4 (TLR4) activating properties in macrophages. Study Design The HTPS was conducted on RAW 264.7 cells vs. lipopolysaccharide (LPS) E. coli 0111:B4, testing iNOS / nitric oxide production ( NO 2 - ) as a perimeter endpoint. The data show not a single drug/chemical/ phytochemical and approximately 98 % of botanicals to be immune idle (not effective) with only 65 pro-inflammatory (hits) in a potency range of LPS. Method validation studies eliminated the possibility of false artifact or contamination, and results were cross verified through multiple vendors/ manufacturers/lot numbers by botanical species. Lead botanicals were evaluated for plant concentration of LPS, 1,3:1,6-β-glucan, 1,3:1,4-β-D-glucan and α-glucans; where the former paralleled strength in vitro. LPS was then removed from plants using high-capacity endotoxin poly lysine columns, where bioactivity of LPS null "plant" extracts were lost. The stability of E.Coli 0111:B4 in an acid stomach mimetic model was confirmed. Last, we conducted a reverse culture on aerobic plate counts (APCs) from select hits, with subsequent isolation of gram-negative bacteria (MacConkey agar). Cultures were 1) heat destroyed (retested/ confirming bioactivity) and 2) subject to taxonomical identification by genetic sequencing 18S, ITS1, 5.8 s, ITS2 28S, and 16S. Conclusion The data show significant gram negative MAMP biomass dominance in A) roots (e.g. echinacea, yucca, burdock, stinging nettle, sarsaparilla, hydrangea, poke, madder, calamus, rhaponticum, pleurisy, aconite etc.) and B) oceanic plants / algae's (e.g. bladderwrack, chlorella, spirulina, kelp, and "OTC Seamoss-blends" (irish moss, bladderwrack, burdock root etc), as well as other random herbs (eg. corn silk, cleavers, watercress, cardamom seed, tribulus, duckweed, puffball, hordeum and pollen). The results show a dominance of gram negative microbes (e.g. Klebsilla aerogenes, Pantoae agglomerans, Cronobacter sakazakii), fungus (Glomeracaea, Ascomycota, Irpex lacteus, Aureobasidium pullulans, Fibroporia albicans, Chlorociboria clavula, Aspergillus_sp JUC-2), with black walnut hull, echinacea and burdock root also containing gram positive microbial strains (Fontibacillus, Paenibacillus, Enterococcus gallinarum, Bromate-reducing bacterium B6 and various strains of Clostridium). Conclusion This work brings attention to the existence of a functional immune bioactive herbal microbiome, independent from the plant. There is need to further this avenue of research, which should be carried out with consideration as to both positive or negative consequences arising from daily consumption of botanicals highly laden with bioactive MAMPS.
Collapse
Affiliation(s)
- E. Mazzio
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - A. Barnes
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - R. Badisa
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - G. Fierros-Romero
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - H. Williams
- Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL 32307, United States
| | - S. Council
- John Gnabre Science Research Institute, Baltimore, MD 21224, United States
| | - K.F.A. Soliman
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| |
Collapse
|
4
|
Liao D, Liu Y, Li C, He B, Zhou G, Cui Y, Huang H. Arctigenin hinders the invasion and metastasis of cervical cancer cells via the FAK/paxillin pathway. Heliyon 2023; 9:e16683. [PMID: 37292259 PMCID: PMC10245248 DOI: 10.1016/j.heliyon.2023.e16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Context Cervical cancer is the most common gynecological pernicious tumor with high morbidity and mortality worldwide, especially in developing countries. Arctigenin (ARG), a nature-derived component, has exhibited anti-tumor activity in various tumors. Objective To explore the effect of ARG on cervical cancer. Materials and methods The effect and mechanism of ARG on cervical cancer cells were explored by cell counting kit-8 (CCK-8), flow cytometry, transwell and Western blot assays. Additionally, in vivo experiment was conducted in xenografted mice by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) and Western blot assays. Results ARG treatment induced both concentration-dependent and time-dependent reductions in the cell viability of SiHa and HeLa cells with a IC50 value of 9.34 μM and 14.45 μM, respectively. ARG increased the apoptosis rate and the protein levels of cleaved-caspase 3 and E-cadherin, but decreased the invaded cell numbers and the protein levels of Vimentin and N-cadherin in vitro. Mechanically, ARG inhibited the expression of focal adhesion kinase (FAK)/paxillin pathway, which was confirmed by the overexpression of FAK in SiHa cells. The inhibitory role of overexpression of FAK in proliferation and invasion, as well as its promoted role in apoptosis were reversed with ARG treatment. Meanwhile, ARG suppressed growth and metastasis, and enhanced apoptosis in vivo. Consistently, ARG administration reduced the relative protein level of p-FAK/FAK and p-paxillin/paxillin in tumor tissues of xenografted mice. Conclusion ARG inhibited proliferation, invasion and metastasis, but enhanced apoptosis of cervical cancer via the FAK/paxillin axis.
