1
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
2
|
Bachtell RK, Larson TA, Winkler MC. Adenosine receptor stimulation inhibits methamphetamine-associated cue seeking. J Psychopharmacol 2023; 37:192-203. [PMID: 36629009 DOI: 10.1177/02698811221147157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Methamphetamine (METH) is a psychostimulant drug that remains a popular and threatening drug of abuse with high abuse liability. There is no established pharmacotherapy to treat METH dependence, but evidence suggests that stimulation of adenosine receptors reduces the reinforcing properties of METH and could be a potential pharmacological target. This study examines the effects of adenosine receptor subtype stimulation on METH seeking using both a cue-induced reinstatement and cue-craving model of relapse. METHODS Male and female rats were trained to self-administer METH during daily 2-h sessions. Cue-induced reinstatement of METH seeking was evaluated after extinction training. A systemic pretreatment of an adenosine A1 receptor (A1R) or A2A receptor (A2AR) agonist was administered prior to an extinction or cue session to evaluate the effects of adenosine receptor subtype stimulation on METH seeking. The effects of a systemic pretreatment of A1R or A2AR agonists were also evaluated in a cue-craving model where the cued-seeking test was conducted after 21 days of forced home-cage abstinence without extinction training. RESULTS Cue-induced reinstatement was reduced in both male and female rats that received A1R or A2AR agonist pretreatments. Similarly, an A1R or A2AR agonist pretreatment also inhibited cue craving in both male and female rats. CONCLUSION Stimulation of either adenosine A1R or A2AR subtypes inhibits METH-seeking behavior elicited by METH-associated cues. These effects may be attributed to the ability of A1R and A2AR stimulation to disrupt cue-induced dopamine and glutamate signaling throughout the brain.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tracey A Larson
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Madeline C Winkler
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Shen B, Zhang D, Zeng X, Guan L, Yang G, Liu L, Huang J, Li Y, Hong S, Li L. Cannabidiol inhibits methamphetamine-induced dopamine release via modulation of the DRD1-MeCP2-BDNF-TrkB signaling pathway. Psychopharmacology (Berl) 2022; 239:1521-1537. [PMID: 34997862 DOI: 10.1007/s00213-021-06051-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Adaptive alteration of dopamine (DA) system in mesocorticolimbic circuits is an extremely intricate and dynamic process, which contributes to maintaining methamphetamine (METH)-related disorders. There are no approved pharmacotherapies for METH-related disorders. Cannabidiol (CBD), a major non-psychoactive constituent of cannabis, has received attention for its therapeutic potential in treating METH-related disorders. However, the major research obstacles of CBD are the yet to be clarified mechanisms behind its therapeutic potential. Recent evidence showed that DA system may be active target of CBD. CBD could be a promising dopaminergic medication for METH-related disorders. OBJECTIVES We investigated the role of the DA receptor D1 (DRD1)-methyl-CpG-binding protein 2 (MeCP2)-brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway in DA release induced by METH. Investigating the intervention effects of CBD on the DRD1-MeCP2-BDNF-TrkB signaling pathway could help clarify the underlying mechanisms and therapeutic potential of CBD in METH-related disorders. RESULTS METH (400 μM) significantly increased DA release from primary neurons in vitro, which was blocked by CBD (1 μM) pretreatment. METH (400 μM) significantly increased the expression levels of DRD1, BDNF, and TrkB, but decreased the expression of MeCP2 in the neurons, whereas CBD (1 μM) pretreatment notably inhibited the protein changes induced by METH. In addition, DRD1 antagonist SCH23390 (10 μM) inhibited the DA release and protein change induced by METH in vitro. However, DRD1 agonist SKF81297 (10 μM) induced DA release and protein change in vitro, which was also blocked by CBD (1 μM) pretreatment. METH (2 mg/kg) significantly increased the DA level in the nucleus accumbens (NAc) of rats with activation of the DRD1-MeCP2-BDNF-TrkB signaling pathway, but these changes were blocked by CBD (40 or 80 mg/kg) pretreatment. CONCLUSIONS This study indicates that METH induces DA release via the DRD1-MeCP2-BDNF-TrkB signaling pathway. Furthermore, CBD significantly inhibits DA release induced by METH through modulation of this pathway.
Collapse
Affiliation(s)
- Baoyu Shen
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dongxian Zhang
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Lina Guan
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Genmeng Yang
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Liu Liu
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian Huang
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yuanyuan Li
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Shijun Hong
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Lihua Li
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Adenosine A 2AReceptors in Substance Use Disorders: A Focus on Cocaine. Cells 2020; 9:cells9061372. [PMID: 32492952 PMCID: PMC7348840 DOI: 10.3390/cells9061372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Several psychoactive drugs can evoke substance use disorders (SUD) in humans and animals, and these include psychostimulants, opioids, cannabinoids (CB), nicotine, and alcohol. The etiology, mechanistic processes, and the therapeutic options to deal with SUD are not well understood. The common feature of all abused drugs is that they increase dopamine (DA) neurotransmission within the mesocorticolimbic circuitry of the brain followed by the activation of DA receptors. D2 receptors were proposed as important molecular targets for SUD. The findings showed that D2 receptors formed heteromeric complexes with other GPCRs, which forced the addiction research area in new directions. In this review, we updated the view on the brain D2 receptor complexes with adenosine (A)2A receptors (A2AR) and discussed the role of A2AR in different aspects of addiction phenotypes in laboratory animal procedures that permit the highly complex syndrome of human drug addiction. We presented the current knowledge on the neurochemical in vivo and ex vivo mechanisms related to cocaine use disorder (CUD) and discussed future research directions for A2AR heteromeric complexes in SUD.
Collapse
|
5
|
Hong SI, Bullert A, Baker M, Choi DS. Astrocytic equilibrative nucleoside transporter type 1 upregulations in the dorsomedial and dorsolateral striatum distinctly coordinate goal-directed and habitual ethanol-seeking behaviours in mice. Eur J Neurosci 2020; 52:3110-3123. [PMID: 32306482 DOI: 10.1111/ejn.14752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Two distinct dorsal striatum regions, dorsomedial striatum (DMS) and dorsolateral striatum (DLS), are attributed to conditioned goal-directed and habitual reward-seeking behaviours, respectively. Previously, our study shows that the ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), regulates ethanol-drinking behaviours. Although ENT1 is expressed in both neurons and astrocytes, astrocytic ENT1 is thought to regulate adenosine levels in response to ethanol. However, the role of DMS and DLS astrocytic ENT1 in goal-directed and habitual ethanol-seeking is not well known. Here, we identified whether the upregulation of astrocytic ENT1 in the DMS and DLS differentially regulates operant seeking behaviours towards the 10% sucrose (10S); 10% ethanol and 10% sucrose (10E10S); and 10% ethanol (10E) in mice. Using 4 days of random interval (RI), mice exhibited habitual seeking for 10S, but goal-directed seeking towards 10E10S. Using the same mice conditioned with 10E10S, we examined 10E-seeking behaviour on a fixed ratio (FR) for 6 days and RI for 8 days. On the other hand, during FR and the first 4 days of RI schedules, mice showed goal-directed seeking for 10E, whereas mice exhibited habitual seeking for 10E during the last 4 days of RI schedule. Interestingly, DMS astrocytic ENT1 upregulation promotes shift from habitual to goal-directed reward-seeking behaviours. By contrast, DLS astrocytic ENT1 upregulation showed no effects on behavioural shift. Taken together, our findings demonstrate that DMS astrocytic ENT1 contributes to reward-seeking behaviours.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amanda Bullert
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Neuroscience Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|