1
|
Ma N, Zhao S, Yang W, Wang Y. B-cell-specific Moloney murine leukemia virus integration site 1 knockdown impairs adriamycin resistance of gastric cancer cells. Arab J Gastroenterol 2023; 24:168-174. [PMID: 36878814 DOI: 10.1016/j.ajg.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND AND STUDY AIMS The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is associated with the progression of gastric cancer (GC). However, its role in drug resistance of gastric cancer stem cell (GCSC) remains unclear. This study aimed to explore the biological function of BMI-1 in GC cells and its role in drug resistance of GCSCs. PATIENTS AND METHODS We assessed BMI-1 expression in the GEPIA database and in our collected samples from patients with GC. We silenced BMI-1 using siRNA to study the cell proliferation and migration of GC cells. We also used Hoechst 33342 staining to verify the effect of adriamycin (ADR) on side population (SP) cells, and measured the effects of BMI-1 on the expression of N-cadherin, E-cadherin, and drug-resistance-related proteins (multidrug resistance mutation 1 and lung resistance-related protein). Finally, we analyzed BMI-1-related proteins uing the STRING and GEPIA databases. RESULTS BMI-1 mRNA was upregulated in GC tissues and cell lines, especially in MKN-45 and HGC-27 cells. Silencing BMI-1 reduced the proliferation and migration of GC cells. Knocking down BMI-1 significantly decreased epithelial-mesenchymal transition progression, expression levels of drug-resistant proteins, and the number of SP cells in ADR-treated GC cells. Bioinformatics analysis showed that EZH2, CBX8, CBX4, and SUZ12 were positively correlated with BMI-1 in GC tissues. CONCLUSION Our study demonstrates that BMI-1 affects the cellular activity, proliferation, migration, and invasion of GC cells. Silencing the BMI-1 gene significantly reduces the number of SP cells and the expression of drug-resistant proteins in ADR-treated GC cells. We speculate that inhibition of BMI-1 increases the drug resistance of GC cells by affecting GCSCs, and that EZH2, CBX8, CBX4, and SUZ12 may participate in BMI-1-induced enhancement of GCSC-like phenotype and viability.
Collapse
Affiliation(s)
- Ning Ma
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China.
| | - Sihui Zhao
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Wei Yang
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yongfang Wang
- Department of General Surgery Ⅱ, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
2
|
Niapour A, Miran M, Seyedasli N, Norouzi F. Anti-angiogenic effects of aqueous extract from Agrostemma githago L. seed in human umbilical vein endothelial cells via regulating Notch/VEGF, MMP2/9, ANG2, and VEGFR2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22413-22429. [PMID: 36287364 DOI: 10.1007/s11356-022-23510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Abnormal angiogenesis contributes to the pathogenesis of various diseases. The medicinal usage of Agrostemma githago L. seed (A. githago herein) has been stated in traditional medicine. This study aims to investigate the anti-angiogenic potential of aqueous extract of A. githago. In order to test the effect of A. githago extract, its impact on HUVECs, T98G, and HGF2PI2 cells was assessed by looking at cellular viability, changes in the distribution of cells in different phases of the cell cycle, induction of oxidative stress, and apoptosis. In addition, the release of VEGF, ANG2, and MMP2/9 factors, along with the expressions of the critical Notch signaling pathway players and VEGF receptors (VEGFR), was measured. Furthermore, a γ-secretase inhibitor (LY411575) was applied to determine whether Notch inhibition restores A. githago effects. As a further characterization, total phenolic and flavonoid contents of A. githago were estimated, and five triterpene saponin compounds were identified using LC-ESI-MS. In response to A. githago extract, a reduction in total cell viability, along with the induction of ROS and apoptosis, was detected. Exposure to the A. githago extract could modulate the release of VEGF and ANG2 from T98G and HUVECs, respectively. In addition, A. githago reduced the release of MMP2/9. Furthermore, Notch1, DLL4, and HEY2 transcripts and protein expressions were up-regulated, while VEGFR2 was down-regulated in treated HUVEC cells. Treatment with the A. githago extract resulted in a dose-dependent inhibition of AKT phosphorylation. Inhibition of Notch signaling retrieved the viability loss, reduced intracellular ROS, and alleviated the impaired tube formation in A. githago-treated HUVECs. Overall, these data underscore the anti-angiogenic potential of A. githago via inducing apoptosis, modifying the expression levels of VEGF/VEGFR2, and impacting the release of MMP2/9 and ANG2, effects that are most probably modulated through the Notch/VEGF signaling axis.
