1
|
Rhee SJ, Shin D, Shin D, Song Y, Joo EJ, Jung HY, Roh S, Lee SH, Kim H, Bang M, Lee KY, Lee J, Kim J, Kim Y, Kim Y, Ahn YM. Network analysis of plasma proteomes in affective disorders. Transl Psychiatry 2023; 13:195. [PMID: 37296094 DOI: 10.1038/s41398-023-02485-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The conventional differentiation of affective disorders into major depressive disorder (MDD) and bipolar disorder (BD) has insufficient biological evidence. Utilizing multiple proteins quantified in plasma may provide critical insight into these limitations. In this study, the plasma proteomes of 299 patients with MDD or BD (aged 19-65 years old) were quantified using multiple reaction monitoring. Based on 420 protein expression levels, a weighted correlation network analysis was performed. Significant clinical traits with protein modules were determined using correlation analysis. Top hub proteins were determined using intermodular connectivity, and significant functional pathways were identified. Weighted correlation network analysis revealed six protein modules. The eigenprotein of a protein module with 68 proteins, including complement components as hub proteins, was associated with the total Childhood Trauma Questionnaire score (r = -0.15, p = 0.009). Another eigenprotein of a protein module of 100 proteins, including apolipoproteins as hub proteins, was associated with the overeating item of the Symptom Checklist-90-Revised (r = 0.16, p = 0.006). Functional analysis revealed immune responses and lipid metabolism as significant pathways for each module, respectively. No significant protein module was associated with the differentiation between MDD and BD. In conclusion, childhood trauma and overeating symptoms were significantly associated with plasma protein networks and should be considered important endophenotypes in affective disorders.
Collapse
Affiliation(s)
- Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongyoon Shin
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojin Song
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital and Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hyeyoung Kim
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea
- Department of Psychiatry, Nowon Eulji University Hospital, Seoul, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaenyeon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeongshin Kim
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Youngsoo Kim
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Republic of Korea.
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Amasi-Hartoonian N, Pariante CM, Cattaneo A, Sforzini L. Understanding treatment-resistant depression using "omics" techniques: A systematic review. J Affect Disord 2022; 318:423-455. [PMID: 36103934 DOI: 10.1016/j.jad.2022.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Treatment-resistant depression (TRD) results in huge healthcare costs and poor patient clinical outcomes. Most studies have adopted a "candidate mechanism" approach to investigate TRD pathogenesis, however this is made more challenging due to the complex and heterogeneous nature of this condition. High-throughput "omics" technologies can provide a more holistic view and further insight into the underlying mechanisms involved in TRD development, expanding knowledge beyond already-identified mechanisms. This systematic review assessed the information from studies that examined TRD using hypothesis-free omics techniques. METHODS PubMed, MEDLINE, Embase, APA PsycInfo, Scopus and Web of Science databases were searched on July 2022. 37 human studies met the eligibility criteria, totalling 17,518 TRD patients, 571,402 healthy controls and 62,279 non-TRD depressed patients (including antidepressant responders and untreated MDD patients). RESULTS Significant findings were reported that implicate the role in TRD of various molecules, including polymorphisms, genes, mRNAs and microRNAs. The pathways most commonly reported by the identified studies were involved in immune system and inflammation, neuroplasticity, calcium signalling and neurotransmitters. LIMITATIONS Small sample sizes, variability in defining TRD, and heterogeneity in study design and methodology. CONCLUSIONS These findings provide insight into TRD pathophysiology, proposing future research directions for novel drug targets and potential biomarkers for clinical staging and response to antidepressants (citalopram/escitalopram in particular) and electroconvulsive therapy (ECT). Further validation is warranted in large prospective studies using standardised TRD criteria. A multi-omics and systems biology strategy with a collaborative effort will likely deliver robust findings for translation into the clinic.
Collapse
Affiliation(s)
- Nare Amasi-Hartoonian
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK.
