1
|
Abella LMR, Neumann J, Hofmann B, Kirchhefer U, Gergs U. Clebopride stimulates 5-HT 4-serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04075-1. [PMID: 40128365 DOI: 10.1007/s00210-025-04075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Clebopride resembles in its structural formula metoclopramide. Clebopride, an approved drug, is used to treat gastrointestinal diseases. Here, we tested the hypothesis that clebopride like metoclopramide acts as a partial agonist at human cardiac 5-HT4-serotonin-receptors. Clebopride enhanced the force of contraction (FOC) in isolated, electrically stimulated (1 Hz) left atrial preparations (LA) from transgenic mice with cardiac specific overexpression of the human 5-HT4-serotonin receptors (5-HT4-TG). Subsequently applied GR125487 (1 µM), a specific 5-HT4-serotonin-receptor antagonist, diminished this positive inotropic effect (PIE) of clebopride in LA from 5-HT4-TG. Clebopride failed to heighten FOC in LA from littermate wild-type mouse hearts (WT). Clebopride augmented the beating rate in isolated right atrial preparations (RA) from 5-HT4-TG but unable to do so in RA from WT. Clebopride alone (up to 10 µM) failed to augment FOC in isolated electrically stimulated (1Hz) human right atrial preparations (HAP) obtained during open heart surgery from adult patients with severe coronary heart disease. Interestingly, in the presence of the phosphodiesterase III inhibitor cilostamide, clebopride heightened FOC in HAP. GR125487 attenuated this PIE in HAP. Furthermore, when 1 µM serotonin had raised FOC in HAP, additionally applied 10 µM clebopride diminished FOC in HAP. We conclude that clebopride can act as an agonist and as an antagonist at 5-HT4-serotonin receptors in the human atrium.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| | - Joachim Neumann
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Medical Faculty, Institute for Pharmacology and Toxicology, University Münster, Münster, Germany
| | - Ulrich Gergs
- Medical Faculty, Institute for Pharmacology and Toxicology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| |
Collapse
|
2
|
Abella LMR, Neumann J, Hofmann B, Gergs U. Bromopride stimulates 5-HT 4-serotonin receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04013-1. [PMID: 40095050 DOI: 10.1007/s00210-025-04013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Bromopride, an analogue of metoclopramide, is approved in some countries to treat gastrointestinal diseases. These therapeutic effects of bromopride are explained by antagonism at D2-dopamine receptors in the gut and the brain. We tested here the hypothesis that bromopride acts as an agonist or antagonist at the human cardiac 5-HT4-serotonin receptors. To this end, the force of contraction (FOC) was measured in isolated human atrial preparations (HAP), in isolated left atrial preparations (LA), and in isolated spontaneously beating right atrial (RA) preparations from mice with cardiac specific overexpression of the human 5-HT4-serotonin receptors (5-HT4-TG). Bromopride concentration dependently increased FOC in LA from 5-HT4-TG. The positive inotropic effect (PIE) of bromopride in LA from 5-HT4-TG was abolished by GR125487, a 5-HT4-serotonin receptor antagonist. Only in the presence of the phosphodiesterase III inhibitor cilostamide did bromopride raise FOC under isometric conditions in HAP. The PIE of 10 µM bromopride in HAP was extinguished by 1 µM GR125487. When serotonin had elevated FOC in HAP, additionally applied bromopride reduced FOC. These data suggest that bromopride is a partial agonist at human cardiac 5-HT4-serotonin receptors.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Britt Hofmann
- Department of Cardiac Surgery, mid-German Heart Centre, University Hospital Halle, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany
| |
Collapse
|
3
|
Pham TH, Abella LMR, Hadova K, Klimas J, Dhein S, Pockes S, Schlicht JMA, Hofmann B, Kirchhefer U, Neumann J, Gergs U. Stimulation of histamine H 1-receptors produces a positive inotropic effect in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03735-y. [PMID: 39729205 DOI: 10.1007/s00210-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
