1
|
Xu J, Liu X, Yu H, Wang Z. Tanshinone IIA inhibits the apoptosis process of nerve cells by upshifting SIRT1 and FOXO3α protein and regulating anti- oxidative stress molecules and inflammatory factors in cerebral infarction model. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 39523210 DOI: 10.1080/08923973.2024.2428662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND As a prevalent cerebrovascular disorder, cerebral infarction (CI) has garnered extensive attention globally due to its high incidence and substantial fatality rate. Ischemia-reperfusion injury (IRI) exacerbates not only neuronal demise but also amplifies neural functional impairment. Tanshinone IIA (Tan IIA) has been identified to confer protection against IRI, yet the precise underlying mechanisms remain elusive. This work aimed to delve into the mechanistic role of Tan IIA in CI, with the goal of furnishing more distinct theoretical substantiation for its clinical application. METHODS Initially, a middle cerebral artery embolization model group (MCAO) model was established, followed by the categorization of rats into distinct groups based on different administration modes. Therapeutic effects were evaluated through indices including mortality rate, cerebral tissue water content, CI proportion, and neural functional scoring. Meanwhile, cellular apoptosis rates in hippocampal and cortical tissues, as well as levels of oxidative stress molecules (OSM), Sirtuin 1 (SIRT1), Forkhead box O3 (FOXO3α), and inflammatory factors, were examined to explore the mechanism of action. RESULTS This work revealed that within varying doses of Tan IIA groups, as dosage escalated, mortality rate, cerebral edema severity, CI proportion, and neural functional scoring gradually diminished. Notably, the 35 mg/kg dose group exhibited the most significant reductions, with decreases of 74.9%, 12.7%, 47.5%, and 54%, respectively. Cellular apoptosis rates in hippocampal and cortical tissues displayed a stepwise descending trend, with the 35 mg/kg dose group showcasing the largest reduction. SIRT1 and FOXO3α proteins exhibited a steady increase, with the 35 mg/kg dose group manifesting respective elevations of 87.9% and 65.5%, the highest among all groups. Antioxidant molecules glutathione (GSH) and superoxide dismutase (SOD) contents progressively increased, whereas malondialdehyde (MDA) and nitric oxide (NO) content decreased. The 35 mg/kg dose group recorded the highest increments of 49.1% and 58.1% for GSH and SOD content, while achieving the greatest reductions of 55.6% and 56.2% for MDA and NO content. Expression of inflammatory factors, namely tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and interleukin-6 (IL-6), gradually declined, with reductions of 42.1%, 32.2%, and 29.1%, respectively, in the 35 mg/kg dose group, exhibiting drastic differences (p < 0.05). CONCLUSION In conclusion, this research elucidates that Tan IIA improves cerebral edema and neural function by elevating intracellular expression of SIRT1 and FOXO3α proteins, modulating OSM and inflammatory factors. These findings yielded robust experimental support for the potential use of Tan IIA as a therapeutic agent for CI.
Collapse
Affiliation(s)
- Jiao Xu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Xiufeng Liu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Heng Yu
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Zhenyu Wang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
2
|
Toader C, Radoi MP, Covlea CA, Covache-Busuioc RA, Ilie MM, Glavan LA, Corlatescu AD, Costin HP, Gica MD, Dobrin N. Cerebral Aneurysm: Filling the Gap Between Pathophysiology and Nanocarriers. Int J Mol Sci 2024; 25:11874. [PMID: 39595942 PMCID: PMC11593836 DOI: 10.3390/ijms252211874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Intracranial aneurysms, characterized by abnormal dilations of cerebral arteries, pose significant health risks due to their potential to rupture, leading to subarachnoid hemorrhage with high mortality and morbidity rates. This paper aim is to explore the innovative application of nanoparticles in treating intracranial aneurysms, offering a promising avenue for enhancing current therapeutic strategies. We took into consideration the pathophysiology of cerebral aneurysms, focusing on the role of hemodynamic stress, endothelial dysfunction, and inflammation in their development and progression. By comparing cerebral aneurysms with other types, such as aortic aneurysms, we identify pathophysiological similarities and differences that could guide the adaptation of treatment approaches. The review highlights the potential of nanoparticles to improve drug delivery, targeting, and efficacy while minimizing side effects. We discuss various nanocarriers, including liposomes and polymeric nanoparticles, and their roles in overcoming biological barriers and enhancing therapeutic outcomes. Additionally, we discuss the potential of specific compounds, such as Edaravone and Tanshinone IIA, when used in conjunction with nanocarriers, to provide neuroprotective and anti-inflammatory benefits. By extrapolating insights from studies on aortic aneurysms, new research directions and therapeutic strategies for cerebral aneurysms are proposed. This interdisciplinary approach underscores the potential of nanoparticles to positively influence the management of intracranial aneurysms, paving the way for personalized treatment options that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Christian-Adelin Covlea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Milena Monica Ilie
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Horia-Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | - Maria-Daria Gica
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (C.-A.C.); (R.-A.C.-B.); (M.M.I.); (L.-A.G.); (A.-D.C.); (H.-P.C.); (M.-D.G.)
