1
|
Mitchnick KA, Ahmad Z, Mitchnick SD, Ryan JD, Rosenbaum RS, Freud E. Damage to the human dentate gyrus impairs the perceptual discrimination of complex, novel objects. Neuropsychologia 2022; 172:108238. [PMID: 35513066 DOI: 10.1016/j.neuropsychologia.2022.108238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022]
Abstract
The hippocampus (HPC), and the dentate gyrus (DG) subregion in particular, is purported to be a pattern separator, orthogonally representing similar information so that distinct memories may be formed. The HPC may also be involved in complex perceptual discrimination. It is unclear if this role is limited to spatial/scene stimuli or extends to the discrimination of objects. Also unclear is whether the DG itself contributes to pattern separation beyond memory. BL, an individual with bilateral DG lesions, was previously shown to have poor discrimination of similar, everyday objects in memory. Here, we demonstrate that BL's deficit extends to complex perceptual discrimination of novel objects. Specifically, BL was presented with closely matched possible and impossible objects, which give rise to fundamentally different 3D perceptual representations despite being visually similar. BL performed significantly worse than controls when asked to select an odd object (e.g., impossible) amongst three identical counterpart objects (e.g., possible) presented at different rotations. His deficit was also evident in an atypical eye fixation pattern during this task. In contrast, BL's performance was indistinguishable from that of controls on other tasks involving the same objects, indicating that he could visually differentiate the object pairs, that he perceived the objects holistically in 3D, and that he has only a mild weakness in categorizing object possibility. Furthermore, his performance on standardized neuropsychological measures indicated intact mental rotation, visual-spatial attention, and working memory (visual and auditory). Collectively, these results provide evidence that the DG is necessary for complex perceptual discrimination of novel objects, indicating that the DG might function as a generic pattern separator of a wide range of stimuli within high-level perception, and that its role is not limited to memory.
Collapse
Affiliation(s)
- K A Mitchnick
- York University, Toronto, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - Z Ahmad
- York University, Toronto, Canada
| | | | - J D Ryan
- Rotman Research Institute at Baycrest Hospital, Toronto, Canada
| | - R S Rosenbaum
- York University, Toronto, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, Canada.
| | - E Freud
- York University, Toronto, Canada.
| |
Collapse
|
2
|
Janickova H, Kljakic O, Robbins TW, Saksida LM, Bussey TJ, Prado VF, Prado MAM. Evaluating Sequential Response Learning in the Rodent Operant Touchscreen System. Curr Protoc 2021; 1:e268. [PMID: 34679249 DOI: 10.1002/cpz1.268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sequential and cue-directed response learning in rodents have been previously shown to depend on intact striatal signaling. In particular, these behaviors rely on striatal dopamine and acetylcholine release, with an impairment of sequential response learning evident in animal models with alterations in the two systems. Here we provide a protocol for testing sequential response/response chain learning using the rodent touchscreen system. Specifically, the present protocol is designed to implement the heterogeneous sequence task, adapted from Keeler et al. (2014), in the rodent touchscreen apparatus. This task has been used previously to assess complex motor learning and response selection in mice. In the following protocol, the task is performed in touchscreen-based automated chambers with five response locations using food reinforcers to maintain performance. The sequence task requires the subject to make five nose pokes to white square stimuli appearing in five different locations sequentially from left to right. © 2021 Wiley Periodicals LLC. Basic Protocol: Implementation of the heterogeneous sequence task Support Protocol: Creation of the heterogeneous sequence task ABET II touchscreen schedule.
