1
|
van Amsterdam J, Brunt TM, Pierce M, van den Brink W. Hard Boiled: Alcohol Use as a Risk Factor for MDMA-Induced Hyperthermia: a Systematic Review. Neurotox Res 2021; 39:2120-2133. [PMID: 34554408 PMCID: PMC8639540 DOI: 10.1007/s12640-021-00416-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022]
Abstract
Although MDMA (ecstasy) is a relatively safe recreational drug and is currently considered for therapeutic use for the treatment of posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD), recreational MDMA use occasionally elicits hyperthermia and hyponatremia, sometimes with a fatal outcome. Specific risk factors for both adverse effects are profuse sweating while vigorously dancing under unfavorable conditions such as high ambient temperatures and insufficient fluid suppletion which result in dehydration. Concomitant use of MDMA and alcohol is highly prevalent, but adds to the existing risk, because alcohol facilitates the emergence of MDMA-induced adverse events, like hyperthermia, dehydration, and hyponatremia. Because of potential health-related consequences of concomitant use of MDMA and alcohol, it is important to identify the mechanisms of the interactions between alcohol and MDMA. This review summarizes the main drivers of MDMA-induced hyperthermia, dehydration, and hyponatremia and the role of concomitant alcohol use. It is shown that alcohol use has a profound negative impact by its interaction with most of these drivers, including poikilothermia, exposure to high ambient temperatures, heavy exercise (vigorous dancing), vasoconstriction, dehydration, and delayed initiation of sweating and diuresis. It is concluded that recreational and clinical MDMA-users should refrain from concomitant drinking of alcoholic beverages to reduce the risk for adverse health incidents when using MDMA.
Collapse
Affiliation(s)
- Jan van Amsterdam
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | - Tibor M Brunt
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Mimi Pierce
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ben Hamida S, Lecourtier L, Loureiro M, Cosquer B, Tracqui A, Simmoneaux V, Nehlig A, Jones BC, Pereira de Vasconcelos A, Cassel J. Ventral striatum regulates behavioral response to ethanol and MDMA combination. Addict Biol 2021; 26:e12938. [PMID: 32666571 DOI: 10.1111/adb.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Our previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) is delay sensitive and maximal when both drugs are injected simultaneously. Then, we used the 2-deoxyglucose quantitative autoradiography technique to assess the impact of EtOH, MDMA, or their combination on local cerebral metabolic rates for glucose (CMRglcs). We showed a specific metabolic activation in the ventral striatum (VS) under MDMA + EtOH versus MDMA or EtOH alone. We next tested if reversible (tetrodotoxin, TTX) or permanent (6-hydrodoxyopamine, 6-OHDA) lesion of the VS could affect locomotor response to MDMA and MDMA + EtOH. Finally, we blocked dopamine D1 or glutamate NMDA receptors in the VS and measured the effects of MDMA and MDMA + EtOH on locomotor activity. We showed that bilateral reversible inactivation (TTX) or permanent lesion (6-OHDA) of the VS prevented the potentiation by EtOH of MDMA-induced locomotor hyperactivity. Likewise, blockade of D1 or NMDA receptors in the VS also reduced the potentiation of MDMA locomotor activity by EtOH. These data indicate that dopamine D1 and glutamate NMDA receptor-driven mechanisms in the VS play a key role in the pharmacodynamics of EtOH-induced potentiation of the locomotor effects of MDMA.