Collapse
Affiliation(s)
- Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mansour Miran
- Department of Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Naisana Seyedasli
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead NSW, Sydney, Australia
- The Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead NSW, Sydney, Australia
| | - Firouz Norouzi
- Department of Genetics, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Gao J, Li Y, Zou X, Lei T, Xu T, Chen Y, Wang Z. HEY1-mediated cisplatin resistance in lung adenocarcinoma via epithelial-mesenchymal transition. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:18. [PMID: 36396748 DOI: 10.1007/s12032-022-01886-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death in the world. In patients with advanced lung adenocarcinoma who are negative for driver gene mutations, platinum-based chemotherapy represented by cisplatin remain the standard of care. Therefore, studying the mechanism behind inevitable cisplatin resistance in lung adenocarcinoma is still important. In this study, the potentially related differential expression gene for cisplatin resistance in lung adenocarcinoma was screened in the GEO database. The expression level of HEY1 in cell lines of lung adenocarcinoma was detected and HEY1 expression was up-regulated in cisplatin-resistant lung adenocarcinoma tissues and cell lines A549/DDP. Patients with high HEY1 expression have poor prognosis after cisplatin therapy. Gain and loss function assays uncovered that HEY1 could regulate the cisplatin sensitivity of NSCLC cells. In vivo experiments have confirmed that silence of HEY1 expression can induce cisplatin resistance, and epithelial-mesenchymal transition (EMT) changes occur during this process. Mechanically, HEY1 silencing significantly up-regulated E-cadherin expression and down-regulated Vimentin in A549/DDP cells. While up-regulation of HEY1 resulted in down-regulation of E-cadherin and up-regulation of Vimentin in A549 cells. Immunohistochemical experiments confirmed that E-cadherin was significantly decreased, and Vimentin expression was significantly up-regulated in cisplatin-resistant lung adenocarcinoma tissues. HEY1 can mediate the occurrence of cisplatin-acquired resistance in lung adenocarcinoma, and the possible mechanism is to regulate the EMT. The results of this study can provide a new direction and target for clinical research on the reversal of cisplatin resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jin Gao
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.,Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing, Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yadong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Xiaoteng Zou
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Wan Y, Liu D, Xia J, Xu JF, Zhang L, Yang Y, Wu JJ, Ao H. Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway. Front Pharmacol 2022; 13:977539. [PMID: 36249752 PMCID: PMC9556731 DOI: 10.3389/fphar.2022.977539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rb1, a main component of ginseng, is often transformed into ginsenoside CK by intestinal flora to exert various pharmacological activity. However, it remains unclear whether ginsenoside CK is responsible for the anti-gastric cancer effect of ginsenoside Rb1 in vivo. In this study, network pharmacology was applied to predict the key signal pathways of ginsenoside Rb1 and ginsenoside CK when treating gastric cancer. The anti-proliferative effects of ginsenoside Rb1 and ginsenoside CK and the underlying mechanism in gastric cancer cells were explored by MTT, Hoechst3328 staining, ELISA, RT-qPCR and Western blotting. The results showed that PI3K-AKT/NF-κB signal pathway was the common important pathway of ginsenoside Rb1 and CK in the treatment of gastric cancer. The results of MTT assay showed that ginsenoside Rb1 could hardly inhibit the proliferation of HGC-27 cells, whereas ginsenoside CK could inhibit the proliferation of HGC-27 cells. Hoechst3328 staining showed that cells in the ginsenoside CK group were densely stained bright blue and nuclear fragmented, indicating that apoptosis occurred. ELISA results showed that ginsenoside CK could effectively downregulate the levels of cyclin CyclinB1 and CyclinD1, but ginsenoside Rb1 had no significant effect. Also, the results of Western blot and RT-qPCR showed that ginsenoside CK inhibited the expressions of anti-apoptosis-related protein Bcl-2 and apoptosis-related pathway PI3K/AKT/NF-κB, and promoted the expression of pro-apoptosis proteins Bax and Caspase 3, whereas ginsenoside Rb1 exerted no effect. In short, ginsenoside Rb1 had no anti-gastric cancer cell activity in vitro, but ginsenoside CK could effectively inhibit cell proliferation and induce cell apoptosis in HGC-27 cells. The mechanism might relate to the inhibitory effect of ginsenoside CK on the PI3K/AKT/NF-κB pathway. These results suggest that ginsenoside CK might be the in vivo material basis for the anti-gastric cancer activity of ginsenosides.
