1
|
Barbosa-Méndez S, Salazar-Juárez A. Mirtazapine decreased cocaine-induced c-fos expression and dopamine release in rats. Front Psychiatry 2024; 15:1428730. [PMID: 39188520 PMCID: PMC11346032 DOI: 10.3389/fpsyt.2024.1428730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Chronic cocaine exposure induces an increase in dopamine release and an increase in the expression of the Fos protein in the rat striatum. It has been suggested that both are necessary for the expression of cocaine-induced alterations in behavior and neural circuitry. Mirtazapine dosing attenuated the cocaine-induced psychomotor and reinforcer effects. Methods The study evaluates the effect of chronic dosing of mirtazapine on cocaine-induced extracellular dopamine levels and Fos protein expression in rats. Male Wistar rats received cocaine (10 mg/Kg; i.p.) during the induction and expression of locomotor sensitization. The mirtazapine (30 mg/Kg; MIR), was administered 30 minutes before cocaine during the cocaine withdrawal. After each treatment, the locomotor activity was recorded for 30 minutes. Animals were sacrificed after treatment administration. Dopamine levels were determined by high-performance liquid chromatographic (HPLC) in the ventral striatum, the prefrontal cortex (PFC), and the ventral tegmental area (VTA) in animals treated with mirtazapine and cocaine. The quantification of c-fos immunoreactive cells was carried out by stereology analysis. Results Mirtazapine generated a decrease in cocaine-induced locomotor activity. In addition, mirtazapine decreased the amount of cocaine-induced dopamine and the number of cells immunoreactive to the Fos protein in the striatum, PFC, and VTA. Discussion These data suggest that mirtazapine could prevent the consolidation of changes in behavior and the cocaine-induced reorganization of neuronal circuits. It would explain the mirtazapine-induced effects on cocaine behavioral sensitization. Thus, these data together could support its possible use for the treatment of patients with cocaine use disorder.
Collapse
|
2
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
3
|
The development of behavioral sensitization induced by a single morphine exposure in adult zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110456. [PMID: 34662694 DOI: 10.1016/j.pnpbp.2021.110456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accumulating evidence suggest that behavioral sensitization is involved in the process of drug addiction. Zebrafish are sensitive to a variety of addictive drugs and are thus suitable for the study of behavioral sensitization. However, in contrast to mature rodent models of behavioral sensitization, how this phenomenon manifests in aquatic organisms, especially zebrafish, is largely unknown. In this study, we developed a morphine-induced behavioral sensitization adult zebrafish model and performed a preliminary investigation of the underlying mechanisms. METHODS Behavioral sensitization was established in zebrafish by observing their behavior after treatment and challenge with morphine. The effect of morphine was evaluated by a behavioral locomotor test. Different doses of morphine and withdrawal times were used to evaluate the establishment of the behavioral sensitization model. RESULTS Hyperlocomotion was induced after administration of morphine in adult zebrafish. After withdrawing the drug for a period, challenge with low-dose morphine evoked behavioral sensitization in zebrafish acutely pre-treated with morphine. Low-dose morphine failed to induce behavioral sensitization in zebrafish if the withdrawal time was less than 5 days or more than 7 days. Morphine induced behavioral sensitization in zebrafish may involve dopaminergic, glutamatergic and opioid systems. CONCLUSION A single low-dose of morphine could induce behavioral sensitization in zebrafish acutely pre-treated with morphine, and this phenomenon was highly correlated with drug dose and withdrawal time. These findings suggest that zebrafish is a suitable model for the study of behavioral sensitization.