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK; National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| |
Collapse
|
3
|
Silva-Costa LC, Smith BJ, Carregari VC, Souza GHMF, Vieira EM, Mendes-Silva AP, de Almeida V, Carvalho BS, Diniz BS, Martins-de-Souza D. Plasma proteomic signature of major depressive episode in the elderly. J Proteomics 2022; 269:104713. [PMID: 36058540 DOI: 10.1016/j.jprot.2022.104713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Depression is a complex and multifactorial disease, affecting about 6.5% of the elderly population in what is referred to as late-life depression (LLD). Despite its public health relevance, there is still limited information about the molecular mechanisms of LLD. We analyzed the blood plasma of 50 older adults, 19 with LLD and 31 controls, through untargeted mass spectrometry, and used systems biology tools to identify biochemical pathways and biological processes dysregulated in the disease. We found 96 differentially expressed proteins between LLD patients and control individuals. Using elastic-net regression, we generated a panel of 75 proteins that comprises a potential model for determining the molecular signature of LLD. We also showed that biological pathways related to vesicle-mediated transport and voltage-dependent calcium channels may be dysregulated in LLD. These data can help to build an understanding of the molecular basis of LLD, offering an integrated view of the biomolecular alterations that occur in this disorder. SIGNIFICANCE: Major depressive disorder in the elderly, called late-life depression (LLD), is a common and disabling disorder, with recent prevalence estimates of 6.5% in the general population. Despite the public health relevance, there is still limited information about the molecular mechanisms of LLD. The findings in this paper shed light on LLD heterogeneous biological mechanisms. We uncovered a potential novel biomolecular signature for LLD and biological pathways related to this condition which can be targets for the development of novel interventions for prevention, early diagnosis, and treatment of LLD.
Collapse
Affiliation(s)
- Licia C Silva-Costa
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Victor Corasolla Carregari
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Erica M Vieira
- Centre for Addiction and Mental Health (CAMH) (APMS, BSD), Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine (BSD), University of Toronto, Toronto, ON, Canada
| | - Ana Paula Mendes-Silva
- Centre for Addiction and Mental Health (CAMH) (APMS, BSD), Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine (BSD), University of Toronto, Toronto, ON, Canada
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Benilton S Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, (UNICAMP), Campinas, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA; Department of Psychiatry, Faculty of Medicine, University of Connecticut, CT, USA
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Sao Paulo, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
4
|
Westacott LJ, Wilkinson LS. Complement Dependent Synaptic Reorganisation During Critical Periods of Brain Development and Risk for Psychiatric Disorder. Front Neurosci 2022; 16:840266. [PMID: 35600620 PMCID: PMC9120629 DOI: 10.3389/fnins.2022.840266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
We now know that the immune system plays a major role in the complex processes underlying brain development throughout the lifespan, carrying out a number of important homeostatic functions under physiological conditions in the absence of pathological inflammation or infection. In particular, complement-mediated synaptic pruning during critical periods of early life may play a key role in shaping brain development and subsequent risk for psychopathology, including neurodevelopmental disorders such as schizophrenia and autism spectrum disorders. However, these disorders vary greatly in their onset, disease course, and prevalence amongst sexes suggesting complex interactions between the immune system, sex and the unique developmental trajectories of circuitries underlying different brain functions which are yet to be fully understood. Perturbations of homeostatic neuroimmune interactions during different critical periods in which regional circuits mature may have a plethora of long-term consequences for psychiatric phenotypes, but at present there is a gap in our understanding of how these mechanisms may impact on the structural and functional changes occurring in the brain at different developmental stages. In this article we will consider the latest developments in the field of complement mediated synaptic pruning where our understanding is beginning to move beyond the visual system where this process was first described, to brain areas and developmental periods of potential relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Laura J. Westacott