| | | |
Collapse
|
3
|
Yang X, Zheng X, Xiao X, Li L. Effects and mechanisms of Salvia miltiorrhiza Bunge extract on myocardial cell apoptosis in rat heart failure model. Acta Cir Bras 2024; 39:e396524. [PMID: 39356933 PMCID: PMC11441121 DOI: 10.1590/acb396524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE This work aimed to investigate the effects of Tanshinone IIA (Tan IIA) on myocardial cell (MC) apoptosis in a rat model of heart failure (HF). METHODS Tan IIA was extracted from Salvia miltiorrhiza Bunge (SMB) using an ethanol reflux method. Fifty rats were randomly divided into five groups: sham (no treatment), mod (HF model establishment), low dose (LD: 0.1 mL/kg Tan IIA), medium dose (MD: 0.3 mL/kg Tan IIA), and high dose (HD: 0.5 mL/kg Tan IIA), with 10 rats in each group. The effects of different doses of Tan IIA on cardiac function, MC apoptosis, and the levels of proteins associated with the PI3K/Akt/mTOR signaling pathway were compared. RESULTS Mod group showed a significant decrease in systolic arterial pressure, mean arterial pressure, heart rate, left ventricular systolic pressure, left ventricular ejection fraction, left ventricular fractional shortening, and the levels of p-PI3K, p-Akt, and p-mTOR proteins versus sham group (p < 0.05). Additionally, the left ventricular end-diastolic diameter (LVIDd), end-systolic diameter, diastolic pressure, and MC apoptosis were significantly increased (p < 0.05). LD, MD, and HD groups exhibited significant improvements across various indicators of cardiac function and MC apoptosis versus mod group (p < 0.05). CONCLUSIONS Tan IIA may improve cardiac function and inhibit MC apoptosis in rats with HF by modulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaofang Yang
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Xuebin Zheng
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Xiangqian Xiao
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| | - Li Li
- Changsha Fourth Hospital – Department of Cardiology – Changsha – Hunan – China
| |
Collapse
|
4
|
Zhao C, Bai X, Ding Y, Wen A, Fu Q. Combining systems pharmacology, metabolomics, and transcriptomics to reveal the mechanism of Salvia miltiorrhiza-Cortex moutan herb pair for the treatment of ischemic stroke. Front Pharmacol 2024; 15:1431692. [PMID: 39314757 PMCID: PMC11417465 DOI: 10.3389/fphar.2024.1431692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke (IS), predominantly triggered by blockages in cerebral blood flow, is increasingly recognized as a critical public health issue. The combination of Salvia miltiorrhiza (SM) and Cortex moutan (CM), traditional herbs in Eastern medicine, are frequently used for managing heart and brain vascular conditions. However, the exact mechanisms by which this herb pair (SC) combats IS remain largely unexplored. This investigation focuses on pinpointing the active constituents in SC that contribute to its protective role and deciphering the mechanisms countering cerebral ischemia, particularly in a middle cerebral artery occlusion (MCAO) rat model. We employed UPLC-Q-TOF-MS/MS alongside network pharmacology for predicting SC's target actions against IS. Key ingredients were examined for their interaction with principal targets using molecular docking. The therapeutic impact was gauged through H&E, TUNEL, and Nissl staining, complemented by transcriptomic and metabolomic integration for mechanistic insights, with vital genes confirmed via western blot. UPLC-Q-TOF-MS/MS analysis revealed that the main components of SC included benzoylpaeoniflorin, salvianolic acid B, oxypaeoniflora, salvianolic acid A, and others. Network pharmacology analysis indicated that SC's mechanism in treating IS primarily involves inflammation, angiogenesis, and cell apoptosis-related pathways, potentially through targets such as AKT1, TNF, PTGS2, MMP9, PIK3CA, and VEGFA. Molecular docking underscored strong affinities between these constituents and their targets. Our empirical studies indicated SC's significant role in enhancing neuroprotection in IS, with transcriptomics suggesting the involvement of the VEGFA/PI3K/AKT pathway and metabolomics revealing improvements in various metabolic processes, including amino acids, glycerophospholipids, sphingomyelin, and fatty acids metabolisms.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xiaodan Bai