Collapse
Affiliation(s)
- Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hui Ao,
| |
Collapse
|
5
|
Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 2022; 13:682. [PMID: 35931675 PMCID: PMC9355957 DOI: 10.1038/s41419-022-05103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan-Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.
Collapse
|
6
|
Yuan X, Zhou J, Zhou L, Huang Z, Wang W, Qiu J, Yang Q, Zhang C, Ma M. Apoptosis-Related Gene-Mediated Cell Death Pattern Induces Immunosuppression and Immunotherapy Resistance in Gastric Cancer. Front Genet 2022; 13:921163. [PMID: 35865012 PMCID: PMC9295743 DOI: 10.3389/fgene.2022.921163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Apoptosis is a type of cell death, which can produce abundant mediators to modify the tumor microenvironment. However, relationships between apoptosis, immunosuppression, and immunotherapy resistance of gastric cancer (GC) remain unclear. Methods: Gene expression data and matching clinical information were extracted from TCGA-STAD, GSE84437, GSE34942, GSE15459, GSE57303, ACRG/GSE62254, GSE29272, GSE26253, and IMvigor210 datasets. A consensus clustering analysis based on six apoptosis-related genes (ARGs) was performed to determine the molecular subtypes, and then an apoptosisScore was constructed based on differentially expressed and prognostic genes between molecular subtypes. Estimate R package was utilized to calculate the tumor microenvironment condition. Kaplan-Meier analysis and ROC curves were performed to further confirm the apoptosisScore efficacy. Results: Based on six ARGs, two molecular subgroups with significantly distinct survival and immune cell infiltration were identified. Then, an apoptosisScore was built to quantify the apoptosis index of each GC patient. Next, we investigated the correlations between the clinical characteristics and apoptosisScore using logistic regression. Multivariate Cox analysis shows that low apoptosisScore was an independent predictor of poor overall survival in TCGA and ACRG datasets, and was associated with the higher pathological stage. Meanwhile, low apoptosisScore was associated with higher immune cell, higher ESTIMATEScore, higher immuneScore, higher stromalScore, higher immune checkpoint, and lower tumorpurity, which was consistent with the “immunity tidal model theory”. Importantly, low apoptosisScore was sensitive to immunotherapy. In addition, GSEA indicated that several gene ontology and Kyoto Encyclopedia of Genes and Genomes items associated with apoptosis, several immune-related pathways, and JAK–STAT signal pathway were considerably enriched in the low apoptosisScore phenotype pathway. Conclusion: Our findings propose that low apoptosisScore is a prognostic biomarker, correlated with immune infiltrates, and sensitivity to immunotherapy in GC.
Collapse
Affiliation(s)
- Xiaolu Yuan
- Department of Pathology, Maoming People’s Hospital, Maoming, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Liping Zhou
- Department of Endoscopy Center, The No.6 People’s Hospital of Benxi, Liaoning, China
| | - Zudong Huang
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Weiwei Wang
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Jiasheng Qiu
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Qiangbang Yang
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Chaohao Zhang
- Department of Pathology, Maoming People’s Hospital, Maoming, China
| | - MingHui Ma
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
- *Correspondence: MingHui Ma, ,
| |
Collapse
|