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Squassina A, Manchia M, Pisanu C, Ardau R, Arzedi C, Bocchetta A, Caria P, Cocco C, Congiu D, Cossu E, Dettori T, Frau DV, Garzilli M, Manca E, Meloni A, Montis MA, Mura A, Nieddu M, Noli B, Paribello P, Pinna F, Robledo R, Severino G, Sogos V, Del Zompo M, Ferri GL, Chillotti C, Vanni R, Carpiniello B. Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology 2020; 45:2229-2238. [PMID: 32919410 PMCID: PMC7784910 DOI: 10.1038/s41386-020-00844-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Individuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated. In this study we measured T-lymphocytes TL with quantitative fluorescent in situ hybridization (Q-FISH) and plasma levels of inflammatory markers in a cohort comprised of 40 patients with bipolar disorder (BD), 41 with schizophrenia (SZ), 37 with major depressive disorder (MDD), and 36 non-psychiatric controls (NPC). TL was shorter in SZ and in MDD compared to NPC, while it was longer in BD (model F6, 137 = 20.128, p = 8.73 × 10-17, effect of diagnosis, F3 = 31.870; p = 1.08 × 10-15). There was no effect of the different classes of psychotropic medications, while duration of treatment with mood stabilizers was associated with longer TL (Partial correlation controlled for age and BMI: correlation coefficient = 0.451; p = 0.001). Levels of high-sensitivity C-Reactive Protein (hsCRP) were higher in SZ compared to NPC (adjusted p = 0.027), and inversely correlated with TL in the whole sample (r = -0.180; p = 0.042). Compared to NPC, patients with treatment resistant (TR) SZ had shorter TL (p = 0.001), while patients with TR MDD had higher levels of tumor necrosis factor-α (TNFα) compared to NPC (p = 0.028) and to non-TR (p = 0.039). Comorbidity with cardio-metabolic disorders did not influence the observed differences in TL, hsCRP, and TNFα among the diagnostic groups. Our study suggests that patients with severe psychiatric disorders present reduced TL and increased inflammation.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| | - Mirko Manchia
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Carlo Arzedi
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Alberto Bocchetta
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Eleonora Cossu
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mario Garzilli
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Elias Manca
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Maria Antonietta Montis
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Andrea Mura
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
von Känel R, Merz F, Pfister H, Brückl T, Zimmermann P, Uhr M, Holsboer F, Höhne N, Ising M. Evidence for an enhanced procoagulant state in remitted major depression. World J Biol Psychiatry 2020; 21:766-774. [PMID: 31755344 DOI: 10.1080/15622975.2019.1696475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Hypercoagulability is one mechanism to explain the increased risk of incident atherothrombotic disease in patients with major depressive disorder (MDD). We examined whether patients with remitted MDD show an enhanced procoagulant state. METHODS 63 individuals (median age 35 years, 59% women), 40 with a DSM-IV diagnosis of remitted MDD, made by a clinical interview, and 23 healthy controls provided blood samples for the measurement of fibrinogen, D-dimer, von Willebrand factor, and plasminogen activator inhibitor-1. Standardised z-scores of plasma levels of these haemostatic factors were added to form a procoagulant index (PCI) as the primary outcome variable. Self-ratings of residual depressive symptoms and trait anxiety were also obtained. RESULTS Compared with controls, remitted MDD patients had higher PCI (p = 0.013, Cohen's d = 0.69) and fibrinogen (p = 0.001, d = 0.91), controlling for age, sex, body mass index, smoking and C-reactive protein. There were no significant associations of the PCI and individual haemostatic molecules with age of MDD onset, time since the last MDD episode, the number of previous MDD episodes and residual depressive symptoms. Additional adjustment for anxiety symptoms did not change these results. CONCLUSIONS Remitted MDD is associated with an enhanced procoagulant state. Hypercoagulability seems more a trait than a state characteristic of depression.
Collapse
Affiliation(s)
- Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Tanja Brückl
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Manfred Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany.,HMNC Brain Health GmbH, Munich, Germany
| | - Nina Höhne
- Max Planck Institute of Psychiatry, Munich, Germany.,Centre for Digitization Bavaria, Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
7
|
Shi Y, Song R, Wang L, Qi Y, Zhang H, Zhu J, Zhang X, Tang X, Zhan Q, Zhao Y, Swaab DF, Bao AM, Zhang Z. Identifying Plasma Biomarkers with high specificity for major depressive disorder: A multi-level proteomics study. J Affect Disord 2020; 277:620-630. [PMID: 32905914 DOI: 10.1016/j.jad.2020.08.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND There are currently no objective diagnostic biomarkers for major depressive disorder (MDD) due to the biological complexity of the disorder. The existence of blood-based biomarkers with high specificity would be convenient for the clinical diagnosis of MDD. METHODS A comprehensive plasma proteomic analysis was conducted in a highly homogeneous cohort [7 drug-naïve MDD patients and 7 healthy controls (HCs)], with bioinformatics analysis combined with machine learning used to screen candidate proteins. Verification of reproducibility and specificity was conducted in independent cohorts [60 HCs and 74 MDD, 42 schizophrenia (SZ) and 39 bipolar I disorder (BD-I) drug-naïve patients]. Furthermore, verification of consistency was accomplished by proteomic analysis of postmortem brain tissue from 16 MDD patients and 16 HCs. RESULTS Levels of C-reactive protein (CRP), antithrombin