Collapse
Affiliation(s)
- Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Trevor W Robbins
- Behavioural and Cognitive Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Johnson SA, Zequeira S, Turner SM, Maurer AP, Bizon JL, Burke SN. Rodent mnemonic similarity task performance requires the prefrontal cortex. Hippocampus 2021; 31:701-716. [PMID: 33606338 PMCID: PMC9343235 DOI: 10.1002/hipo.23316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 11/07/2023]
Abstract
Mnemonic similarity task performance, in which a known target stimulus must be distinguished from similar lures, is supported by the hippocampus and perirhinal cortex. Impairments on this task are known to manifest with advancing age. Interestingly, disrupting hippocampal activity leads to mnemonic discrimination impairments when lures are novel, but not when they are familiar. This observation suggests that other brain structures support discrimination abilities as stimuli are learned. The prefrontal cortex (PFC) is critical for retrieval of remote events and executive functions, such as working memory, and is also particularly vulnerable to dysfunction in aging. Importantly, the medial PFC is reciprocally connected to the perirhinal cortex and neuron firing in this region coordinates communication between lateral entorhinal and perirhinal cortices to presumably modulate hippocampal activity. This anatomical organization and function of the medial PFC suggests that it contributes to mnemonic discrimination; however, this notion has not been empirically tested. In the current study, rats were trained on a LEGO object-based mnemonic similarity task adapted for rodents, and surgically implanted with guide cannulae targeting prelimbic and infralimbic regions of the medial PFC. Prior to mnemonic discrimination tests, rats received PFC infusions of the GABAA agonist muscimol. Analyses of expression of the neuronal activity-dependent immediate-early gene Arc in medial PFC and adjacent cortical regions confirmed muscimol infusions led to neuronal inactivation in the infralimbic and prelimbic cortices. Moreover, muscimol infusions in PFC impaired mnemonic discrimination performance relative to the vehicle control across all testing blocks when lures shared 50-90% feature overlap with the target. Thus, in contrast hippocampal infusions, PFC inactivation impaired target-lure discrimination regardless of the novelty or familiarity of the lures. These findings indicate the PFC plays a critical role in mnemonic similarity task performance, but the time course of PFC involvement is dissociable from that of the hippocampus.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sabrina Zequeira
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sean M. Turner
- Department of Clinical Health Psychology, University of Florida, Gainesville, Florida
| | - Andrew P. Maurer
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jennifer L. Bizon
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sara N. Burke
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
4
|
Lopez-Cruz L, Bussey TJ, Saksida LM, Heath CJ. Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences. Lab Anim (NY) 2021; 50:174-184. [PMID: 34140683 DOI: 10.1038/s41684-021-00791-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Despite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated. Such regulations are based on the principles of the 3Rs of Replacement, Reduction and Refinement. In the sub-specialty of behavioral neuroscience, Full/Absolute Replacement remains a major challenge, as the complete ex vivo recapitulation of a system as complex and dynamic as the nervous system has yet to be achieved. However, a number of very positive developments have occurred in this area with respect to Relative Replacement and to both Refinement and Reduction. In this review, we discuss the Refinement- and Reduction-related benefits yielded by the introduction of touchscreen-based behavioral assessment apparatus. We also discuss how data generated by a specific panel of behavioral tasks developed for this platform might substantially enhance monitoring of laboratory animal welfare and provide robust, quantitative comparisons of husbandry techniques to define and ensure maintenance of best practice.
Collapse
Affiliation(s)
- Laura Lopez-Cruz
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| |
Collapse
|
5
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
6
|
Sullivan JA, Dumont JR, Memar S, Skirzewski M, Wan J, Mofrad MH, Ansari HZ, Li Y, Muller L, Prado VF, Prado MAM, Saksida LM, Bussey TJ. New frontiers in translational research: Touchscreens, open science, and the mouse translational research accelerator platform. GENES BRAIN AND BEHAVIOR 2020; 20:e12705. [PMID: 33009724 DOI: 10.1111/gbb.12705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Many neurodegenerative and neuropsychiatric diseases and other brain disorders are accompanied by impairments in high-level cognitive functions including memory, attention, motivation, and decision-making. Despite several decades of extensive research, neuroscience is little closer to discovering new treatments. Key impediments include the absence of validated and robust cognitive assessment tools for facilitating translation from animal models to humans. In this review, we describe a state-of-the-art platform poised to overcome these impediments and improve the success of translational research, the Mouse Translational Research Accelerator Platform (MouseTRAP), which is centered on the touchscreen cognitive testing system for rodents. It integrates touchscreen-based tests of high-level cognitive assessment with state-of-the art neurotechnology to record and manipulate molecular and circuit level activity in vivo in animal models during human-relevant cognitive performance. The platform also is integrated with two Open Science platforms designed to facilitate knowledge and data-sharing practices within the rodent touchscreen community, touchscreencognition.org and mousebytes.ca. Touchscreencognition.org includes the Wall, showcasing touchscreen news and publications, the Forum, for community discussion, and Training, which includes courses, videos, SOPs, and symposia. To get started, interested researchers simply create user accounts. We describe the origins of the touchscreen testing system, the novel lines of research it has facilitated, and its increasingly widespread use in translational research, which is attributable in part to knowledge-sharing efforts over the past decade. We then identify the unique features of MouseTRAP that stand to potentially revolutionize translational research, and describe new initiatives to partner with similar platforms such as McGill's M3 platform (m3platform.org).