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
5
|
Ning B, Ge T, Zhao QQ, Feng LS, Wu YQ, Chen H, Lian K, Zhao MJ. Research status of pathogenesis of anxiety or depression after percutaneous coronary intervention and Traditional Chinese Medicine intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118017. [PMID: 38462028 DOI: 10.1016/j.jep.2024.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Anxiety or depression after percutaneous coronary intervention (PCI) is a common clinical disease. Currently, conventional pharmacotherapy primarily involves the administration of anxiolytic or antidepressant medications in conjunction with anticoagulants, antiplatelet agents, and other cardiovascular drugs. However, challenges such as drug dependence, adverse reactions and related concerns persist in the treatment of this disease. Numerous pertinent studies have demonstrated that Traditional Chinese Medicine (TCM) exhibits significant therapeutic efficacy and distinctive advantages in managing post-PCI anxiety or depression. AIM OF THIS REVIEW This review attempted to summarize the characteristics of TCM for treating anxiety or depression after PCI, including single Chinese herbs, Chinese medicine monomers, compound TCM prescriptions, TCM patented drugs, and other TCM-related treatment methods, focusing on the analysis of the relevant mechanism of TCM treatment of this disease. METHODS By searching the literature on treating anxiety or depression after PCI with TCM in PubMed, Web of Science, CNKI, and other relevant databases, this review focuses on the latest research progress of TCM treatment of this disease. RESULTS In the treatment of anxiety or depression after PCI, TCM exerts significant pharmacological effects such as anti-inflammatory, antioxidant, anti-anxiety or anti-depression, cardiovascular and cerebrovascular protection, and neuroprotection, mainly by regulating the levels of related inflammatory factors, oxidative stress markers, neurotransmitter levels, and related signaling pathways. TCM has a good clinical effect in treating anxiety or depression after PCI with individualized treatment. CONCLUSIONS TCM has terrific potential and good prospects in the treatment of anxiety or depression after PCI. The main direction of future exploration is the study of the mechanism related to Chinese medicine monomers and the large sample clinical study related to compound TCM prescriptions.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Qiang-Qiang Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yong-Qing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Huan Chen
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Kun Lian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China; Academician Workstation, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China; Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xi'an, 712046, China.
| |
Collapse
|
6
|
Hassan DM, El-Kamel AH, Allam EA, Bakr BA, Ashour AA. Chitosan-coated nanostructured lipid carriers for effective brain delivery of Tanshinone IIA in Parkinson's disease: interplay between nuclear factor-kappa β and cathepsin B. Drug Deliv Transl Res 2024; 14:400-417. [PMID: 37598133 PMCID: PMC10761445 DOI: 10.1007/s13346-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba β (NF-Kβ) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.
Collapse
Affiliation(s)
- Donia M Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt.