There is a controversy whether histamine H1-receptor activation raises or lowers or does not affect contractility in the human heart. Therefore, we studied stimulation of H1-receptors in isolated electrically stimulated (one beat per second) human atrial preparations (HAP). For comparison, we measured force of contraction in left atrial preparations (LA) from mice with overexpression of the histamine H1-receptor in the heart (H1-TG). We detected the messenger ribonucleic acid (mRNA) expression of human histamine H1-receptors in HAP. In LA from H1-TG, each cumulatively applied concentration of histamine and a dual H1/H2-agonist called 2-(2-thiazolyl)-ethylamine (ThEA) caused a time-dependent initial negative inotropic effect followed over time by a lasting positive inotropic effect. Both effects were concentration-dependent in LA from H1-TG. After 100 µM cimetidine, 10 µM histamine exercised a positive inotropic effect in HAP that was diminished by 10 µM mepyramine, an H1-receptor antagonist. The concentrations of mepyramine and cimetidine used here are based on the work of others and our own work (e.g., Guo et al. J Cardiovasc Pharmacol. 6:1210-5 1984, Rayo Abella et al. J Pharmacol Exp Ther. 389:174-185 2024). Similarly, we observed that ThEA (10 µM, 30 µM, 100 µM cumulatively applied) induced a concentration- and time-dependent positive inotropic effect in HAP. In HAP, we detected never negative inotropic effects to either histamine or ThEA. The positive inotropic effects to ThEA in HAP were reduced by mepyramine. The positive inotropic effects of ThEA in LA from H1-TG and in HAP were not accompanied by reductions in the time of tension relaxation. We conclude that stimulation of histamine H1-receptors only increases and does not decrease force of contraction in the HAP in our patients.
Collapse
Affiliation(s)
- Thanh Hoai Pham
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Stefan Dhein
- Rudolf‑Boehm Institute for Pharmacology and Toxicology, University Leipzig, Härtelstraße 16‑18, D‑04107, Leipzig, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jonas Manfred Albert Schlicht
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle, Ernst-Grube-Str. 40, D‑06097, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, University Münster, Domagkstraße 12, D-48149, Münster, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
4
|
Neumann J, Hesse C, Hofmann B, Gergs U. Mosapride stimulates human 5-HT 4-serotonin receptors in the heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6705-6720. [PMID: 38498060 PMCID: PMC11422274 DOI: 10.1007/s00210-024-03047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Mosapride (4-amino-5-chloro-2-ethoxy-N-[[4-[(4-fluorophenyl) methyl]-2-morpholinyl]-methyl] benzamide) is a potent agonist at gastrointestinal 5-HT4 receptors. Mosapride is an approved drug to treat several gastric diseases. We tested the hypothesis that mosapride also stimulates 5-HT4 receptors in the heart. Mosapride increased the force of contraction and beating rate in isolated atrial preparations from mice with cardiac overexpression of human 5-HT4-serotonin receptors (5-HT4-TG). However, it is inactive in wild-type mouse hearts (WT). Mosapride was less effective and potent than serotonin in raising the force of contraction or the beating rate in 5-HT4-TG. Only in the presence of cilostamide (1 μM), a phosphodiesterase III inhibitor, mosapride, and its primary metabolite time dependently raised the force of contraction under isometric conditions in isolated paced human right atrial preparations (HAP, obtained during open heart surgery). In HAP, mosapride (10 μM) reduced serotonin-induced increases in the force of contraction. Mosapride (10 µM) shifted the concentration-response curves to serotonin in HAP to the right. These data suggest that mosapride is a partial agonist at 5-HT4-serotonin receptors in HAP.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany.
| | - Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube-Straße 40, 06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06112, Halle (Saale), Germany
| |
Collapse
|
5
|
Neumann J, Hadová K, Klimas J, Hofmann B, Gergs U. Contractile Effects of Semaglutide in the Human Atrium. Pharmaceutics 2024; 16:1139. [PMID: 39339176 PMCID: PMC11435389 DOI: 10.3390/pharmaceutics16091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Semaglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist. GLP-1R agonists are used to treat type 2 diabetes and obesity. It is currently unknown whether semaglutide can directly increase force of contraction (FOC) in the human heart. We tested the hypothesis that semaglutide might increase the FOC in the isolated human atrium. To this end, we conducted contraction experiments in isolated human right atrial muscle preparations (HAP). HAP were obtained during open-heart surgery. We detected a concentration- and time-dependent positive inotropic effect (PIE) of semaglutide in HAP. These PIEs were accompanied by increases in the rates of tension development and tension relaxation and a reduction in muscle relaxation time. The PIE of semaglutide in HAP was attenuated by H89, an inhibitor of the cyclic AMP-dependent protein kinase and by ryanodine, an inhibitor of sarcoplasmic Ca2+ release. Semaglutide up to 100 nM failed to exert a PIE in isolated electrically paced (1 Hz) wild-type mouse left atrial preparations studied for comparison. Our data suggest that semaglutide can increase the FOC in the atria of patients at therapeutic drug concentrations.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112 Halle (Saale), Germany
| | - Katarína Hadová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube-Straße 40, D-06097 Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06112 Halle (Saale), Germany
| |
Collapse
|
6
|
Rayo Abella LM, Jacob H, Keller M, Schindler L, Pockes S, Pitzl S, Klimas J, Hadova K, Schneider S, Buchwalow IB, Jin C, Panula P, Kirchhefer U, Neumann J, Gergs U. Initial Characterization of a Transgenic Mouse with Overexpression of the Human H 1-Histamine Receptor on the Heart. J Pharmacol Exp Ther 2024; 389:174-185. [PMID: 38531640 DOI: 10.1124/jpet.123.002060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
There is a debate on whether H1-histamine receptors can alter contractility in the mammalian heart. We studied here a new transgenic mouse model where we increased genetically the cardiac level of the H1-histamine receptor. We wanted to know if histamine could augment or decrease contractile parameters in mice with cardiac-specific overexpression of human H1-histamine receptors (H1-TG) and compared these findings with those in littermate wild-type mice (WT). In H1-TG mice, we studied the presence of H1-histamine receptors by autoradiography of the atrium and ventricle using [3H]mepyramine. The messenger RNA for human H1-histamine receptors was present in the heart from H1-TG and absent from WT. Using in situ hybridization, we noted mRNA for the human H1-histamine receptor in cardiac cells from H1-TG. We noted that histamine (1 nM-10 µM) in paced (1 Hz) left atrial preparations from H1-TG, exerted at each concentration of histamine initially reduced force of contraction and then raised contractile force. Likewise, in spontaneously beating left atrial preparations from H1-TG, we noted that histamine led to a transient reduction in the spontaneous beating rate followed by an augmentation in the beating rate. The negative inotropic and chronotropic and the positive inotropic effects on histamine in isolated atrial muscle strips from H1-TG were attenuated by the H1-histamine receptor antagonist mepyramine. Histamine failed to exert an increased force or reduce the heartbeat in atrial preparations from WT. We concluded that stimulation of H1-histamine-receptors can decrease and then augment contractile force in the mammalian heart and stimulation of H1-histamine receptors exerts a negative chronotropic effect. SIGNIFICANCE STATEMENT: We made novel transgenic mice with cardiomyocyte-specific high expressional levels of the human H1-histamine receptor to contribute to the clarification of the controversy on whether H1-histamine receptors increase or decrease contractility and beating rate in the mammalian heart. From our data, we conclude that stimulation of H1-histamine receptors first decrease and then raise contractile force in the mammalian heart but exert solely negative chronotropic effects.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Max Keller
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Lisa Schindler
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Steffen Pockes
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Sebastian Pitzl
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Jan Klimas
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Katarína Hadova
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Sarah Schneider
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Igor B Buchwalow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - CongYu Jin
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Pertti Panula
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| |
Collapse
|
7
|
Bahr F, Ricke-Hoch M, Ponimaskin E, Müller F. Serotonin Receptors in Myocardial Infarction: Friend or Foe? ACS Chem Neurosci 2024; 15:1619-1634. [PMID: 38573542 PMCID: PMC11027101 DOI: 10.1021/acschemneuro.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.