Collapse
Affiliation(s)
- Jacqueline A Sullivan
- Department of Philosophy, The University of Western Ontario, Ontario, Canada.,Rotman Institute of Philosophy, The University of Western Ontario, Ontario, Canada.,Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Julie R Dumont
- BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Sara Memar
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Miguel Skirzewski
- BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada
| | - Jinxia Wan
- Division of Sciences, State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Maryam H Mofrad
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,Department of Applied Mathematics, The University of Western Ontario, Ontario, Canada
| | | | - Yulong Li
- Division of Sciences, State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lyle Muller
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,Department of Applied Mathematics, The University of Western Ontario, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada
| | - Timothy J Bussey
- Brain and Mind Institute, The University of Western Ontario, Ontario, Canada.,BrainsCAN, The University of Western Ontario, Ontario, Canada.,Robarts Research Institute, The University of Western Ontario, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.,Department of Psychiatry, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
7
|
Kenton JA, Castillo VK, Kehrer PE, Brigman JL. Moderate Prenatal Alcohol Exposure Impairs Visual-Spatial Discrimination in a Sex-Specific Manner: Effects of Testing Order and Difficulty on Learning Performance. Alcohol Clin Exp Res 2020; 44:2008-2018. [PMID: 32772384 DOI: 10.1111/acer.14426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to high levels of alcohol during development leads to alterations in neurogenesis and deficits in hippocampal-dependent learning. Evidence suggests that even more moderate alcohol consumption during pregnancy can have negative impacts on the cognitive function of offspring. Methods for assessing impairments differ greatly across species, complicating translation of preclinical findings into potential therapeutics. We have demonstrated the utility of a touchscreen operant measure for assessing hippocampal function in mice. METHODS Here, we integrated a well-established "drinking-in-the-dark" exposure model that produces reliable, but more moderate, levels of maternal intoxication with a trial-unique, delayed nonmatching-to-location (TUNL) task to examine the effects of prenatal alcohol exposure (PAE) on hippocampal-sensitive behavior directly analogous to those used in clinical assessment. PAE and SAC offspring mice were trained to touch a single visual stimulus ("sample phase") in one of 10 possible spatial locations (2 × 5 grid) in a touchscreen operant system. After a delay, animals were simultaneously presented with the original stimulus and a rewarded stimulus in a novel location ("choice phase"). PAE and saccharin (SAC) control mice were trained on a series of problems that systematically increased the difficulty by decreasing the separation between the sample and choice stimuli. Next, a separate cohort of PAE and SAC animals were given a brief training and then tested on a challenging variant where both the separation and delay varied with each trial. RESULTS We found that PAE mice were generally able to perform at levels similar to SAC control mice at progressively more difficult separations. When tested on the most difficult unpredictable variant immediately, PAE showed a sex-specific deficit with PAE females performing worse during long delays. CONCLUSIONS Taken together, these data demonstrate the utility of the TUNL task for examining PAE related alterations in hippocampal function and underline the need to examine sex-by-treatment interactions in these models.
