1
|
Yang F, Zhang K, Dai X, Jiang W. Preliminary Exploration of Potential Active Ingredients and Molecular Mechanisms of Yanggan Yishui Granules for Treating Hypertensive Nephropathy Using UPLC-Q-TOF/MS Coupled with Network Pharmacology and Molecular Docking Strategy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:7967999. [PMID: 38766523 PMCID: PMC11101260 DOI: 10.1155/2024/7967999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Hypertensive nephropathy (HN) is a prevalent complication of hypertension and stands as the second primary reason for end-stage renal disease. Research in clinical settings has revealed that Yanggan Yishui Granule (YGYSG) has significant therapeutic effects on HN. However, the material basis and action mechanisms of YGYSG against HN remain unclear. Consequently, this study utilized a comprehensive method integrating ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), network pharmacology, and molecular docking to delineate the active ingredients and potential therapeutic mechanisms of YGYSG for treating HN. Firstly, sixty distinct components were recognized in total as potential active ingredients in YGYSG by UPLC-Q-TOF/MS. Subsequently, the mechanisms of YGYSG against HN were revealed for the first time using network pharmacology. 23 ingredients played key roles in the complete network and were the key active ingredients, which could affect the renin-angiotensin system, fluid shear stress and atherosclerosis, HIF-1 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications by regulating 29 key targets such as TNF, IL6, ALB, EGFR, ACE, and MMP2. YGYSG could treat HN through the suppression of inflammatory response and oxidative stress, attenuating the proliferation of renal vascular smooth muscle cells, lessening glomerular capillary systolic pressure, and ameliorating renal dysfunction and vascular damage through the aforementioned targets and pathways. Molecular docking results revealed that most key active ingredients exhibited a high affinity for binding to the key targets. This study pioneers in clarifying the bioactive compounds and molecular mechanisms of YGYSG against HN and offers scientific reference into the clinical application.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Department of Cardiology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Kailun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiaohua Dai
- Department of Cardiology, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Thongsepee N, Martviset P, Himakhun W, Chantree P, Sornchuer P, Sangpairoj K, Hiranyachattada S. Cardiovascular Protective Effect of Garcinia dulcis Flower Acetone Extract in 2-Kidney-1-Clip Hypertensive Rats. Adv Pharmacol Pharm Sci 2024; 2024:9916598. [PMID: 38455637 PMCID: PMC10919976 DOI: 10.1155/2024/9916598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Morelloflavone and camboginol are bioactive compounds purified from Garcinia dulcis (GD), which has anti-inflammatory and antihypertensive properties. The objective of this study was to examine the cardiovascular protective effect of GD flower acetone extract in 2-kidney-1-clip (2K1C) hypertensive rats. Male Wistar rats underwent 2K1C or sham operation (SO) and were housed for 4 weeks. Each group of rats, then, was further divided into 2 subgroups receiving oral administration of either 50 mg/kg BW GD extract or corn oil (vehicle) daily for 4 weeks. Noninvasive blood pressure (BP) and body weight were measured weekly throughout the study. Subsequently, the invasive measurement of arterial BP and the heart rate were determined in all anesthetized rats. The baroreceptor reflex sensitivity (BRS) was investigated by injection of either phenylephrine or sodium nitroprusside for bradycardia or tachycardia response, respectively. Histological examination of the heart and thoracic aorta was also performed in order to investigate the general morphology and the tumor necrosis factor alpha (TNF-α) expression. We found that the GD flower extract significantly diminished the BP and restored the impaired BRS. Moreover, it also decreased the TNF-α expression in the cardiac muscle and thoracic aorta of 2K1C when compared to the SO group. Taken together, our data showed that GD flower extract exhibits the cardiovascular protective effect in the 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Wanwisa Himakhun
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani 12120, Thailand
| | | |
Collapse
|
3
|
Carrillo-Martinez EJ, Flores-Hernández FY, Salazar-Montes AM, Nario-Chaidez HF, Hernández-Ortega LD. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024; 29:1000. [PMID: 38474512 DOI: 10.3390/molecules29051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Quercetin is a flavonoid with a low molecular weight that belongs to the human diet's phenolic phytochemicals and nonenergy constituents. Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC), which act as reducing agents by chelating transition-metal ions. Its structure has five functional hydroxyl groups, which work as electron donors and are responsible for capturing free radicals. In addition to its antioxidant capacity, different pharmacological properties of quercetin have been described, such as carcinostatic properties; antiviral, antihypertensive, and anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis; these are developed in this review.
Collapse
Affiliation(s)
- Eber Josue Carrillo-Martinez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Flor Yohana Flores-Hernández
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | | | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinaria en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico
| |
Collapse
|
4
|
Barreca MM, Alessandro R, Corrado C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119236. [PMID: 37298188 DOI: 10.3390/ijms24119236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Flavonoids are polyphenolic phytochemical compounds found in many plants, fruits, vegetables, and leaves. They have a multitude of medicinal applications due to their anti-inflammatory, antioxidative, antiviral, and anticarcinogenic properties. Furthermore, they also have neuroprotective and cardioprotective effects. Their biological properties depend on the chemical structure of flavonoids, their mechanism of action, and their bioavailability. The beneficial effects of flavonoids have been proven for a variety of diseases. In the last few years, it is demonstrated that the effects of flavonoids are mediated by inhibiting the NF-κB (Nuclear Factor-κB) pathway. In this review, we have summarized the effects of some flavonoids on the most common diseases, such as cancer, cardiovascular, and human neurodegenerative diseases. Here, we collected all recent studies describing the protective and prevention role of flavonoids derived from plants by specifically focusing their action on the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|