Collapse
|
4
|
Solecki WB, Kielbinski M, Bernacka J, Gralec K, Klasa A, Pradel K, Rojek-Sito K, Przewłocki R. Alpha 1-adrenergic receptor blockade in the ventral tegmental area attenuates acquisition of cocaine-induced pavlovian associative learning. Front Behav Neurosci 2022; 16:969104. [PMID: 35990723 PMCID: PMC9386374 DOI: 10.3389/fnbeh.2022.969104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Activity of the alpha1-adrenergic receptor (α1-AR) in the ventral tegmental area (VTA) modulates dopaminergic activity, implying its modulatory role in the behavioral functions of the dopamine (DA) system. Indeed, intra-VTA α1-AR blockade attenuates conditioned stimulus dependent behaviors such as drug seeking responses signifying a role of the noradrenergic signaling in the VTA in conditioned behaviors. Importantly, the role of the VTA α1-AR activity in Pavlovian associative learning with positive outcomes remains unknown. Here, we aimed to examine how intra-VTA α1-AR blockade affects acquisition of cocaine-induced Pavlovian associative learning in the conditioned place preference (CPP) paradigm. The impact of α1-AR blockade on cocaine-reinforced operant responding and cocaine-evoked ultrasonic vocalizations (USVs) was also studied. In addition, both α1-AR immunoreactivity in the VTA and its role in phasic DA release in the nucleus accumbens (NAc) were assessed. We demonstrated cellular localization of α1-AR expression in the VTA, providing a neuroanatomical substrate for the α1-AR mechanism. We showed that prazosin (α1-AR selective antagonist; 1 μg/0.5 μl) microinfusion attenuated electrically evoked DA transients in the NAc and dose-dependently (0.1-1 μg/0.5 μl) prevented the acquisition of cocaine CPP but did not affect cocaine-reinforced operant responding nor cocaine-induced positive affective state (measured as USVs). We propose that the VTA α1-AR signaling is necessary for the acquisition of Pavlovian associative learning but does not encode hedonic value. Thus, α1-AR signaling in the VTA might underlie salience encoding of environmental stimuli and reflect an ability of alerting/orienting functions, originating from bottom-up information processing to guide behaviors.
Collapse
Affiliation(s)
- Wojciech B Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Michał Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland.,Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Gralec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Adam Klasa
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Karolina Rojek-Sito
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Przewłocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
5
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
6
|
Sadamura Y, Thapa S, Mizunuma R, Kambe Y, Hirasawa A, Nakamoto K, Tokuyama S, Yoshimoto K, Arita K, Miyata A, Oyoshi T, Kurihara T. FFAR1/GPR40 Contributes to the Regulation of Striatal Monoamine Releases and Facilitation of Cocaine-Induced Locomotor Activity in Mice. Front Pharmacol 2021; 12:699026. [PMID: 34489696 PMCID: PMC8417570 DOI: 10.3389/fphar.2021.699026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1) is suggested to function as a G protein-coupled receptor (GPR40) for medium-to-long-chain free fatty acids. Previous studies on the expression of FFAR1 revealed that the nigrostriatal region is one of the areas which express abundant FFAR1 mRNA/protein in the central nervous system (CNS). However, the role of FFAR1 in the CNS has been still largely unclarified. Here, we examined a possible functional role of FFAR1 in the control of extracellular concentrations of striatal monoamines and cocaine-induced locomotor activity. Microdialysis analysis revealed that the basal level of extracellular dopamine (DA) was significantly elevated, while the basal serotonin (5-HT) level tended to be reduced in the striatum of FFAR1 knockout (-/-) mice. Interestingly, local application of a FFAR1 agonist, GW9508, markedly augmented the striatal 5-HT release in FFAR1 wild-type (+/+) mice, whereas topical application of a FFAR1 antagonist, GW1100, significantly reduced the 5-HT release. However, the enhanced 5-HT release was completely lost in -/- mice. Although acute administration of cocaine enhanced the locomotor activity in both +/+ and -/- mice, the magnitude of the enhancement was significantly reduced in -/- mice. In addition, intraperitoneal injection of GW1100 significantly decreased the cocaine-induced locomotor enhancement. These results suggest that FFAR1 has a facilitatory role in striatal 5-HT release, and the evoked 5-HT release might contribute to enhance cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Yuko Sadamura