Collapse
Affiliation(s)
- Dan Liao
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yanyan Liu
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- .Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- .Department of Rehabilitation Medicine, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- .Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Haohai Huang
- .Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
- .Department of Clinical Pharmacy, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
5
|
Chu Y, Shi D, Wang N, Ren L, Liu N, Hu F, Meng W, Hong SJ, Bai X. Clonorchis sinensis legumain promotes migration and invasion of cholangiocarcinoma cells via regulating tumor-related molecules. Parasit Vectors 2023; 16:71. [PMID: 36797792 PMCID: PMC9933405 DOI: 10.1186/s13071-023-05694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Clonorchis sinensis infection causes serious pathological changes in the bile duct and is highly correlated with cholangiocarcinoma. The excretory-secretory products (ESP) of C. sinensis play a critical role in the oncogenesis and progression of cholangiocarcinoma, while the components and precise mechanism remain unclear. Here, we evaluated the function of C. sinensis legumain (Cslegumain) in promoting the invasion and migration of cholangiocarcinoma cells and the mechanism involved. METHODS The structural and molecular characteristics of Cslegumain were predicted and analyzed using the online program Phyre2. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining were performed to test the transcriptional level of Cslegumain and its localization in the adult. Native Cslegumain was detected by western blotting assay. The effects of Cslegumain on the proliferation, invasion and migration of cholangiocarcinoma cells were checked using CCK-8 assay, Matrigel transwell assay and scratch wound healing assay. Expression levels of tumor-related molecules regulated by Cslegumain were evaluated by qRT-PCR and western blotting assay. RESULTS Cslegumain showed high similarity with human legumain in the secondary and tertiary structures and displayed higher transcriptional levels in the adult worm than in the metacercariae. Native Cslegumain was detected in a catalytic form and was localized mainly in the intestine of the C. sinensis adult and epithelial cells of the intrahepatic bile duct. After transfection into RBE cells, Cslegumain showed high ability in promoting the invasion and migration but not the proliferation of cholangiocarcinoma RBE cells. Furthermore, the expression levels of some molecules including E-cadherin and N-cadherin were downregulated, while the levels of α-actinin 4, β-catenin and inducible nitric oxide synthase (iNOS) were upregulated. CONCLUSIONS Our findings indicated that Cslegumain showed very similar structures as those of human legumain and could promote the invasion and migration of cholangiocarcinoma cells by regulating some tumor-related molecules.
Collapse
Affiliation(s)
- Yanfei Chu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Doufei Shi
- grid.452240.50000 0004 8342 6962Department of Geriatric Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Nan Wang
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Lebin Ren
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Naiguo Liu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Fengai Hu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Wei Meng
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Sung-Jong Hong
- grid.254224.70000 0001 0789 9563Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Dongjak-Gu, Seoul, 156-756 Republic of Korea
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Weng M, Shi C, Han H, Zhu H, Xiao Y, Guo H, Yu Z, Wu C. Sophocarpine inhibits tumor progression by antagonizing the PI3K/AKT/mTOR signaling pathway in castration-resistant prostate cancer. PeerJ 2022; 10:e14042. [PMID: 36132221 PMCID: PMC9484452 DOI: 10.7717/peerj.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Objective The objective of this study was to investigate the inhibitory effect of sophocarpine on the progression of castration-resistant prostate cancer (CRPC) and the underlying molecular mechanism. Methods DU145 and PC3 cells (two CRPC cell lines), incubated with different concentrations of sophocarpine, were used. Cell Counting Kit-8 assay, real-time cellular analysis, and colony formation assay were conducted to evaluate the proliferation of CRPC cells. Cytometry flow analysis was performed to evaluate the apoptosis rate of CRPC cells. Wound healing and Transwell invasion assays were performed and the levels of the epithelial-mesenchymal transition (EMT)-related proteins were determined to analyze cell migration and invasion abilities. A xenografted tumor model of nude mice was used to examine the anti-cancer effect of sophocarpine on CRPC. Western blotting was performed to evaluate the activities of the PI3K/AKT/mTOR signaling pathway both in cells and tumor tissues. Results In vitro tests showed that sophocarpine suppressed the proliferation of CRPC cells, reduced the migration and invasion abilities, and increased the apoptosis rate. In vivo, sophocarpine decreased the weight and volume of tumor tissues. Mechanically, sophocarpine exerted its anti-cancer effects by inactivating PI3K/AKT/mTOR signaling. Conclusion Sophocarpine inhibited the progression of CRPC by downregulating the PI3K/AKT/mTOR signaling pathway and showed a potential to be an anti-cancer agent against CRPC.
Collapse
Affiliation(s)
- Min Weng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghao Shi
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Han
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cunzao Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|