Collapse
Affiliation(s)
- Sami Ben Hamida
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine McGill University Montréal Quebec Canada
| | - Lucas Lecourtier
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Michaël Loureiro
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Antoine Tracqui
- Service de Médecine Légale Hôpital Saint‐Jacques–CHRU Besançon France
| | - Valérie Simmoneaux
- INCI, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212, CNRS Université de Strasbourg Strasbourg France
| | - Astrid Nehlig
- INSERM U1129 Pediatric Neurology Necker‐Enfants Malades Hospital University of Paris Descartes Paris France
| | - Byron C. Jones
- The University of Tennessee Health Science Center 77 South Manassas Street Memphis Tennessee USA
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| | - Jean‐Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, LNCA, UMR7364–CNRS Université de Strasbourg Strasbourg France
| |
Collapse
|
3
|
Abstract
Ecstasy use is commonly combined with ethanol consumption. While combination drug use in general is correlated with a higher risk for toxicity, the risk of the specific combination of ecstasy (3,4-methylenedioxymethamphetamine (MDMA)) and ethanol is largely unknown. Therefore, we have reviewed the literature on changes in MDMA pharmacokinetics and pharmacodynamics due to concurrent ethanol exposure in human, animal and in vitro studies. MDMA pharmacokinetics appear unaffected: the MDMA blood concentration after concurrent exposure to MDMA and ethanol was comparable to lone MDMA exposure in multiple human placebo-controlled studies. In contrast, MDMA pharmacodynamics were affected: locomotor activity increased and body temperature decreased after concurrent exposure to MDMA and ethanol compared to lone MDMA exposure. Importantly, these additional ethanol effects were consistently observed in multiple animal studies. Additional ethanol effects have also been reported on other pharmacodynamic aspects, but are inconclusive due to a low number of studies or due to inconsistent findings. These investigated pharmacodynamic aspects include monoamine brain concentrations, neurological (psychomotor function, memory, anxiety, reinforcing properties), cardiovascular, liver and endocrine effects. Although only a single or a few studies were available investigating these aspects, most studies indicated an aggravation of MDMA-induced effects upon concurrent ethanol exposure. In summary, concurrent ethanol exposure appears to increase the risk for MDMA toxicity. Increased toxicity is due to an aggravation of MDMA pharmacodynamics, while MDMA pharmacokinetics is largely unaffected. Although a significant attenuation of the MDMA-induced increase of body temperature was observed in animal studies, its relevance for human exposure remains unclear.
Collapse
Affiliation(s)
- Eefje Vercoulen
- Department of Drug Monitoring and Policy, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
López-Arnau R, Buenrostro-Jáuregui M, Muñoz-Villegas P, Rodríguez-Morató J, Ciudad-Roberts A, Duart L, Camarasa J, De la Torre R, Pubill D, Escubedo E. The combination of MDPV and ethanol results in decreased cathinone and increased alcohol levels. Study of such pharmacological interaction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:19-28. [PMID: 28219712 DOI: 10.1016/j.pnpbp.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
Abstract
Methylenedioxypyrovalerone (MDPV) is a new psychostimulant cathinone acting as a selective dopamine transporter blocker. Due to the concomitant consumption of ethanol (EtOH) and new psychoactive substances, it is of interest to explore a possible pharmacological interaction between MDPV and EtOH. In locomotor activity assays, EtOH (1g/kg i.p.) elicited a reduction in the stimulant effect induced by low doses of MDPV (0.1-0.3mg/kg, s.c.) in rats, jointly with a decrease in blood and brain MDPV concentrations. Experiments in rat liver microsomes showed different effects depending on the [MDPV]/[EtOH] relationship, evidencing, at certain concentrations, the enhancing effect of EtOH on MDPV metabolism. These suggest that EtOH interacts with MDPV at microsomal level, increasing its metabolic rate. The interaction between both substances was also supported by results in plasma EtOH concentration, which were significantly increased by MDPV, in such a manner that EtOH elimination rate was significantly reduced. The possible toxicological impact of this phenomenon deserves further investigation. In contrast, the rewarding properties of MDPV were unaltered by EtOH. Microdialysis experiments verified that, in the NAcc, both substances could also act synergistically, in such a manner that extracellular dopamine concentrations are maintained. Finally, if the psychostimulant effect induced by MDPV decreased with EtOH, it could favor the boosting and re-dosing in search of the desired effects. However, as the rewarding effect of each dose of the substance would not decrease, the addictive liability could increase considerably. Moreover, we must warn about the increase in EtOH concentrations when consumed concomitantly with MDPV.