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shanta Thapa
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryota Mizunuma
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuki Oyoshi
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
7
|
McDougall SA, Robinson JAM, Gleason DC, Cotter LL. Reciprocal cross-sensitization between cocaine and RU 24969 in male and female preweanling rats. Pharmacol Biochem Behav 2021; 209:173265. [PMID: 34437872 DOI: 10.1016/j.pbb.2021.173265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Neuronal adaptations involving dopaminergic, glutamatergic, and serotonergic neurotransmitter systems are responsible for behavioral sensitization. Because of common underlying mechanisms, cross-sensitization between compounds of different drug classes can be observed. The purpose of the present study was to determine whether a one- or four-day pretreatment regimen of RU 24969 (a 5-HT1A/1B receptor agonist) would reciprocally cross-sensitize with cocaine or methamphetamine in male and female preweanling rats. Rats were pretreated with RU 24969 (0 or 5 mg/kg) for 4 days (PD 17-20) and then challenged with cocaine (10 or 20 mg/kg) or methamphetamine (1 or 2 mg/kg) on PD 22. Reciprocal cross-sensitization was also assessed (i.e., rats were pretreated with psychostimulants and tested with RU 24969). In a follow-up experiment, the ability of RU 24969 and cocaine to reciprocally cross-sensitize was assessed using a one-day pretreatment regimen. Reciprocal cross-sensitization between cocaine and RU 24969 was evident in preweanling rats, whereas methamphetamine and RU 24969 did not cross-sensitize. When a one-trial pretreatment regimen was used, cross-sensitization was only detected when rats were pretreated with RU 24969 and tested with cocaine, but not the reverse. In sum, the present results show that the nonselective 5-HT1A/1B receptor agonist RU 24969 cross-sensitizes with cocaine, but not methamphetamine, in preweanling rats. This dichotomy may be a function of cocaine having a greater affinity for the serotonin transporter than methamphetamine.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA.
| | - Jasmine A M Robinson
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA
| | - Devon C Gleason
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA
| | - Laura L Cotter
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA
| |
Collapse
|
8
|
Windisch KA, Morochnik M, Reed B, Kreek MJ. Nalmefene, a mu opioid receptor antagonist/kappa opioid receptor partial agonist, potentiates cocaine motivation but not intake with extended access self-administration in adult male mice. Neuropharmacology 2021; 192:108590. [PMID: 33974940 DOI: 10.1016/j.neuropharm.2021.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
The mu opioid receptor antagonist/kappa opioid receptor (KOR) partial agonist nalmefene (NMF), a close structural analog of naltrexone (NTX), has been shown to reduce cocaine reward in preclinical models. Given the greater KOR potency and improved bioavailability compared to NTX, NMF may be a promising pharmacotherapeutic for cocaine use disorder (CUD). Here we examine the effects of NMF pretreatment on chronic daily extended access (4h) cocaine intravenous self-administration (IVSA) in adult male C57Bl/6J mice. METHODS separate groups of mice had daily 4h cocaine IVSA sessions (0.25 or 0.5 mg/kg/inf, FR1) for 14 days. Starting on day 8, mice were pretreated with NMF (0, 1, or 10 mg/kg) 30m before each session. A separate group of mice acquired cocaine IVSA [seven days FR1 then four FR3 of 4h daily sessions (0.5 mg/kg/inf)] prior to a single progressive ratio 3 session to examine the effect of 1 mg/kg NMF on cocaine motivation. RESULTS No significant effect of NMF pretreatment on cocaine intake was observed. Acute pretreatment of 1 mg/kg NMF significantly potentiated cocaine motivation as measured by progressive ratio breakpoint. CONCLUSIONS NMF did not significantly attenuate cocaine intake and increased motivation for cocaine suggesting that NMF may not be suitable for non-abstinent CUD patients. Further research is needed with KOR selective partial or full agonists to determine their effect on cocaine reinforcement.