Collapse
Affiliation(s)
- Johnny A Kenton
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Victoria K Castillo
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Penelope E Kehrer
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jonathan L Brigman
- From the Department of Neurosciences, (JAK, VC, PK, JLB), University of New Mexico School of Medicine, Albuquerque, New Mexico.,New Mexico Alcohol Research Center, (JLB), UNM Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
8
|
Sokolenko E, Nithianantharajah J, Jones NC. MK-801 impairs working memory on the Trial-Unique Nonmatch-to-Location test in mice, but this is not exclusively mediated by NMDA receptors on PV+ interneurons or forebrain pyramidal cells. Neuropharmacology 2020; 171:108103. [DOI: 10.1016/j.neuropharm.2020.108103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 01/13/2023]
|
9
|
Johnson SA, Turner SM, Lubke KN, Cooper TL, Fertal KE, Bizon JL, Maurer AP, Burke SN. Experience-Dependent Effects of Muscimol-Induced Hippocampal Excitation on Mnemonic Discrimination. Front Syst Neurosci 2019; 12:72. [PMID: 30687032 PMCID: PMC6335355 DOI: 10.3389/fnsys.2018.00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Memory requires similar episodes with overlapping features to be represented distinctly, a process that is disrupted in many clinical conditions as well as normal aging. Data from humans have linked this ability to activity in hippocampal CA3 and dentate gyrus (DG). While animal models have shown the perirhinal cortex is critical for disambiguating similar stimuli, hippocampal activity has not been causally linked to discrimination abilities. The goal of the current study was to determine how disrupting CA3/DG activity would impact performance on a rodent mnemonic discrimination task. Rats were surgically implanted with bilateral guide cannulae targeting dorsal CA3/DG. In Experiment 1, the effect of intra-hippocampal muscimol on target-lure discrimination was assessed within subjects in randomized blocks. Muscimol initially impaired discrimination across all levels of target-lure similarity, but performance improved on subsequent test blocks irrespective of stimulus similarity and infusion condition. To clarify these results, Experiment 2 examined whether prior experience with objects influenced the effect of muscimol on target-lure discrimination. Rats that received vehicle infusions in a first test block, followed by muscimol in a second block, did not show discrimination impairments for target-lure pairs of any similarity. In contrast, rats that received muscimol infusions in the first test block were impaired across all levels of target-lure similarity. Following discrimination tests, rats from Experiment 2 were trained on a spatial alternation task. Muscimol infusions increased the number of spatial errors made, relative to vehicle infusions, confirming that muscimol remained effective in disrupting behavioral performance. At the conclusion of behavioral experiments, fluorescence in situ hybridization for the immediate-early genes Arc and Homer1a was used to determine the proportion of neurons active following muscimol infusion. Contrary to expectations, muscimol increased neural activity in DG. An additional experiment was carried out to quantify neural activity in naïve rats that received an intra-hippocampal infusion of vehicle or muscimol. Results confirmed that muscimol led to DG excitation, likely through its actions on interneuron populations in hilar and molecular layers of DG and consequent disinhibition of principal cells. Taken together, our results suggest disruption of coordinated neural activity across the hippocampus impairs mnemonic discrimination when lure stimuli are novel.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sean M Turner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Katelyn N Lubke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Tara L Cooper
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Kaeli E Fertal
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Kenton JA, Castillo R, Holmes A, Brigman JL. Cortico-hippocampal GluN2B is essential for efficient visual-spatial discrimination learning in a touchscreen paradigm. Neurobiol Learn Mem 2018; 156:60-67. [PMID: 30394331 DOI: 10.1016/j.nlm.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022]
Abstract