III (ATIII), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and vitamin D-binding protein (VDB) were significantly higher in MDD patients, both in the discovery cohort and independent replication cohort. In comparison with SZ or BD-I patients, two proteins (VDB and ITIH4) were significantly elevated only in MDD patients. In addition, increased VDB and ITIH4 were observed consistently in both plasma and postmortem dorsolateral prefrontal cortex tissues of MDD patients. Furthermore, a panel consisting of all four plasma proteins was able to distinguish MDD patients from HCs or SZ or BD-I patients with the highest accuracy. CONCLUSION Plasma ITIH4 and VDB may be potential plasma biomarkers of MDD with high specificity. The four-protein panel is more suitable as a potential clinical diagnostic marker for MDD.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ruize Song
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Liping Wang
- Nanjing University Aeronaut & Astronaut, Department Math, Nanjing, Jiangsu, 210016, China
| | - Yangjian Qi
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jianli Zhu
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China; Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215008, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Qiongqiong Zhan
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Mental Health Center Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
8
|
Lin CQ, Chen LK. Cerebral dopamine neurotrophic factor promotes the proliferation and differentiation of neural stem cells in hypoxic environments. Neural Regen Res 2020; 15:2057-2062. [PMID: 32394962 PMCID: PMC7716052 DOI: 10.4103/1673-5374.282262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Previous research found that cerebral dopamine neurotrophic factor (CDNF) has a protective effect on brain dopaminergic neurons, and CDNF is regarded as a promising therapeutic agent for neurodegenerative diseases. However, the effects of CDNF on the proliferation, differentiation, and apoptosis of neural stem cells (NSCs), which are very sensitive to hypoxic environments, remain unknown. In this study, NSCs were extracted from the hippocampi of fetal rats and cultured with different concentrations of CDNF. The results showed that 200 nM CDNF was the optimal concentration for significantly increasing the viability of NSCs under non-hypoxic environmental conditions. Then, the cells were cultured with 200 nM CDNF under the hypoxic conditions of 90% N2, 5% CO2, and 5% air for 6 hours. The results showed that CDNF significantly improved the viability of hypoxic NSCs and reduced apoptosis among hypoxic NSCs. The detection of markers showed that CDNF increased the differentiation of hypoxic NSCs into neurons and astrocytes. CDNF also reduced the expression level of Lin28 protein and increased the expression of Let-7 mRNA in NSCs, under hypoxic conditions. In conclusion, we determined that CDNF was able to reverse the adverse proliferation, differentiation, and apoptosis effects that normally affect NSCs in a hypoxic environment. Furthermore, the Lin28/Let-7 pathway may be involved in this regulated function of CDNF. The present study was approved by the Laboratory Animal Centre of Southeast University, China (approval No. 20180924006) on September 24, 2018.
Collapse
Affiliation(s)
- Chao-Qun Lin
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Lu-Kui Chen
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Gerdle B, Ghafouri B. Proteomic studies of common chronic pain conditions - a systematic review and associated network analyses. Expert Rev Proteomics 2020; 17:483-505. [DOI: 10.1080/14789450.2020.1797499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Wåhlén K, Ernberg M, Kosek E, Mannerkorpi K, Gerdle B, Ghafouri B. Significant correlation between plasma proteome profile and pain intensity, sensitivity, and psychological distress in women with fibromyalgia. Sci Rep 2020; 10:12508. [PMID: 32719459 PMCID: PMC7385654 DOI: 10.1038/s41598-020-69422-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022] Open
Abstract
Fibromyalgia (FM) is a complex pain condition where the pathophysiological and molecular mechanisms are not fully elucidated. The primary aim of this study was to investigate the plasma proteome profile in women with FM compared to controls. The secondary aim was to investigate if plasma protein patterns correlate with the clinical variables pain intensity, sensitivity, and psychological distress. Clinical variables/background data were retrieved through questionnaires. Pressure pain thresholds (PPT) were assessed using an algometer. The plasma proteome profile of FM (n = 30) and controls (n = 32) was analyzed using two-dimensional gel electrophoresis and mass spectrometry. Quantified proteins were analyzed regarding group differences, and correlations to clinical parameters in FM, using multivariate statistics. Clear significant differences between FM and controls were found in proteins involved in inflammatory, metabolic, and immunity processes. Pain intensity, PPT, and psychological distress in FM had associations with specific plasma proteins involved in blood coagulation, metabolic, inflammation and immunity processes. This study further confirms that systemic differences in protein expression exist in women with FM compared to controls and that altered levels of specific plasma proteins are associated with different clinical parameters.
