1
|
Bayoglu M, Ozturk Bintepe M, Kanit L, Balkan B, Gozen O, Koylu EO, Keser A. Decreased anxiety-like behavior in a selectively bred high nicotine-preferring rat line. Int J Neurosci 2024; 134:1403-1413. [PMID: 37929683 DOI: 10.1080/00207454.2023.2279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Genetic vulnerability contributes significantly to the individual variability observed in nicotine dependence. Selective breeding for sensitivity to a particular effect of abused drugs has produced rodent lines useful for studying genetic vulnerability to drug addiction. Previous research showed that anxiety-related personality traits are associated with nicotine dependence. Therefore, we examined the differences in anxiety-like behavior between a high nicotine-preferring rat line and their controls. At the beginning of the study, all rats, naïve to any drug, were exposed sequentially to open field arena, marble-burying and elevated plus-maze paradigms. In the second step, all rats received nicotine in drinking water for 7 weeks. Behavioral tests were rerun on the final 2 weeks of chronic nicotine treatment. Elevated plus-maze testings under basal condition and during chronic nicotine treatment showed that the time spent on the open arms, preference for being in the open arms, and the latency to enter the closed arms were higher, whereas open arm avoidance index was lower in nicotine-preferring rats compared to the controls. In the open field test, nicotine-preferring rats spent longer time in the central zone and excreted less fecal pellets; they buried less marbles in the marble-burying test. These findings indicate a lower level of anxiety-like behavior in nicotine-preferring rat line under basal conditions and during chronic nicotine treatment. We conclude that lower anxiety level in nicotine-preferring rat line is consistent with novelty-seeking personality type and may increase vulnerability to nicotine dependence in this rat line.
Collapse
Affiliation(s)
- Merve Bayoglu
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
| | | | - Lutfiye Kanit
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Aysegul Keser
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Huang N, Cui J, Fan G, Pan T, Han K, Xu K, Jiang C, Liu X, Wang F, Ma L, Le Q. Transcriptomic effects of paternal cocaine-seeking on the reward circuitry of male offspring. Transl Psychiatry 2024; 14:120. [PMID: 38409093 PMCID: PMC10897445 DOI: 10.1038/s41398-024-02839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
It has been previously established that paternal development of a strong incentive motivation for cocaine can predispose offspring to develop high cocaine-seeking behavior, as opposed to sole exposure to the drug that results in drug resistance in offspring. However, the adaptive changes of the reward circuitry have not been fully elucidated. To infer the key nuclei and possible hub genes that determine susceptibility to addiction in offspring, rats were randomly assigned to three groups, cocaine self-administration (CSA), yoked administration (Yoke), and saline self-administration (SSA), and used to generate F1. We conducted a comprehensive transcriptomic analysis of the male F1 offspring across seven relevant brain regions, both under drug-naïve conditions and after cocaine self-administration. Pairwise differentially expressed gene analysis revealed that the orbitofrontal cortex (OFC) exhibited more pronounced transcriptomic changes in response to cocaine exposure, while the dorsal hippocampus (dHip), dorsal striatum (dStr), and ventral tegmental area (VTA) exhibited changes that were more closely associated with the paternal voluntary cocaine-seeking behavior. Consistently, these nuclei showed decreased dopamine levels, elevated neuronal activation, and elevated between-nuclei correlations, indicating dopamine-centered rewiring of the midbrain circuit in the CSA offspring. To determine if possible regulatory cascades exist that drive the expression changes, we constructed co-expression networks induced by paternal drug addiction and identified three key clusters, primarily driven by transcriptional factors such as MYT1L, POU3F4, and NEUROD6, leading to changes of genes regulating axonogenesis, synapse organization, and membrane potential, respectively. Collectively, our data highlight vulnerable neurocircuitry and novel regulatory candidates with therapeutic potential for disrupting the transgenerational inheritance of vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Nan Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Cui
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Kunxiu Han
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Kailiang Xu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
3
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
4
|
Grasing MJ, Xu H, Idowu JY, Grasing K. Changes Depression- and Anxiety- like Behaviors following Selective Breeding for Cocaine Reinforcement. Psychiatry Res 2021; 295:113637. [PMID: 33321401 DOI: 10.1016/j.psychres.2020.113637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
The LS and HS are rat lines selectively bred for altered cocaine self-administration. Given the importance of mental health in substance use, these lines were evaluated for putative depression- and anxiety- like behaviors through forced swimming and exploration of a plus maze. We found increases of struggling in LS males, climbing in LS females, and swimming in HS males; with biphasic effects on immobility in the HS strain. HS rats had fewer entries into and less time spent in open arms of the plus maze, consistent with greater anxiety-like behavior, which may contribute to enhanced drug taking.
Collapse
Affiliation(s)
- Michael J Grasing
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128; University of Kansas School of Medicine, Kansas City, KS 66160.
| | - Haiyang Xu
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128; Florida State University, Program in Neuroscience, Tallahassee, FL 32306.
| | - Jessica Y Idowu
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128; University of Kansas School of Medicine, Kansas City, KS 66160.
| | - Kenneth Grasing
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128; University of Kansas School of Medicine, Kansas City, KS 66160.
| |
Collapse
|
5
|
Zhang DP, Lu XY, He SC, Li WY, Ao R, Leung FCY, Zhang ZM, Chen QB, Zhang SJ. Sodium tanshinone IIA sulfonate protects against Aβ-induced cell toxicity through regulating Aβ process. J Cell Mol Med 2020; 24:3328-3335. [PMID: 31989795 PMCID: PMC7131914 DOI: 10.1111/jcmm.15006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/09/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) has been reported to prevent Alzheimer's disease (AD). However, the mechanism is still unknown. In this study, two in vitro models, Aβ-treated SH-SY5Y cells and SH-SY5Y human neuroblastoma cells transfected with APPsw (SH-SY5Y-APPsw cells), were employed to investigate the neuroprotective of STS. The results revealed that pretreatment with STS (1, 10 and 100 µmol/L) for 24 hours could protect against Aβ (10 µmol/L)-induced cell toxicity in a dose-dependent manner in the SH-SY5Y cells. Sodium tanshinone IIA sulfonate decreased the concentrations of reactive oxygen species, malondialdehyde, NO and iNOS, while increased the activities of superoxide dismutase and glutathione peroxidase in the SH-SY5Y cells. Sodium tanshinone IIA sulfonate decreased the levels of inflammatory factors (IL-1β, IL-6 and TNF-α) in the SH-SY5Y cells. In addition, Western blot results revealed that the expressions of neprilysin and insulin-degrading enzyme were up-regulated in the SH-SY5Y cells after STS treatment. Furthermore, ELISA and Western blot results showed that STS could decrease the levels of Aβ. ELISA and qPCR results indicated that STS could increase α-secretase (ADAM10) activity and decrease β-secretase (BACE1) activity. In conclusion, STS could protect against Aβ-induced cell damage by modulating Aβ degration and generation. Sodium tanshinone IIA sulfonate could be a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Da-Peng Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin-Yi Lu
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Chen He
- Department of Neurology, The People's Hospital of Baiyun District Guangzhou, Guangzhou, China
| | - Wan-Yan Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Ao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feona Chung-Yin Leung
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhi-Min Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qu-Bo Chen
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
CGY-1, a biflavonoid isolated from cardiocrinum giganteum seeds, improves memory deficits by modulating the cholinergic system in scopolamine-treated mice. Biomed Pharmacother 2019; 111:496-502. [DOI: 10.1016/j.biopha.2018.12.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 12/26/2022] Open
|