Discrimination of similar spatial locations, an important feature of episodic memory, has traditionally been measured via delayed nonmatching-to-location tasks. Recently, we and others have demonstrated that touchscreen-based Trial Unique Nonmatching-to-Location (TUNL) tasks are sensitive to lesions of the dorsal hippocampus in the mouse. Previously we have shown that loss of the GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor in the dorsal CA1 and throughout the cortex impairs hippocampal-dependent water maze and fear conditioning paradigms. We investigated whether loss of GluN2B would alter performance of visual-spatial discrimination learning in a delay- or separation-dependent manner. GluN2B null mutants displayed initial impairments in accuracy on the easiest training variant of TUNL that were overcome with training. Loss of GluN2B also impaired performance on a problem series where delay and separation were systematically varied. We also observed a training-dependent effect on performance. Mutant mice that received extensive training performed similar to control mice when challenged on a variable delay and variable separation problem, while those that received minimal training were impaired across all delays and separations. Together, these data demonstrate that GluN2B in the dorsal CA1 and cortex are essential for efficient visual-spatial discrimination learning on the TUNL task. Further, training effects on performance in mutant mice suggest that alterations in synaptic plasticity after GluN2B loss may underlie intra- versus inter-session learning.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Rebecca Castillo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Phillips BU, Lopez-Cruz L, Hailwood J, Heath CJ, Saksida LM, Bussey TJ. Translational approaches to evaluating motivation in laboratory rodents: conventional and touchscreen-based procedures. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Sbisa AM, Gogos A, van den Buuse M. Spatial working memory in the touchscreen operant platform is disrupted in female rats by ovariectomy but not estrous cycle. Neurobiol Learn Mem 2017; 144:147-154. [PMID: 28729138 DOI: 10.1016/j.nlm.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/31/2017] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
Learning and memory deficits have been described in rats and mice after ovariectomy (OVX) and across the estrous cycle. Preclinical researchers therefore often avoid using female animals and, consequently, a large male bias exists in the preclinical cognitive literature. In the present study we examined the role of sex hormones in the touchscreen operant platform using the spatial working memory trial unique nonmatching-to-location (TUNL) task. Twenty-nine Long Evans rats were trained to acquire the TUNL task including three incremental spatial separations (S0, S1, S2). Following 20 consecutive days of training, subjects in experiment 1 (n=15) remained intact and immediately progressed to TUNL testing, while subjects in experiment 2 were OVX (n=6) or sham-operated (n=8) prior to testing. Subjects were tested on 4 spatial separations (S0-3) with a 1s or 6s delay between the sample and nonmatching stimuli. The estrous cycle of intact rats was monitored during the 4weeks of testing. The estrous cycle phase did not significantly affect performance. In contrast, compared to intact rats, OVX impaired performance at larger spatial separations (S2-3) during the 1s delay condition. Further, during the 6s delay, OVX impaired S2 performance, however not S3. Our results suggest a probable shift in cognitive strategy following OVX, when tested with a large and novel spatial separation. Our findings suggest that ovarian hormone deprivation following OVX, but not estrous cycle, impairs spatial working memory as measured by the TUNL task. This research is relevant for future studies utilising the touchscreen TUNL task and for cognitive testing of female rats.
Collapse
Affiliation(s)
- Alyssa M Sbisa
- Hormones in Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
| | - Andrea Gogos
- Hormones in Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia; Department of Pharmacology, University of Melbourne, Victoria, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia.
| |
Collapse
|
13
|
Davies DA, Hurtubise JL, Greba Q, Howland JG. Medial prefrontal cortex and dorsomedial striatum are necessary for the trial-unique, delayed nonmatching-to-location (TUNL) task in rats: role of NMDA receptors. ACTA ACUST UNITED AC 2017; 24:262-266. [PMID: 28507036 PMCID: PMC5435879 DOI: 10.1101/lm.044750.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022]
Abstract
The trial-unique, delayed nonmatching-to-location (TUNL) task is a recently developed behavioral task that measures spatial working memory and a form of pattern separation in touchscreen-equipped operant conditioning chambers. Limited information exists regarding the neurotransmitters and neural substrates involved in the task. The present experiments tested the effects of systemic and intracranial injections of NMDA receptor antagonists on the TUNL task. After training, male Long Evans rats systemically injected with the competitive NMDA receptor antagonist CPP (10 mg/kg) had impaired accuracy regardless of the degree of stimuli separation or length of delay between the sample and test phases. Injections of Ro 25-6981 (6 or 10 mg/kg), an antagonist selective for GluN2B subunit-containing NMDA receptors, did not affect accuracy on the task. Direct infusion of the competitive NMDA receptor antagonist AP5 into mPFC or dmSTR reduced overall accuracy on the TUNL task. These results demonstrate that TUNL task performance depends on NMDA receptors within the mPFC and dmSTR.