Collapse
Affiliation(s)
- Karin Wåhlén
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial Neurosciences (SCON), 141 04, Huddinge, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kaisa Mannerkorpi
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Center, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Cruz A, Queirós R, Abreu CM, Barata C, Fernandes R, Silva R, Ambrósio AF, Soares-dos-Reis R, Guimarães J, Sá MJ, Relvas JB, Freitas PP, Mendes Pinto I. Electrochemical Immunosensor for TNFα-Mediated Inflammatory Disease Screening. ACS Chem Neurosci 2019; 10:2676-2682. [PMID: 30985099 DOI: 10.1021/acschemneuro.9b00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation associated with cancer, neurodegenerative, ocular, and autoimmune diseases has a considerable impact on public health. Tumor necrosis factor alpha (TNFα) is a key mediator of inflammatory responses, responsible for many of the systemic manifestations during the inflammatory process. Thus, inhibition of TNFα is a commonplace practice in the treatment of these disorders. Successful therapy requires the ability to determine the appropriate dose of anti-TNFα drugs to be administered in a timely manner, based on circulating TNFα levels. In this Letter, we report the development of an immunosensor technology able to quantify TNFα at the picogram level in relevant human body fluids, holding the potential to early detect inflammation and monitor TNFα levels during treatment, enabling TNFα-targeted treatments to be tailored according to the immune status of an individual patient. This immunosensor technology is significantly more rapid and sensitive than conventional enzyme linked immunosorbent assays, maintaining high specificity and requiring small sample volumes. These features might also be advantageous in the context of personalized medicine, as this analytical platform can deliver advanced diagnostics and reduce clinical burden.
Collapse
Affiliation(s)
- Andrea Cruz
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Raquel Queirós
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Catarina M. Abreu
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Swansea University Medical School, Swansea SA2 8PP, United Kingdom
| | - Catarina Barata
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Instituto Superior Técnico, University of Lisbon, Lisbon 1649-004, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
- CNC.IBILI, University of Coimbra, Coimbra 3000-548, Portugal
| | - Rufino Silva
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
- Coimbra University Hospital, Coimbra 3000-075, Portugal
| | - Antonio F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra 3004-531, Portugal
- CNC.IBILI, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ricardo Soares-dos-Reis
- Neurology Department, Centro Hospitalar de São João, Porto 4200-319, Portugal
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar de São João, Porto 4200-319, Portugal
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto 4200-135, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar de São João, Porto 4200-319, Portugal
- Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto 4200-135, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Porto 4200-135, Portugal
| | - João B. Relvas
- Institute for Research and Innovation in Health, University of Porto, Porto 4200-135, Portugal
| | - Paulo P. Freitas
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| |
Collapse
|
12
|
Wang Q, Yu C, Shi S, Su X, Zhang J, Ding Y, Sun Y, Liu M, Li C, Zhao X, Jiang W, Wei T. An analysis of plasma reveals proteins in the acute phase response pathway to be candidate diagnostic biomarkers for depression. Psychiatry Res 2019; 272:404-410. [PMID: 30611956 DOI: 10.1016/j.psychres.2018.11.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 10/14/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022]
Abstract
Globally, depression is one of the most serious debilitating psychiatric mental disorders. In this study, we validated the expression levels of fibrinogen alpha (FGA), fibrinogen beta (FGB), fibrinogen gamma (FGG), Complement factor B (CFB) and serpin family D member 1(SERPIND1) in the acute phase response signaling pathway in plasma samples using enzyme-linked immunosorbent assay (ELISA).Then illuminate the roles of FGA, FGB, FGG, CFB, SERPIND1 in depression using microarray data. Gene expression dataset GSE98793 was downloaded from the Gene Expression Omnibus database. There were 128 whole blood samples included 64 patients with major depressed patients and 64 healthy controls. Differentially expressed genes (DEGs) were identified, and then protein-protein interaction (PPI) network was constructed to screen crucial genes associated with FGA, FGB, FGG, CFB and SERPIND1. Moreover, gene ontology (GO) biological processes analyses was performed. The ELISA data showed that the expression levels of FGA, FGB, FGG, CFB and SERPIND1 were up-regulated in depressed patients. The enriched GO terms were predominantly associated with the biological processes including more genes were inflammation related. The PPI network was found these five genes interacted with 11 genes. FGA, FGB, FGG, CFB and SERPIND1 may be important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Chunyue Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Shanshan Shi
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Xiaojie Su
- Department of Biochemistry and molecular biology, College of Medical laboratory and technology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Jian Zhang
- College of Medical Informatics, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Yongqing Ding
- Department of Women's Psychological Clinic, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163000, PR China
| | - Yanan Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Min Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Chunquan Li
- College of Medical Informatics, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Xiwu Zhao
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - Wenhai Jiang
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - Taiming Wei
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China.