Collapse
Affiliation(s)
- Kyle A Windisch
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Michelle Morochnik
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Brian Reed
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
9
|
Okada T, Shioda K, Makiguchi A, Suda S. Risperidone and 5-HT2A Receptor Antagonists Attenuate and Reverse Cocaine-Induced Hyperthermia in Rats. Int J Neuropsychopharmacol 2020; 23:811-820. [PMID: 32821948 PMCID: PMC7770520 DOI: 10.1093/ijnp/pyaa065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/13/2020] [Accepted: 08/15/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cocaine (benzoylmethylecgonine) is one of the most widely used illegal psychostimulant drugs worldwide, and mortality from acute intoxication is increasing. Suppressing hyperthermia is effective in reducing cocaine-related mortality, but a definitive therapy has not yet been found. In this study, we assessed the ability of risperidone to attenuate acute cocaine-induced hyperthermia and delineated the mechanism of its action. METHODS Rats were injected i.p. with saline, risperidone, ketanserin, ritanserin, haloperidol, or SCH 23 390 before and after injection of cocaine (30 mg/kg) or with WAY-00 635, SB 206 553, or sulpiride before cocaine injection; thereafter, the rectal temperature was measured every 30 minutes for up to 4 hours. In vivo microdialysis was used to reveal the effect of risperidone on cocaine-induced elevation of dopamine (DA), serotonin (5-HT), and noradrenaline concentrations in the anterior hypothalamus. For post-administration experiments, saline or risperidone (0.5 mg/kg) were injected into rats, and cocaine (30 mg/kg) was injected 15 minutes later. For every 30 minutes thereafter, DA, 5-HT, and noradrenaline levels were measured for up to 240 minutes after cocaine administration. RESULTS Risperidone, 5-HT2A receptor antagonists, and D1 receptor antagonistic drugs prevented and reversed cocaine-induced hyperthermia. In contrast, receptor antagonists for 5-HT1A, 5-HT2B/2C, and D2 did not alter cocaine-induced hyperthermia. Risperidone treatment further attenuated cocaine-induced elevation of DA. CONCLUSIONS Our results indicate that risperidone attenuates cocaine-induced hyperthermia primarily by blocking the activities of the 5-HT2A and D1 receptors and may be potentially useful for treating cocaine-induced acute hyperthermia in humans.
Collapse
Affiliation(s)
- Tsuyoshi Okada
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| | | | - Akiko Makiguchi
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan.,Department of Psychiatry, Sano Kosei General Hospital, Tochigi, Japan
| | - Shiro Suda
- Department of Psychiatry, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
10
|
Czoty PW, Nader MA. Effects of the α-2 Adrenergic Receptor Agonists Lofexidine and Guanfacine on Food-Cocaine Choice in Socially Housed Cynomolgus Monkeys. J Pharmacol Exp Ther 2020; 375:193-201. [PMID: 32636208 PMCID: PMC7569305 DOI: 10.1124/jpet.120.266007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022] Open
Abstract
Although norepinephrine (NE) does not appear to play a prominent role in mediating the abuse-related effects of cocaine, studies have indicated that NE α-2 receptor agonists can attenuate reinstatement of extinguished cocaine self-administration in rats and monkeys and can decrease cocaine craving in humans. In the present studies, we examined the effects of two α-2 receptor agonists, lofexidine and guanfacine, on choice between food and cocaine (0.0-0.1 mg/kg per injection) in cynomolgus monkeys. Male and female subjects were housed in stable same-sex social groups of four; social rank did not influence the effects of lofexidine and guanfacine. When administered acutely, lofexidine (0.03-3.0 mg/kg, i.v.) significantly decreased cocaine choice in females (n = 7) but not males (n = 8). However, in males, the same lofexidine doses produced dose-dependent decreases in core body temperature (n = 7), and acute guanfacine (0.003-1.0 mg/kg, i.v.) significantly decreased cocaine choice (n = 11). When lofexidine was administered for five consecutive days to a subset of the monkeys in whom lofexidine acutely decreased cocaine choice, tolerance to this effect developed to varying degrees of completeness in three of three males and two of four females. Taken together, these data suggest that α-2 receptor agonists can produce small decreases in the reinforcing strength of cocaine relative to food and that, even when efficacy is observed after acute administration, tolerance to the decreases in cocaine choice are apparent and more likely in males compared with females. SIGNIFICANCE STATEMENT: Cocaine use disorder remains a significant public health problem with no US Food and Drug Administration-approved treatments. Although cocaine elevates dopamine, serotonin, and norepinephrine (NE), the latter target has received less research. The present study noted modest effects of NE agonists on the relative reinforcing strength of cocaine with greater efficacy in female compared with male monkeys.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