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| |
Collapse
|
7
|
Zhu K, Pu PM, Li G, Zhou LY, Li ZY, Shi Q, Wang YJ, Cui XJ, Yao M. Shenqisherong pill ameliorates neuronal apoptosis by inhibiting the JNK/caspase-3 signaling pathway in a rat model of cervical cord compression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116901. [PMID: 37437792 DOI: 10.1016/j.jep.2023.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shenqisherong (SQSR) pill is an empirical prescription of traditional Chinese medicine (TCM), which originated from the National Chinese Medical Science Master, Shi Qi. It has been widely used in the treatment of cervical spondylotic myelopathy (CSM) and promote the recovery of spinal cord function, but underlying molecular mechanism remains unclear. AIM OF THE STUDY The objective of this study was to confirm the neuroprotective effects of the SQSR pill. MATERIALS AND METHODS A rat model of chronic compression at double-level cervical cord was used in vivo. The protective role of SQSR pill on CSM rats was measured by Basso, Beattie, and Bresnahan (BBB) locomotor scale, inclined plane test, forelimb grip strength assessment, hindlimb pain threshold assessment, and gait analysis. The levels of reactive oxygen species (ROS) were examined by Dihydroethidium (DHE) staining and 2',7'-Dichlorofluorescein (DCF) assay, and apoptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL) assay. The expression of apoptosis proteins was evaluated by immunofluorescence staining and Western blot. RESULTS SQSR pill could facilitate locomotor function recovery in rats with chronic cervical cord compression, reduce local ROS in the spinal cord and downregulate the c-Jun-N-terminal kinase (JNK)/caspase-3 signaling pathway. In addition, the SQSR pill could protect primary rat cortical neurons from glutamate-treated toxicity in vitro by reducing the ROS and downregulating the phosphorylation of JNK and its downstream factors related to neuronal apoptosis meditated by the caspase cascade. Then, the neuroprotective effect was counteracted by a JNK activator. CONCLUSIONS Together, SQSR pill could ameliorate neuronal apoptosis by restraining ROS accumulation and inhibiting the JNK/caspase-3 signaling pathway, indicating that SQSR pill could be a candidate drug for CSM.
Collapse
Affiliation(s)
- Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, 210029, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qi Shi
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
8
|
Chhabra S, Mehan S, Khan Z, Gupta GD, Narula AS. Matrine mediated neuroprotective potential in experimental multiple sclerosis: Evidence from CSF, blood markers, brain samples and in-silico investigations. J Neuroimmunol 2023; 384:578200. [PMID: 37774554 DOI: 10.1016/j.jneuroim.2023.578200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) is a debilitating, inflammatory, and demyelinating disease of the central nervous system influenced by environmental and genetic factors. Around 2.8 million people worldwide are affected by MS due to its challenging diagnosis and treatment. Our study investigates the role of the JAK/STAT and PPAR-gamma signaling pathways in the progression of multiple sclerosis. Inflammation and demyelination can be caused by dysregulation of these pathways. Modulating the STAT-3, mTOR, and PPAR-gamma signaling pathways may offer therapeutic potential for multiple sclerosis. Matrine (40 and 80 mg/kg, i.p.), a quinolizidine alkaloid derived from Sophora flavescens, has been investigated for its therapeutic potential in our laboratory. Matrine has been studied for its neuroprotective effect in neurodegenerative diseases. It inhibits inflammatory responses and promotes regeneration of damaged myelin sheaths, indicating its potential efficacy in treating multiple sclerosis. Matrine exerts its neuroprotective effect by inhibiting STAT-3 and mTOR and promoting PPAR-gamma expression.GW9662, a PPAR-gamma antagonist (2 mg/kg, i.p.), was administered to evaluate the involvement of PPAR-gamma and to compare the efficacy of matrine's potential neuroprotective effect. Matrine's interaction with the STAT-3, mTOR, and PPAR-gamma pathways in multiple Sclerosis was also validated and confirmed through insilico investigation. In addition, matrine altered the CBC profile, intensifying the clinical presentation of multiple sclerosis. In addition, we evaluated the diagnostic potential of various biological samples, including CSF, blood plasma, and brain homogenates (striatum, cortex, hippocampus, and midbrain). These samples were used to evaluate the neurochemical changes caused by neurobehavioral alterations during the progression of multiple sclerosis. These results indicate that matrine treatment ameliorated multiple sclerosis and that the mechanism underlying these effects may be closely related to the modulation of the STAT-3/mTOR/PPAR-gamma signaling pathway.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
9
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
10
|
Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116677. [PMID: 37268259 DOI: 10.1016/j.jep.2023.116677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear. AIM OF THE STUDY To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH. MATERIALS AND METHODS The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3. RESULTS The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions. CONCLUSION The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|