| |
Collapse
|
13
|
Silva-Costa LC, Carlson PT, Guest PC, de Almeida V, Martins-de-Souza D. Proteomic Markers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:191-206. [DOI: 10.1007/978-3-030-05542-4_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wåhlén K, Ghafouri B, Ghafouri N, Gerdle B. Plasma Protein Pattern Correlates With Pain Intensity and Psychological Distress in Women With Chronic Widespread Pain. Front Psychol 2018; 9:2400. [PMID: 30555396 PMCID: PMC6281753 DOI: 10.3389/fpsyg.2018.02400] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Objectives: Although generalized muscle pain, tiredness, anxiety, and depression are commonly present among chronic widespread pain (CWP) patients, the molecular mechanisms behind CWP are not fully elucidated. Moreover, the lack of biomarkers often makes diagnosis and treatment problematic. In this study, we investigated the correlation between pain intensity, psychological distress, and plasma proteins among CWP patients and controls (CON). Methods: The plasma proteome of CWP (n = 15) and CON (n = 23) was analyzed using two-dimensional gel electrophoresis. Orthogonal Partial Least Square analysis (OPLS) was used to determine proteins associated with pain intensity (numeric rating scale) in CWP and psychological distress (Hospital and Depression Scale, HADS) in CWP and CON. Significant proteins were identified by MALDI-TOF and tandem MS. Results: In CWP, pain intensity was associated with plasma proteins mostly involved in metabolic and immunity processes (e.g., kininogen-1, fibrinogen gamma chain, and ceruloplasmin), and psychological distress was associated with plasma proteins related to immunity response, iron ion, and lipid metabolism (e.g., complement factor B, complement C1r subcomponent, hemopexin, and clusterin). Discussion: This study suggests that different plasma protein patterns are associated with different pain intensity and psychological distress in CWP. Proteins belonging to the coagulation cascade and immunity processes showed strong associations to each clinical outcome. Using the plasma proteome profile of CWP to study potential biomarker candidates provides a snapshot of ongoing systemic mechanisms in CWP.
Collapse
Affiliation(s)
- Karin Wåhlén
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Greco V, Piras C, Pieroni L, Urbani A. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. Methods Mol Biol 2018; 1619:3-21. [PMID: 28674873 DOI: 10.1007/978-1-4939-7057-5_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood proteome analysis for biomarker discovery represents one of the most challenging tasks to be achieved through clinical proteomics due to the sample complexity, such as the extreme heterogeneity of proteins in very dynamic concentrations, and to the observation of proper sampling and storage conditions. Quantitative and qualitative proteomics profiling of plasma and serum could be useful both for the early detection of diseases and for the evaluation of pathological status. Two main sources of variability can affect the precision and accuracy of the quantitative experiments designed for biomarker discovery and validation. These sources are divided into two categories, pre-analytical and analytical, and are often ignored; however, they can contribute to consistent errors and misunderstanding in biomarker research. In this chapter, we review critical pre-analytical and analytical variables that can influence quantitative proteomics. According to guidelines accepted by proteomics community, we propose some recommendations and strategies for a proper proteomics analysis addressed to biomarker studies.