11
|
Rosa HZ, Segat HJ, Barcelos RCS, Roversi K, Rossato DR, de Brum GF, Burger ME. Involvement of the endogenous opioid system in the beneficial influence of physical exercise on amphetamine-induced addiction parameters. Pharmacol Biochem Behav 2020; 197:173000. [PMID: 32702398 DOI: 10.1016/j.pbb.2020.173000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Psychostimulant drugs addiction is a chronic public health problem and individuals remain susceptible to relapses increasing public expenses even after withdrawal and treatment. Our research group has focused on finding new therapies to be employed in drug addiction treatment, suggesting the physical exercise as a promising tool. This way, it is necessary to know the mechanisms involved in the beneficial influences of physical exercise observing the pathway that could be explored in drug addiction treatment. Male Wistar rats were conditioned with amphetamine (AMPH) following the conditioned place preference (CPP) protocol and subsequently submitted to swimming for 5 weeks (1 h per day, 5 days per week). Half of the animals were injected with Naloxone (0.3 mg/mL/kg body weight, i.p.) 5 min prior each physical exercise day. After AMPH-CPP re-exposure, our outcomes showed that physical exercise, in addition to minimizing the relapse behavior in the CPP, it increased D1R, D2R and DAT in the Ventral Tegmental Area (VTA), but not in the Nucleus accumbens (NAc). Interestingly, while naloxone inhibited the partial beneficial influence of the exercise on drug-relapse behavior, exercise-induced changes in the dopaminergic system were not observed in the group administered with naloxone as well. Based on these evidences, besides reinforcing the beneficial influence of the physical exercise on AMPH-induced drug addiction, we propose the involvement of endogenous opioid system activation, not as a single one, but as a possible mechanism of action resulting from the physical activity practice, thus characterizing an important therapeutic approach, which may contribute to drug withdrawal consequently preventing relapse.
Collapse
Affiliation(s)
- H Z Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - H J Segat
- Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - R C S Barcelos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Kr Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - D R Rossato
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - G F de Brum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M E Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Patologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
13
|
Vaz RL, Chapela D, Coelho JE, Lopes LV, Ferreira JJ, Afonso ND, Sousa S, Outeiro TF. Tapentadol Prevents Motor Impairments in a Mouse Model of Dyskinesia. Neuroscience 2020; 424:58-71. [PMID: 31682948 DOI: 10.1016/j.neuroscience.2019.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
The motor features in Parkinson's disease (PD) are associated with the degeneration of dopaminergic cells in the substantia nigra in the brain. Thus, the gold-standard in PD therapeutics still consists of dopamine replacement with levodopa. However, as the disease progresses, this therapeutic option becomes less effective and can be accompanied by levodopa-induced complications. On the other hand, several other neuronal pathways have been implicated in the pathological mechanisms of PD. In this context, the development of alternative therapeutic options that modulate non-dopaminergic targets is emerging as a major goal in the field. In a phenotypic-based screen in a zebrafish model of PD, we identified tapentadol as a candidate molecule for PD. The therapeutic potential of an agent that modulates the opioid and noradrenergic systems has not been explored, despite the implication of both neuronal pathways in parkinsonism. Therefore, we assessed the therapeutic properties of this µ-opioid receptor agonist and norepinephrine reuptake inhibitor in the 6-hydroxydopamine mouse model of parkinsonism. We further submitted 6-hydroxydopamine-lesioned mice to chronic treatment with levodopa and evaluated the effects of tapentadol during levodopa OFF states and on levodopa-induced dyskinesia. Importantly, we found that tapentadol halted the aggravation of dyskinesia and improved the motor impairments during levodopa OFF states. Altogether, our findings raise the hypothesis that concomitant modulation of µ-opioid receptor and norepinephrine transporter might constitute relevant intervention strategies in PD and that tapentadol holds therapeutic potential that may be translated into the clinical practice.