Collapse
Affiliation(s)
- F.S. Bahr
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M. Ricke-Hoch
- Cardiology
and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - E. Ponimaskin
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - F.E. Müller
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
8
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of hallucinogenic drugs on the human heart. Front Pharmacol 2024; 15:1334218. [PMID: 38370480 PMCID: PMC10869618 DOI: 10.3389/fphar.2024.1334218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Hallucinogenic drugs are used because they have effects on the central nervous system. Their hallucinogenic effects probably occur via stimulation of serotonin receptors, namely, 5-HT2A-serotonin receptors in the brain. However, a close study reveals that they also act on the heart, possibly increasing the force of contraction and beating rate and may lead to arrhythmias. Here, we will review the inotropic and chronotropic actions of bufotenin, psilocin, psilocybin, lysergic acid diethylamide (LSD), ergotamine, ergometrine, N,N-dimethyltryptamine, and 5-methoxy-N,N-dimethyltryptamine in the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Münster, Münster, Germany
| | - Britt Hofmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Neumann J, Pockes S, Humphrys LJ, Mönnich D, Forster L, Kirchhefer U, Hofmann B, Gergs U. Clonidine stimulates force of contraction via histamine H 2 receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:617-626. [PMID: 37490122 PMCID: PMC10771369 DOI: 10.1007/s00210-023-02635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Clonidine has various clinical effects mediated by agonism of α1- or α2-adrenoceptors and the blocking of hyperpolarization-activated-nucleotide-gated pacemaker channels (HCN). It is unknown whether clonidine can also stimulate human cardiac histamine H2 receptors (hH2Rs). We used isolated electrically stimulated left and spontaneously beating right atrial preparations from mice overexpressing the hH2R specifically in the heart (H2-TG), and spontaneously beating right atrial preparations of guinea pigs for comparison. Moreover, we studied isolated electrically stimulated muscle strips from the human right atrium. Clonidine (1, 3, and 10 µM) increased force of contraction in isolated left atrial preparations from H2-TG mice. In contrast, clonidine reduced the spontaneous beating rate in right atrial preparations from H2-TG. Clonidine raised the beating rate in guinea pig right atrial preparations. Clonidine failed to increase the force of contraction but reduced beating rate in wild-type litter mate mice (WT). In WT, histamine failed to increase the force of contraction in left atrial preparations and beating rate in right atrial preparations. Clonidine (10 µM) increased the force of contraction in isolated human right atrial preparations. The positive inotropic effect in the human atrium was attenuated by cimetidine (10 µM). Clonidine increased the beating rate of the isolated spontaneously beating guinea pig right atrium and acted as a H2R partial agonist. Furthermore, clonidine showed binding to the guinea pig H2R (100 µM) using HEK cells in a recombinant expression system (pKi < 4.5) but hardly to the human H2R. These data suggest that clonidine can functionally activate cardiac human H2R.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Lisa Forster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Domagkstraße 12, D-48149, Münster, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
10
|
Jacob H, Braekow P, Hofmann B, Kirchhefer U, Forster L, Mönnich D, Humphrys LJ, Pockes S, Neumann J, Gergs U. Ergometrine stimulates histamine H 2 receptors in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3809-3822. [PMID: 37354215 PMCID: PMC10643397 DOI: 10.1007/s00210-023-02573-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Ergometrine (6aR,9R)-N-((S)-1-hydroxypropan-2-yl)-7-methyl-4,6,6a,7,8,9-hexa-hydro-indolo-[4,3-fg]chinolin-9-carboxamide or lysergide acid β-ethanolamide or ergonovine) activates several types of serotonin and histamine receptors in the animal heart. We thus examined whether ergometrine can activate human serotonin 5-HT4 receptors (h5-HT4R) and/or human histamine H2 receptors (hH2R) in the heart of transgenic mice and/or in the human isolated atrium. Force of contraction or beating rates were studied in electrically stimulated left atrial or spontaneously beating right atrial preparations or spontaneously beating isolated retrogradely perfused hearts (Langendorff setup) of mice with cardiac specific overexpression of the h5-HT4R (5-HT4-TG) or of mice with cardiac specific overexpression of the hH2R (H2-TG) or in electrically stimulated human right atrial preparations obtained during cardiac surgery. Western blots to assess phospholamban (PLB) phosphorylation on serine 16 were performed. Ergometrine exerted concentration- and time-dependent positive inotropic effects and positive chronotropic effects in atrial preparations starting at 0.3 µM and reaching a plateau at 10 µM in H2-TGs (n = 7). This was accompanied by an increase in PLB phosphorylation at serine 16. Ergometrine up 10 µM failed to increase force of contraction in left atrial preparations from 5-HT4-TGs (n = 5). Ten micrometer ergometrine increased the force of contraction in isolated retrogradely perfused spontaneously beating heart preparations (Langendorff setup) from H2-TG but not 5-HT4-TG. In the presence of the phosphodiesterase inhibitor cilostamide (1 µM), ergometrine at 10 µM exerted positive inotropic effects in isolated electrically stimulated human right atrial preparations, obtained during cardiac surgery, and these effects were eliminated by 10 µM of the H2R antagonist cimetidine but not by 10 µM of the 5-HT4R antagonist tropisetron. Furthermore, ergometrine showed binding to human histamine H2 receptors (at 100 µM and 1 mM) using HEK cells in a recombinant expression system (pKi < 4.5, n = 3). In conclusion, we suggest that ergometrine is an agonist at cardiac human H2Rs.