Collapse
Affiliation(s)
- Viviana Greco
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Cristian Piras
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Luisa Pieroni
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Andrea Urbani
- Proteomics and metabonomics unit, Fondazione Santa Lucia, IRCCS, Rome, Italy. .,Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Rome, Italy.
| |
Collapse
|
16
|
Turck CW, Guest PC, Maccarrone G, Ising M, Kloiber S, Lucae S, Holsboer F, Martins-de-Souza D. Proteomic Differences in Blood Plasma Associated with Antidepressant Treatment Response. Front Mol Neurosci 2017; 10:272. [PMID: 28912679 PMCID: PMC5583163 DOI: 10.3389/fnmol.2017.00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
The current inability of clinical psychiatry to objectively select the most appropriate treatment is a major factor contributing to the severity and clinical burden of major depressive disorder (MDD). Here, we have attempted to identify plasma protein signatures in 39 MDD patients to predict response over a 6-week treatment period with antidepressants. LC-MS/MS analysis showed that differences in the levels of 29 proteins at baseline were found in the group with a favorable treatment outcome. Most of these proteins were components of metabolism or immune response pathways as well as multiple components of the coagulation cascade. After 6 weeks of treatment, 43 proteins were altered in responders of which 2 (alpha-actinin and nardilysin) had been identified at baseline. In addition, 46 proteins were altered in non-responders and 9 of these (alpha-actinin, alpha-2-macroglobulin, apolipoprotein B-100, attractin, C-reactive protein, fibrinogen alpha chain, fibrinogen beta chain, nardilysin and serine/threonine-protein kinase Chk1) had been identified at baseline. However, it should be stressed that the small sample size precludes generalization of the main results. Further studies to validate these as potential biomarkers of antidepressant treatment response are warranted considering the potential importance to the field of psychiatric disorders. This study provides the groundwork for development of novel objective clinical tests that can help psychiatrists in the clinical management of MDD through improved prediction and monitoring of patient responses to antidepressant treatments.
Collapse
Affiliation(s)
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil
| | | | - Marcus Ising
- Max Planck Institute of PsychiatryMunich, Germany
| | - Stefan Kloiber
- Max Planck Institute of PsychiatryMunich, Germany.,Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada
| | | | - Florian Holsboer
- Max Planck Institute of PsychiatryMunich, Germany.,HMNC GmbHMunich, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of CampinasCampinas, Brazil.,Neurobiology Center, University of CampinasCampinas, Brazil
| |
Collapse
|
17
|
Wåhlén K, Olausson P, Carlsson A, Ghafouri N, Gerdle B, Ghafouri B. Systemic alterations in plasma proteins from women with chronic widespread pain compared to healthy controls: a proteomic study. J Pain Res 2017; 10:797-809. [PMID: 28435317 PMCID: PMC5388344 DOI: 10.2147/jpr.s128597] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic widespread pain (CWP) is a complex pain condition that is difficult to treat. The prevalence of CWP approximates ~10% of the general population, with higher prevalence in women. Lack of understanding of molecular mechanisms has been a challenge for diagnosis and treatment of chronic pain. The aim of this study was to explore the systemic protein changes in CWP compared to those in healthy controls (CON). By applying 2-dimensional gel electrophoresis, we analyzed the protein pattern of plasma samples from women with CWP (n=16) and healthy women (n=23). The proteomic data were analyzed using multivariate statistical models, and altered proteins were identified using mass spectrometry. The proteome analysis was further validated by gel-free Western blot. Multivariate statistical data analysis of quantified proteins revealed 22 altered proteins in women with CWP, compared to CON group. Many of the identified proteins are previously known to be involved in different parts of the complement system and metabolic and inflammatory processes, e.g., complement factor B, vitamin D-binding protein, ceruloplasmin, transthyretin and alpha-2-HS-glycoprotein. These results indicate that important systemic protein differences exist between women with CWP and healthy women. Further, this study illustrates the potential use of proteomics to detect biomarkers that may provide new insights into the molecular mechanism(s) of chronic pain. However, further larger investigations are required in order to confirm these findings before it will be possible to identify proteins as potential pain biomarkers for clinical use.
Collapse
Affiliation(s)
- Karin Wåhlén
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Patrik Olausson
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anders Carlsson
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nazdar Ghafouri
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|