Collapse
Affiliation(s)
- Rita L Vaz
- TechnoPhage, SA, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Chapela
- TechnoPhage, SA, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Nuno D Afonso
- TechnoPhage, SA, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sara Sousa
- TechnoPhage, SA, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
14
|
Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci 2019; 20:ijms20174302. [PMID: 31484312 PMCID: PMC6747116 DOI: 10.3390/ijms20174302] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder is classified as a chronic recurrent disease of the central nervous system (CNS) which leads to personality disorders, co-morbidities and premature death. It develops as a result of long-term administration of various abused substances, along with morphine. The pharmacological action of morphine is associated with its stimulation of opioid receptors. Opioid receptors are a group of G protein-coupled receptors and activation of these receptors by ligands induces significant molecular changes inside the cell, such as an inhibition of adenylate cyclase activity, activation of potassium channels and reductions of calcium conductance. Recent data indicate that other signalling pathways also may be involved in morphine activity. Among these are phospholipase C, mitogen-activated kinases (MAP kinases) or β-arrestin. The present review focuses on major mechanisms which currently are considered as essential in morphine activity and dependence and may be important for further studies.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Małgorzata Łupina
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Antonina Mazur
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Kotlińska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| |
Collapse
|
15
|
Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019; 13:48. [PMID: 31133823 PMCID: PMC6524618 DOI: 10.3389/fnana.2019.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Amphetamine (AMPH) and methamphetamine (METH) are widely abused psychostimulants, which produce a variety of psychomotor, autonomic and neurotoxic effects. The behavioral and neurotoxic effects of both compounds (from now on defined as AMPHs) stem from a fair molecular and anatomical specificity for catecholamine-containing neurons, which are placed in the brainstem reticular formation (RF). In fact, the structural cross-affinity joined with the presence of shared molecular targets between AMPHs and catecholamine provides the basis for a quite selective recruitment of brainstem catecholamine neurons following AMPHs administration. A great amount of investigations, commentary manuscripts and books reported a pivotal role of mesencephalic dopamine (DA)-containing neurons in producing behavioral and neurotoxic effects of AMPHs. Instead, the present review article focuses on catecholamine reticular neurons of the low brainstem. In fact, these nuclei add on DA mesencephalic cells to mediate the effects of AMPHs. Among these, we also include two pontine cholinergic nuclei. Finally, we discuss the conundrum of a mixed neuronal population, which extends from the pons to the periaqueductal gray (PAG). In this way, a number of reticular nuclei beyond classic DA mesencephalic cells are considered to extend the scenario underlying the neurobiology of AMPHs abuse. The mechanistic approach followed here to describe the action of AMPHs within the RF is rooted on the fine anatomy of this region of the brainstem. This is exemplified by a few medullary catecholamine neurons, which play a pivotal role compared with the bulk of peripheral sympathetic neurons in sustaining most of the cardiovascular effects induced by AMPHs.
Collapse
Affiliation(s)
- Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
16
|
Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents. Molecules 2018; 23:molecules23102602. [PMID: 30314288 PMCID: PMC6222496 DOI: 10.3390/molecules23102602] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the plant Salvia divinorum. We assessed the antinociceptive, anti-cocaine, and side-effects of Mesyl Sal B. The anti-cocaine effects are evaluated in cocaine-induced hyperactivity and behavioral sensitization to cocaine in male Sprague Dawley rats. Mesyl Sal B was assessed for anhedonia (conditioned taste aversion), aversion (conditioned place aversion), pro-depressive effects (forced swim test), anxiety (elevated plus maze) and learning and memory deficits (novel object recognition). In male B6.SJL mice, the antinociceptive effects were evaluated in warm-water (50 °C) tail withdrawal and intraplantar formaldehyde (2%) assays and the sedative effects measured with the rotarod performance task. Mesyl Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity and behavioral sensitization to cocaine without modulating sucrose self-administration and without producing aversion, sedation, anxiety, or learning and memory impairment in rats. However, increased immobility was observed in the forced swim test indicating pro-depressive effects. Mesyl Sal B was not as potent as Sal A at reducing pain in the antinociceptive assays. In conclusion, Mesyl Sal B possesses anti-cocaine effects, is longer acting in vivo and has fewer side-effects when compared to Sal A, however, the antinociceptive effects are limited.