Collapse
Affiliation(s)
- R López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - M Buenrostro-Jáuregui
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Psychology, Faculty of Psychology, University Enrique Díaz de León, Guadalajara, Mexico
| | - P Muñoz-Villegas
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - J Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience, IMIM (Hospital del Mar Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - A Ciudad-Roberts
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - L Duart
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - J Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - R De la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM (Hospital del Mar Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - D Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| | - E Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section, University of Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Ciudad-Roberts A, Camarasa J, Ciudad CJ, Pubill D, Escubedo E. Alcohol enhances the psychostimulant and conditioning effects of mephedrone in adolescent mice; postulation of unique roles of D3 receptors and BDNF in place preference acquisition. Br J Pharmacol 2015; 172:4970-84. [PMID: 26228024 DOI: 10.1111/bph.13266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The psychostimulant mephedrone is often consumed in combination with alcohol (EtOH). This kind of drug consumption during adolescence is a matter of concern. EXPERIMENTAL APPROACH We studied, in adolescent CD-1 mice, whether EtOH could enhance the psychostimulant (locomotor acivity) and rewarding [conditioned place preference (CPP)] effects of mephedrone. We also determined the transcriptional changes associated with a conditioning treatment with these drugs. KEY RESULTS Mephedrone (10 mg·kg(-1)) increased locomotor activity, which was further enhanced by 40% when combined with EtOH (1 g·kg(-1)). This enhancement was blocked by haloperidol. Furthermore, mephedrone (25 mg·kg(-1)) induced CPP, which increased by 70% when administered with a dose of EtOH that was not conditioning by itself (0.75 g·kg(-1)). There was enhanced expression of the D3 dopamine receptor mRNA (Drd3) and Arpc5 in all drug-treated groups. The D3 receptor antagonist SB-277011A and the BDNF receptor antagonist ANA-12 completely prevented CPP as well as the increases in Drd3 in all groups. Accordingly, increased expression of BDNF mRNA in medial prefrontal cortex was detected at 2 and 4 h after mephedrone administration. CONCLUSIONS AND IMPLICATIONS If translated to humans, the enhancement of mephedrone effects by ethanol could result in increased abuse liability. D3 receptors and BDNF play a key role in the establishment of CPP by mephedrone, although an accompanying increase in other synaptic plasticity-related genes may also be necessary.
Collapse
Affiliation(s)
- Andrés Ciudad-Roberts
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - David Pubill
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Institute of Biomedicine (IBUB), Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Vidal-Infer A, Aguilar MA, Miñarro J, Rodríguez-Arias M. Effect of intermittent exposure to ethanol and MDMA during adolescence on learning and memory in adult mice. Behav Brain Funct 2012; 8:32. [PMID: 22716128 PMCID: PMC3542061 DOI: 10.1186/1744-9081-8-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/28/2012] [Indexed: 01/14/2023] Open
Abstract
Background Heavy binge drinking is increasingly frequent among adolescents, and consumption of 3,4-methylenedioxymethamphetamine (MDMA) is often combined with ethanol (EtOH). The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on learning and memory were evaluated in adult mice using the Hebb-Williams maze. Methods Adolescent OF1 mice were exposed to EtOH (1.25 g/kg) on two consecutive days at 48-h intervals over a 14-day period (from PD 29 to 42). MDMA (10 or 20 mg/kg) was injected twice daily at 4-h intervals over two consecutive days, and this schedule was repeated six days later (PD 33, 34, 41 and 42), resulting in a total of eight injections. Animals were initiated in the Hebb-Williams maze on PND 64. The concentration of brain monoamines in the striatum and hippocampus was then measured. Results At the doses employed, both EtOH and MDMA, administered alone or together, impaired learning in the Hebb-Williams maze, as treated animals required more time to reach the goal than their saline-treated counterparts. The groups treated during adolescence with EtOH, alone or plus MDMA, also presented longer latency scores and needed more trials to reach the acquisition criterion score. MDMA induced a decrease in striatal DA concentration, an effect that was augmented by the co-administration of EtOH. All the treatment groups displayed an imbalance in the interaction DA/serotonin. Conclusions The present findings indicate that the developing brain is highly vulnerable to the damaging effects of EtOH and/or MDMA, since mice receiving these drugs in a binge pattern during adolescence exhibit impaired learning and memory in adulthood.