Collapse
Affiliation(s)
- Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Pauline Braekow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, 06097, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Westfälische Wilhelms- Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Lisa Forster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany.
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| |
Collapse
|
11
|
Hoffmann RJR, Gergs U, Hofmann B, Kirchhefer U, Neumann J. Temperature alters the inotropic, chronotropic and proarrhythmic effects of histamine in atrial muscle preparations from humans and H 2-receptor overexpressing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2137-2150. [PMID: 36951998 PMCID: PMC10409711 DOI: 10.1007/s00210-023-02457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
We investigated whether hypothermia and hyperthermia can alter the efficacy and potency of histamine at increasing the force of cardiac contractions in mice that overexpress the human H2 receptor only in their cardiac myocytes (labelled H2-TG). Contractile studies were performed in an organ bath on isolated, electrically driven (1 Hz) left atrial preparations and spontaneously beating right atrial preparations from H2-TG mice and wild-type (WT) littermate control mice. The basal beating rate in the right atrial preparations from H2-TG mice was lowered by hypothermia (23 °C) and elevated by hyperthermia (42 °C). Furthermore, the efficacy of histamine (0.01-100 µM) at exerting positive inotropic effects was more severely attenuated in the left and right H2-TG mouse atria under hypothermia and hyperthermia than under normothermia (37 °C). Similarly, the inotropic response to histamine was attenuated under hypothermia and hyperthermia in isolated electrically stimulated (1 Hz) right atrial preparations obtained from humans undergoing cardiac surgery. The phosphorylation state of phospholamban at serine 16 at 23 °C was inferior to that at 37 °C in left atrial preparations from H2-TG mice in the presence of 10 µM histamine. In contrast, in human atrial preparations, the phosphorylation state of phospholamban at serine 16 in the presence of 100 µM histamine was lower at 42 °C than at 37 °C. Finally, under hyperthermia, we recorded more and longer lasting arrhythmias in right atrial preparations from H2-TG mice than in those from WT mice. We conclude that the inotropic effects of histamine in H2-TG mice and in human atrial preparations, as well as the chronotropic effects of histamine in H2-TG mice, are temperature dependent. Furthermore, we observed that, even without stimulation of the H2 receptors by exogenous agonists, temperature elevation can increase arrhythmias in isolated right atrial preparations from H2-TG mice. We propose that H2 receptors play a role in hyperthermia-induced supraventricular arrhythmias in human patients.
Collapse
Affiliation(s)
- Robert J. R. Hoffmann
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Ulrich Gergs
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Medizinische Fakultät, Herzchirurgie, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstr. 12, 48149 Münster, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
12
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
13
|
Jacob H, Braekow P, Schwarz R, Höhm C, Kirchhefer U, Hofmann B, Neumann J, Gergs U. Ergotamine Stimulates Human 5-HT 4-Serotonin Receptors and Human H 2-Histamine Receptors in the Heart. Int J Mol Sci 2023; 24:ijms24054749. [PMID: 36902177 PMCID: PMC10003312 DOI: 10.3390/ijms24054749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Ergotamine (2'-methyl-5'α-benzyl-12'-hydroxy-3',6',18-trioxoergotaman) is a tryptamine-related alkaloid from the fungus Claviceps purpurea. Ergotamine is used to treat migraine. Ergotamine can bind to and activate several types of 5-HT1-serotonin receptors. Based on the structural formula of ergotamine, we hypothesized that ergotamine might stimulate 5-HT4-serotonin receptors or H2-histamine receptors in the human heart. We observed that ergotamine exerted concentration- and time-dependent positive inotropic effects in isolated left atrial preparations in H2-TG (mouse which exhibits cardiac-specific overexpression of the human H2-histamine receptor). Similarly, ergotamine increased force of contraction in left atrial preparations from 5-HT4-TG (mouse which exhibits cardiac-specific overexpression of the human 5-HT4-serotonin receptor). An amount of 10 µM ergotamine increased the left ventricular force of contraction in isolated retrogradely perfused spontaneously beating heart preparations of both 5-HT4-TG and H2-TG. In the presence of the phosphodiesterase inhibitor cilostamide (1 µM), ergotamine 10 µM exerted positive inotropic effects in isolated electrically stimulated human right atrial preparations, obtained during cardiac surgery, that were attenuated by 10 µM of the H2-histamine receptor antagonist cimetidine, but not by 10 µM of the 5-HT4-serotonin receptor antagonist tropisetron. These data suggest that ergotamine is in principle an agonist at human 5-HT4-serotonin receptors as well at human H2-histamine receptors. Ergotamine acts as an agonist on H2-histamine receptors in the human atrium.