Collapse
|
17
|
Oliveira NG, Dinis-Oliveira RJ. Drugs of abuse from a different toxicological perspective: an updated review of cocaine genotoxicity. Arch Toxicol 2018; 92:2987-3006. [PMID: 30116851 DOI: 10.1007/s00204-018-2281-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023]
|
18
|
Minogianis EA, Shams WM, Mabrouk OS, Wong JMT, Brake WG, Kennedy RT, du Souich P, Samaha AN. Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Eur J Neurosci 2018; 50:2054-2064. [PMID: 29757478 DOI: 10.1111/ejn.13941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/28/2022]
Abstract
The faster drugs of abuse reach the brain, the greater is the risk of addiction. Even small differences in the rate of drug delivery can influence outcome. Infusing cocaine intravenously over 5 vs. 90-100 s promotes sensitization to the psychomotor and incentive motivational effects of the drug and preferentially recruits mesocorticolimbic regions. It remains unclear whether these effects are due to differences in how fast and/or how much drug reaches the brain. Here, we predicted that varying the rate of intravenous cocaine infusion between 5 and 90 s produces different rates of rise of brain drug concentrations, while producing similar peak concentrations. Freely moving male Wistar rats received acute intravenous cocaine infusions (2.0 mg/kg/infusion) over 5, 45 and 90 s. We measured cocaine concentrations in the dorsal striatum using rapid-sampling microdialysis (1 sample/min) and high-performance liquid chromatography-tandem mass spectrometry. We also measured extracellular concentrations of dopamine and other neurochemicals. Regardless of infusion rate, acute cocaine did not change concentrations of non-dopaminergic neurochemicals. Infusion rate did not significantly influence peak concentrations of cocaine or dopamine, but concentrations increased faster following 5-s infusions. We also assessed psychomotor activity as a function of cocaine infusion rate. Infusion rate did not significantly influence total locomotion, but locomotion increased earlier following 5-s infusions. Thus, small differences in the rate of cocaine delivery influence both the rate of rise of drug and dopamine concentrations, and psychomotor activity. A faster rate of rise of drug and dopamine concentrations might be an important issue in making rapidly delivered cocaine more addictive.
Collapse
Affiliation(s)
- Ellie-Anna Minogianis
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Waqqas M Shams
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, QC, Canada
| | - Omar S Mabrouk
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Wayne G Brake
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, QC, Canada
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Patrick du Souich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.,Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Vollbrecht PJ, Nesbitt KM, Mabrouk OS, Chadderdon AM, Jutkiewicz EM, Kennedy RT, Ferrario CR. Cocaine and desipramine elicit distinct striatal noradrenergic and behavioral responses in selectively bred obesity-resistant and obesity-prone rats. Behav Brain Res 2018; 346:137-143. [PMID: 29129597 PMCID: PMC5860948 DOI: 10.1016/j.bbr.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Previous studies have demonstrated a role for norepinephrine (NE) in energy regulation and feeding, and basal differences have been observed in hypothalamic NE systems in obesity-prone vs. obesity-resistant rats. Differences in the function of brain reward circuits, including in the nucleus accumbens (NAc), have been shown in obesity-prone vs. obesity-resistant populations, leading many researchers to explore the role of striatal dopamine in obesity. However, alterations in NE transmission also affect NAc mediated behaviors. Therefore, here we examined differences in striatal NE and the response to norepinephrine transporter blockers in obesity-prone and obesity-resistant rats. We found that striatal NE levels increase following systemic cocaine administration in obesity-prone, but not obesity-resistant rats. This could result from either blockade of striatal norepinephrine transporters (NET) by cocaine leading to reduced NE reuptake, or circuit-based responses following cocaine administration resulting in increased NE release. Retrodialysis of the NET inhibitor, desipramine, into the ventral striatum did not cause selective increases in striatal NE levels in obesity-prone rats, suggesting that circuit-based mechanisms underlie NE increases following systemic cocaine administration. Consistent with this, systemic desipramine treatment decreased locomotor activity in obesity-prone, but not obesity-resistant rats. Furthermore, obesity-prone rats were also more sensitive to desipramine-induced reductions in food intake compared to obesity-resistant rats. Taken together, these data expand our understanding of differences in NE systems of obesity-prone vs. resistant rats, and provide new insights into basal differences in striatal systems that may influence feeding behavior.