Collapse
Affiliation(s)
- Antonio Vidal-Infer
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda, Blasco Ibáñez 21, 46010, Valencia, Spain
| | | | | | | |
Collapse
|
7
|
Ros-Simó C, Ruiz-Medina J, Valverde O. Behavioural and neuroinflammatory effects of the combination of binge ethanol and MDMA in mice. Psychopharmacology (Berl) 2012; 221:511-25. [PMID: 22139453 DOI: 10.1007/s00213-011-2598-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
RATIONALE Binge drinking is a common pattern of alcohol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular, 3,4-methylendioxymethamphetamine (MDMA). OBJECTIVE To evaluate the behavioural consequences of voluntary binge ethanol consumption, alone and in combination to MDMA. Also, to elucidate the effects of the combined consumption of these two drugs on neuroinflammation. MATERIALS AND METHODS Adolescent mice received MDMA (MDMA-treated mice), ethanol (ethanol-treated mice group) or both (ethanol plus MDMA-treated mice). Drinking in the dark (DID) procedure was used as a model of binge. Body temperature, locomotor activity, motor coordination, anxiety-like and despair behaviour in adolescent mice were evaluated 48 h, 72 h, and 7 days after the treatments. Also, neuroinflammatory response to these treatments was measured in the striatum. RESULTS The hyperthermia observed in MDMA-treated mice was abolished by pre-exposition to ethanol. Ethanol plus MDMA-treated mice showed lower locomotor activity. Ethanol-treated mice showed motor coordination impairment and increased despair behaviour. Anxiety-like behaviour was only seen in animals that were treated with both drugs. Contrarily, neuroinflammation was mostly seen in animals treated only with MDMA. CONCLUSIONS Ethanol and MDMA co-administration increases the neurobehavioural changes induced by the consumption of each one of these drugs. However, as ethanol consumption did not increase neuroinflammatory responses induced by MDMA, other mechanisms, mediated by ethanol, are likely to account for this effect and need to be evaluated.
Collapse
Affiliation(s)
- Clara Ros-Simó
- Grup de Recerca en Neurobiologia del Comportament, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | |
Collapse
|
8
|
Ribeiro Do Couto B, Daza-Losada M, Rodríguez-Arias M, Nadal R, Guerri C, Summavielle T, Miñarro J, Aguilar MA. Adolescent pre-exposure to ethanol and 3,4-methylenedioxymethylamphetamine (MDMA) increases conditioned rewarding effects of MDMA and drug-induced reinstatement. Addict Biol 2012; 17:588-600. [PMID: 21995421 DOI: 10.1111/j.1369-1600.2011.00382.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many adolescents often take ethanol (EtOH) in combination with 3,4-methylenedioxymethylamphetamine (MDMA). In the present work, we used a mouse model to study the effect of repeated pre-exposure during adolescence to EtOH (2 g/kg), MDMA (10 or 20 mg/kg) or EtOH + MDMA on the rewarding and reinstating effects of MDMA in the conditioned place preference (CPP) paradigm. Pre-exposure to EtOH, MDMA or both increased the rewarding effects of a low dose of MDMA (1.25 mg/kg). These pre-treatments did not affect the acquisition of the CPP induced by 5 mg/kg of MDMA. However, the CPP was more persistent in mice pre-exposed to both doses of MDMA or to EtOH + MDMA20. After extinction of the CPP induced by 5 mg/kg of MDMA, reinstatement was observed in all groups with a priming dose of 2.5 mg/kg of MDMA, in the groups pre-exposed to EtOH or MDMA alone with a priming dose of 1.25 mg/kg, and in the groups pre-treated with MDMA alone with a priming dose of 0.625 mg/kg. Pre-treatment during adolescence with MDMA or EtOH induced long-term changes in the level of biogenic amines [dihydroxyphenyl acetic acid, homovanillic acid, dopamine turnover, serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in the striatum, and 5-HT and 5-HIAA in the cortex] after the first reinstatement test, although these effects depended on the dose used during conditioning. These results suggest that exposure to EtOH and MDMA during adolescence reinforces the addictive properties of MDMA.
Collapse
Affiliation(s)
- Bruno Ribeiro Do Couto
- Departamento de Anatomía Humana y Psicobiología, Facultad de Psicología, Universidad de Murcia, Campus Universitario de Espinardo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos MDL. Toxicity of amphetamines: an update. Arch Toxicol 2012; 86:1167-231. [PMID: 22392347 DOI: 10.1007/s00204-012-0815-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
Amphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood-brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical amphetamines-amphetamine itself, as well as methamphetamine and MDMA, provide plenty of data that may be useful to predict toxicological outcome to improvident abusers and are for that reason the main focus of this review.