Collapse
Affiliation(s)
- Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Pauline Braekow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Höhm
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence:
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Cardiovascular effects of bufotenin on human 5-HT 4 serotonin receptors in cardiac preparations of transgenic mice and in human atrial preparations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02414-8. [PMID: 36754881 DOI: 10.1007/s00210-023-02414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
It is unclear whether bufotenin (= N,N-dimethyl-serotonin = 5-hydroxy-N,N-dimethyl-tryptamine), a hallucinogenic drug, can act on human cardiac serotonin 5-HT4 receptors. Therefore, the aim of the study was to examine the cardiac effects of bufotenin and for comparison tryptamine in transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes (5-HT4-TG), in their wild-type littermates (WT) and in isolated electrically driven (1 Hz) human atrial preparations. In 5-HT4-TG, we found that both bufotenin and tryptamine enhanced the force of contraction in left atrial preparations (pD2 = 6.77 or 5.5, respectively) and the beating rate in spontaneously beating right atrial preparations (pD2 = 7.04 or 5.86, respectively). Bufotenin (1 µM) increased left ventricular force of contraction and beating rate in Langendorff perfused hearts from 5-HT4-TG, whereas it was inactive in hearts from WT animals, as was tryptamine. The positive inotropic and chronotropic effects of bufotenin and tryptamine were potentiated by an inhibitor of monoamine oxidases (50 µM pargyline). Furthermore, bufotenin concentration- (0.1-10 µM) and time-dependently elevated force of contraction in isolated electrically stimulated musculi pectinati from the human atrium and these effects were likewise reversed by tropisetron (10 µM). We found that bufotenin (10 µM) increased the phosphorylation state of phospholamban in the isolated perfused hearts, left and right atrial muscle strips of 5-HT4-TG but not from WT and in isolated human right atrial preparations. In summary, we showed that bufotenin can increase the force of contraction via stimulation of human 5-HT4 receptors transgenic mouse cardiac preparations but notably also in human atrial preparations.
Collapse
|
15
|
Neumann J, Kirchhefer U, Dhein S, Hofmann B, Gergs U. The Roles of Cardiovascular H 2-Histamine Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2022; 12:732842. [PMID: 34987383 PMCID: PMC8720924 DOI: 10.3389/fphar.2021.732842] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses pharmacological, structural and functional relationships among H2-histamine receptors and H1-histamine receptors in the mammalian heart. The role of both receptors in the regulation of force and rhythm, including their electrophysiological effects on the mammalian heart, will then be discussed in context. The potential clinical role of cardiac H2-histamine-receptors in cardiac diseases will be examined. The use of H2-histamine receptor agonists to acutely increase the force of contraction will be discussed. Special attention will be paid to the potential role of cardiac H2-histamine receptors in the genesis of cardiac arrhythmias. Moreover, novel findings on the putative role of H2-histamine receptor antagonists in treating chronic heart failure in animal models and patients will be reviewed. Some limitations in our biochemical understanding of the cardiac role of H2-histamine receptors will be discussed. Recommendations for further basic and translational research on cardiac H2-histamine receptors will be offered. We will speculate whether new knowledge might lead to novel roles of H2-histamine receptors in cardiac disease and whether cardiomyocyte specific H2-histamine receptor agonists and antagonists should be developed.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Dhein
- Landratsamt Altenburger Land, Altenburg, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|