Collapse
Affiliation(s)
- Don A Davies
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Jessica L Hurtubise
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Quentin Greba
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - John G Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
14
|
Johnson SA, Turner SM, Santacroce LA, Carty KN, Shafiq L, Bizon JL, Maurer AP, Burke SN. Rodent age-related impairments in discriminating perceptually similar objects parallel those observed in humans. Hippocampus 2017; 27:759-776. [PMID: 28342259 DOI: 10.1002/hipo.22729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 01/24/2023]
Abstract
The ability to accurately remember distinct episodes is supported by high-level sensory discrimination. Performance on mnemonic similarity tasks, which test high-level discrimination, declines with advancing age in humans and these deficits have been linked to altered activity in hippocampal CA3 and dentate gyrus. Lesion studies in animal models, however, point to the perirhinal cortex as a brain region critical for sensory discriminations that serve memory. Reconciliation of the contributions of different regions within the cortical-hippocampal circuit requires the development of a discrimination paradigm comparable to the human mnemonic similarity task that can be used in rodents. In the present experiments, young and aged rats were cross-characterized on a spatial water maze task and two variants of an object discrimination task: one in which rats incrementally learned which object of a pair was rewarded and different pairs varied in their similarity (Experiment 1), and a second in which rats were tested on their ability to discriminate a learned target object from multiple lure objects with an increasing degree of feature overlap (Experiment 2). In Experiment 1, aged rats required more training than young to correctly discriminate between similar objects. Comparably, in Experiment 2, aged rats were impaired in discriminating a target object from lures when the pair shared more features. Discrimination deficits across experiments were correlated within individual aged rats, though, for the cohort tested, aged rats were not impaired overall in spatial learning and memory. This could suggest discrimination deficits emerging with age precede declines in spatial or episodic memory, an observation that has been made in humans. Findings of robust impairments in object discrimination abilities in the aged rats parallel results from human studies, supporting use of the developed tasks for mechanistic investigation of cortical-hippocampal circuit dysfunction in aging and disease.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Sean M Turner
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Lindsay A Santacroce
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Katelyn N Carty
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Leila Shafiq
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Jennifer L Bizon
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Andrew P Maurer
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Institute on Aging, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Hvoslef-Eide M, Mar AC, Nilsson SRO, Alsiö J, Heath CJ, Saksida LM, Robbins TW, Bussey TJ. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26202612 DOI: 10.1007/s00213-015-4007-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - A C Mar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, 10016, USA
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, 75124, Uppsala, Sweden
| | - C J Heath
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
16
|
Hvoslef-Eide M, Oomen CA, Fisher BM, Heath CJ, Robbins TW, Saksida LM, Bussey TJ. Facilitation of spatial working memory performance following intra-prefrontal cortical administration of the adrenergic alpha1 agonist phenylephrine. Psychopharmacology (Berl) 2015; 232:4005-16. [PMID: 26264904 PMCID: PMC4600475 DOI: 10.1007/s00213-015-4038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/25/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE Spatial working memory is dependent on the appropriate functioning of the prefrontal cortex (PFC). PFC activity can be modulated by noradrenaline (NA) released by afferent projections from the locus coeruleus. The coreuleo-cortical NA system could therefore be a target for cognitive enhancers of spatial working memory. Of the three classes of NA receptor potentially involved, the α2 and α1 classes seem most significant, though agents targeting these receptors have yielded mixed results. This may be partially due to the use of behavioural assays that do not translate effectively from the laboratory to the clinical setting. Use of a paradigm with improved translational potential may be essential to resolve these discrepancies. OBJECTIVES The objective of this study was to assess the effects of PFC-infused α2 and α1 adrenergic receptor agonists on spatial working memory performance in the touchscreen continuous trial-unique non-matching to location (cTUNL) task in rats. METHODS Young male rats were trained in the cTUNL paradigm. Cannulation of the mPFC allowed direct administration of GABA agonists for task validation, and phenylephrine and guanfacine to determine the effects of adrenergic agonists on task performance. RESULTS Infusion of muscimol and baclofen resulted in a delay-dependent impairment. Administration of the α2 agonist guanfacine had no effect, whilst infusion of the α1 agonist phenylephrine significantly improved working memory performance. CONCLUSIONS Spatial working memory as measured in the rat cTUNL task is dependent on the mPFC. Enhancement of noradrenergic signalling enhanced performance in this paradigm, suggesting a significant role for the α1 receptor in this facilitation.
Collapse
Affiliation(s)
- Martha Hvoslef-Eide
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - C. A. Oomen
- />Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK , />MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK , />Current address: Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands
| | - B. M. Fisher
- />Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK , />MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - C. J. Heath
- />Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK , />MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - T. W. Robbins
- />Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK , />MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - L. M. Saksida
- />Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK , />MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - T. J. Bussey
- />Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB UK , />MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| |
Collapse
|