Collapse
Affiliation(s)
- Márcia Carvalho
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Intermittent ethanol exposure increases long-lasting behavioral and neurochemical effects of MDMA in adolescent mice. Psychopharmacology (Berl) 2011; 218:429-42. [PMID: 21556804 DOI: 10.1007/s00213-011-2329-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Heavy binge drinking is increasingly frequent among adolescents, while ethanol (EtOH) is often used in combination with 3,4-methylenedioxymethamphetamine (MDMA). OBJECTIVES The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on motor activity, anxiety, and social behavior were evaluated in adult mice. The concentration of brain monoamines in the striatum, cortex, and hippocampus was measured following the behavioral test. METHODS Adolescent OF1 mice were exposed to ethanol (1.25 g/kg) on two consecutive days at 48-h intervals over a 14-day period (from PND 29 to 42). A total of eight injections of MDMA (10 or 20 mg/kg) were administered twice daily at 4-h intervals over two consecutive days, and this schedule was repeated 6 days later (PND 33, 34, 41, and 42). Behavioral tests and analysis of brain monoamines took place on PND 64 to 67. RESULTS Exposure to MDMA during adolescence increased the anxiogenic response in the elevated plus maze, with adult mice spending less time in the open arms of the maze and exhibiting lower concentrations of DA in the striatum. A pattern of ethanol administration modeling binge drinking during adolescence enhanced these effects and undermined the hyperthermic response induced by MDMA. Passive avoidance was affected only when EtOH was administered alone. CONCLUSIONS Juvenile administration of MDMA and alcohol was found to cause a decrease in monoamine levels in adulthood, as well as changes in social interaction behaviors, locomotor activity, increase measures of anxiety in the elevated plus maze (EPM), and decrease step-through latencies in passive avoidance test.
Collapse
|
11
|
Mohamed WM, Hamida SB, Cassel JC, de Vasconcelos AP, Jones BC. MDMA: Interactions with other psychoactive drugs. Pharmacol Biochem Behav 2011; 99:759-74. [DOI: 10.1016/j.pbb.2011.06.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/10/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
12
|
Adolescent pre-exposure to ethanol or MDMA prolongs the conditioned rewarding effects of MDMA. Physiol Behav 2011; 103:585-93. [DOI: 10.1016/j.physbeh.2011.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/26/2011] [Accepted: 02/07/2011] [Indexed: 12/12/2022]
|
13
|
Jones BC, Ben-Hamida S, de Vasconcelos AP, Kelche C, Lazarus C, Jackisch R, Cassel JC. Effects of ethanol and ecstasy on conditioned place preference in the rat. J Psychopharmacol 2010; 24:275-9. [PMID: 19282425 DOI: 10.1177/0269881109102775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The club drug ecstasy (3,4-methylenedioxymethylamphetamine or MDMA) is often taken recreationally with ethanol (EtOH). We have shown previously that EtOH potentiates the psychomotor effects of MDMA in rats. More recently, we demonstrated in striatal slices that MDMA produced preferential release of serotonin, but when combined with EtOH, the preferential release shifted to dopamine, raising the possibility that administration of EtOH may increase the reward effect of MDMA. To address this possibility, adult male Long-Evans rats were tested for conditioned place preference following treatment with saline, EtOH (0.75 g/kg), MDMA (6.6 mg/kg) or the combination. The only condition that produced a preference for the compartment associated with the drug was that of the drug combination. The current data are in line with anecdotal reports and one study in humans, indicating that EtOH alters the pharmacological effects of MDMA including self reports of enhanced or prolonged euphoria. Thus, administration of EtOH might increase the risk for compulsive use of MDMA, an issue that warrants further study.
Collapse
Affiliation(s)
- B C Jones
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ethanol increases the distribution of MDMA to the rat brain: possible implications in the ethanol-induced potentiation of the psychostimulant effects of MDMA. Int J Neuropsychopharmacol 2009; 12:749-59. [PMID: 19046482 DOI: 10.1017/s1461145708009693] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ecstasy (3,4-methylenedioxymethylamphetamine; MDMA) is a popular club drug often taken with ethanol (EtOH). We recently found EtOH potentiated the psychomotor effects of MDMA in rats. This potentiation could reflect pharmacodynamic or/and pharmacokinetic processes. To test the latter hypothesis, rats were injected i.p. with 6.6 or 10 mg/kg MDMA with or without 1.5 g/kg EtOH, and were killed at 5, 15 or 60 min after injection. MDMA, its primary metabolite, 3,4-methylenedioxyamphetamine (MDA), and EtOH concentrations were determined in the plasma and the hippocampus, frontal cortex and striatum at each time-point. EtOH potentiated MDMA-induced hyperactivity mainly during the first 60 min post-administration. Fifteen and 60 min after treatment with MDMA and EtOH, MDMA concentrations were greater than after MDMA alone in the blood and the three brain regions examined. EtOH, however, did not increase the fraction of MDMA converted to MDA, as shown by unaltered MDA/MDMA ratios at either MDMA dose. Interestingly, when combined with EtOH, the distribution of MDMA and MDA in the brain was not homogeneous. Concentrations of both were much higher in the striatum and cortex, than in the hippocampus. Thus, at least part of the potentiation of the MDMA-induced hyperlocomotion by EtOH might be the result of a higher concentration of MDMA and metabolites in the blood and brain. Our results present clear evidence that EtOH increases brain and blood concentrations of MDMA and leads to the possibility of both enhanced MDMA-based neurotoxicity and increased liability for abuse.
