Nayak D, Shetty MM, Halagali P, Rathnanand M, Gopinathan A, John J, Krishna Tippavajhala V. Formulation, optimization and evaluation of ibuprofen loaded menthosomes for transdermal delivery.
Int J Pharm 2024;
665:124671. [PMID:
39245088 DOI:
10.1016/j.ijpharm.2024.124671]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to improve the transdermal permeation of IBU utilizing menthosomes as a vesicular carrier. IBU-loaded menthosomes were formulated by thin film hydration & optimized using 23 factorial designs (Design Expert® version 13 software). In vitro & ex vivo skin permeation analysis of IBU-encapsulated menthosomes was studied across the rat skin sample. In vivo pharmacodynamic activity was studied in an arthritis rat model. The optimized IBU-loaded menthosomes exhibited an optimum vesicle size of 214.2 ± 2.96 nm, Zeta potential of -21.1 ± 2.72 mV, (PDI) Polydispersity Index of 0.267 ± 0.018 with Entrapment efficiency (EE%) of 78.7 ± 2.73 %. The in vitro & ex vivo skin penetration study displayed enhanced release of drug of 77.02 ± 1.0 % and 40.91 ± 0.81 % respectively, compared to conventional liposomes. In vivo pharmacodynamic study on carrageenan-induced paw edema in Wistar albino rats demonstrated superior anti-inflammatory activity of the optimized IBU-encapsulated menthosomes (**p < 0.01) and effective inhibition of paw edema (34.04 ± 0.155 %). The formalin test indicated a significant analgesic effect of optimized formulation during the chronic phase of analgesia (*p < 0.05) compared to the control group. Thus, the developed and optimized drug-loaded menthosomes could serve as a suitable vesicular delivery carrier in enhancing the transdermal delivery of other NSAID drugs.
Collapse