Collapse
|
15
|
Cassel JC, Hamida SB, Jones BC. Ethanol and MDMA: a comment on the paper by Dumont et al. Psychopharmacology (Berl) 2008; 200:305-6. [PMID: 18751682 DOI: 10.1007/s00213-008-1279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 07/28/2008] [Indexed: 11/24/2022]
|
16
|
Effects of ethanol and 3,4-methylenedioxymethamphetamine (MDMA) alone or in combination on spontaneous and evoked overflow of dopamine, serotonin and acetylcholine in striatal slices of the rat brain. Int J Neuropsychopharmacol 2008; 11:743-63. [PMID: 18248690 DOI: 10.1017/s1461145708008481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol (EtOH) potentiates the locomotor effects of 3,4-methylenedioxymetamphetamine (MDMA) in rats. This potentiation might involve pharmacokinetic and/or pharmacodynamic mechanisms. We explored whether the latter could be local. Using a slice superfusion approach, we assessed the effects of MDMA (0.3, 3microm) and/or EtOH (2mm) on the spontaneous outflow and electrically evoked release of serotonin (5-HT), dopamine (DA) and acetylcholine (ACh) in the striatum, and for comparison, on 5-HT release in hippocampal and neocortical tissue. MDMA and less effectively EtOH, augmented the outflow of 5-HT in all regions. The electrically evoked 5-HT release was increased by MDMA at 3microm in striatal slices only. With nomifensine throughout, EtOH significantly potentiated the 0.3microm MDMA-induced outflow of 5-HT, but only in striatal slices. EtOH or MDMA also enhanced the spontaneous outflow of DA, but MDMA reduced the electrically evoked DA release. With fluvoxamine throughout superfusion, EtOH potentiated the effect of MDMA on the spontaneous outflow of DA. Finally, 3microm MDMA diminished the electrically evoked release of ACh, an effect involving several receptors (D2, 5-HT2, NMDA, nicotinic, NK1), with some interactions with EtOH. Among other results, we show for the first time a local synergistic interaction of EtOH and MDMA on the spontaneous outflow of striatal DA and 5-HT, which could be relevant to the EtOH-induced potentiation of hyperlocomotion in MDMA-treated rats. These data do not preclude the contribution of other pharmacodynamic and/or pharmacokinetic mechanisms in vivo but support the hypothesis that EtOH may affect the abuse liability of MDMA.
Collapse
|
17
|
Interactions between ethanol and cocaine, amphetamine, or MDMA in the rat: thermoregulatory and locomotor effects. Psychopharmacology (Berl) 2008; 197:67-82. [PMID: 18040665 DOI: 10.1007/s00213-007-1007-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 10/29/2007] [Indexed: 01/23/2023]
Abstract
RATIONALE (+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is often taken recreationally with ethanol (EtOH). In rats, EtOH may potentiate MDMA-induced hyperactivity, but attenuate hyperthermia. OBJECTIVE Experiment 1 compared the interactions between EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) with EtOH + cocaine (COCA; 10 mg/kg) and EtOH + amphetamine (AMPH; 1 mg/kg) on locomotor activity and thermoregulation. Experiment 2 used a weaker dose of MDMA (3.3 mg/kg) and larger doses of COCA (20 mg/kg) and AMPH (2 mg/kg). MATERIALS AND METHODS Drug treatments were administered on four occasions (2, 5, and 2 days apart, respectively; experiment 1) or two (2 days apart; experiment 2). RESULTS All psychostimulants increased activity, and EtOH markedly increased the effect of MDMA. AMPH alone-related hyperactivity showed modest sensitization across treatment days, while MDMA + EtOH activity showed marked sensitization. AMPH, COCA, and MDMA induced hyperthermia of comparable amplitude (+1 to +1.5 degrees C). Co-treatment with EtOH and AMPH (1 mg/kg) or COCA (10 mg/kg) produced hypothermia greater than that produced by EtOH alone. Conversely, EtOH attenuated MDMA-related hyperthermia, an effect increasing across treatment days. These results demonstrate that the interaction between MDMA and EtOH may be different from the interaction between EtOH and AMPH or COCA. CONCLUSION Because of potential health-related consequences of such polydrug misuse, it is worth identifying the mechanisms underlying these interactions, especially between EtOH and MDMA. Given the different affinity profiles of the three drugs for serotonin, dopamine, and norepinephrine transporters, our results appear compatible with the possibility of an important role of serotonin in at least the EtOH-induced potentiation of MDMA-induced hyperlocomotion.
Collapse
|
18
|
Effect of chronic ethanol exposure on the hepatotoxicity of ecstasy in mice: an ex vivo study. Toxicol In Vitro 2008; 22:910-20. [PMID: 18325728 DOI: 10.1016/j.tiv.2008.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 11/30/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is frequently consumed at "rave" parties by polydrug users that usually take this drug in association with ethanol. In addition, many young people are repeatedly exposed to ethanol, which likely leads to tolerance phenomena. Both compounds are metabolized in the liver, with formation of hepatotoxic metabolites, which gives high relevance to the evaluation of their putative toxicological interaction. Therefore, the aim of this study was to evaluate the toxicity induced by 0.8 and 1.6 mM MDMA to freshly isolated hepatocytes obtained from ethanol-treated mice whose tap drinking water was replaced by a 5% ethanol solution for 1 week and, afterwards, by a 12% ethanol solution for 8 weeks (ethanol group) comparatively to non-treated animals (non-ethanol group). The hepatocytes were incubated under normothermic and hyperthermic conditions in order to simulate in vitro the hyperthermic response induced in vivo by MDMA, a condition that has been recognized as a life-threatening effect associated with MDMA exposure and implicated in its hepatotoxicity. Six mice treated under the same protocol as the ethanol group were used for histological analysis, and compared to non-ethanol-treated animals. The pre-treatment of mice with ethanol caused a significant decrease in the hepatocytes yield in the isolation procedure comparatively to the non-ethanol group, which can be explained by an increase in collagen deposition along the hepatic parenchyma as observed in the histological analysis. The initial cell viability of hepatocytes suspensions was similar between ethanol and non-ethanol groups. However, the ethanol group showed a higher GSH oxidation rate, which was enhanced under hyperthermia. Additionally, a concentration-dependent MDMA-induced loss of cell viability and ATP depletion was observed for both groups, at 41 degrees C. In conclusion, the repeated treatment with ethanol seems to increase the vulnerability of freshly isolated mice hepatocytes towards pro-oxidant conditions, as ascertained by the increase in collagen deposition, lower hepatocyte yield and decreased glutathione levels. However, MDMA toxicity to the isolated hepatocytes was independent of ethanol pre-treatment, while significantly dependent on incubation temperature.
Collapse
|
19
|
Cassel JC, Ben Hamida S, Jones BC. Attenuation of MDMA-induced hyperthermia by ethanol in rats depends on ambient temperature. Eur J Pharmacol 2007; 571:152-5. [PMID: 17617399 DOI: 10.1016/j.ejphar.2007.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
In rats, at ambient temperatures of 21-23 degrees C, ethanol can attenuate the hyperpyretic effects of MDMA. We assessed if this attenuation holds true at a high ambient temperature. Rats were given MDMA (6.6 mg/kg i.p.) with or without ethanol (1.5 g/kg i.p.) at a room temperature of 32 degrees C. In the MDMA and ethanol+MDMA rats, body temperatures rose to about 42 degrees C after 60 min; all these rats had died after 120 min. At 23 degrees C, however, there was no lethality and ethanol reduced the hyperthermia. Thus, the effects of ethanol on MDMA-induced hyperthermia are related to ambient temperature.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- LINC UMR 7191, Université Louis Pasteur-CNRS, Institut Fédérératif de Recherche 37-GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France.
| | | | | |
Collapse
|