Collapse
Affiliation(s)
- Peter J Vollbrecht
- Departments of Pharmacology and Chemistry University of Michigan, Ann Arbor, MI, USA; Department of Chemistry, Towson University, Towson, MD, USA
| | - Kathryn M Nesbitt
- Departments of Pharmacology and Chemistry University of Michigan, Ann Arbor, MI, USA; Department of Biology, Hope College, Holland, MI, USA; Department of Chemistry, Towson University, Towson, MD, USA
| | | | - Aaron M Chadderdon
- Departments of Pharmacology and Chemistry University of Michigan, Ann Arbor, MI, USA
| | - Emily M Jutkiewicz
- Departments of Pharmacology and Chemistry University of Michigan, Ann Arbor, MI, USA
| | - Robert T Kennedy
- Departments of Pharmacology and Chemistry University of Michigan, Ann Arbor, MI, USA; Department of Biology, Hope College, Holland, MI, USA
| | - Carrie R Ferrario
- Departments of Pharmacology and Chemistry University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Matsui A, Alvarez VA. Cocaine Inhibition of Synaptic Transmission in the Ventral Pallidum Is Pathway-Specific and Mediated by Serotonin. Cell Rep 2018; 23:3852-3863. [PMID: 29949769 PMCID: PMC6101978 DOI: 10.1016/j.celrep.2018.05.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/09/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023] Open
Abstract
The ventral pallidum (VP) is part of the basal ganglia circuitry and a target of both direct and indirect pathway projections from the nucleus accumbens. VP is important in cocaine reinforcement, and the firing of VP neurons is modulated in vivo during cocaine self-administration. This modulation of firing is thought to be indirect via cocaine actions on dopamine in the accumbens. Here, we show that cocaine directly inhibits synaptic transmission evoked by selective stimulation of indirect pathway projections to VP neurons. The inhibition is independent of dopamine receptor activation, absent in 5-HT1B knockout mice, and mimicked by a serotonin transporter (SERT) blocker. SERT-expressing neurons in dorsal raphe project to the VP. Optogenetic stimulation of these projections evokes serotonin transients and effectively inhibits GABAergic transmission to VP neurons. This study shows that cocaine increases endogenous serotonin in the VP to suppress synaptic transmission selectively from indirect pathway projections to VP neurons.
Collapse
Affiliation(s)
- Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA-IRP), NIH, Bethesda, MD 20892, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA-IRP), NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse (NIDA-IRP), Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Mabrouk OS, Han JL, Wong JMT, Akil H, Kennedy RT, Flagel SB. The in Vivo Neurochemical Profile of Selectively Bred High-Responder and Low-Responder Rats Reveals Baseline, Cocaine-Evoked, and Novelty-Evoked Differences in Monoaminergic Systems. ACS Chem Neurosci 2018; 9:715-724. [PMID: 29161023 PMCID: PMC5906149 DOI: 10.1021/acschemneuro.7b00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Relative to bred low-responder (bLR) rats, bred high-responder (bHR) rats have an exaggerated locomotor response to a novel environment, take more risks, are more impulsive, and more likely to exhibit compulsive drug-seeking behaviors. These phenotypic differences in addiction-related behaviors and temperament have previously been associated with differences in neurotransmitter signaling, including the mesolimbic dopamine system. In this study, we applied advanced in vivo microdialysis sampling in the nucleus accumbens of bHRs and bLRs to assess differences in basal and stimulated neurochemical efflux more broadly. We used liquid chromatography-mass spectrometry measurements of dialysate samples to quantify a panel of 17 neurochemicals, including dopamine, norepinephrine, serotonin, histamine, glutamate, GABA, acetylcholine, adenosine, DOPAC, 3-MT, HVA, 5-HIAA, normetanephrine, taurine, serine, aspartate, and glycine. We also applied a stable isotope labeling technique to assess absolute baseline concentrations of dopamine and norepinephrine in the nucleus accumbens. Finally, we investigated the role of norepinephrine tone in the nucleus accumbens on the bHR phenotype. Our findings show that bHRs have elevated basal and cocaine-evoked dopamine and norepinephrine levels in the nucleus accumbens compared to those of bLRs. Furthermore, norepinephrine signaling in the nucleus accumbens appeared to be an important contributor to the bHR phenotype because bilateral perfusion of the α1 adrenergic receptor antagonist terazosin (10 μM) into the nucleus accumbens abolished the response of bHRs to novelty. These findings are the first to demonstrate a role for norepinephrine in the bHR phenotype. They reveal a positive relationship between dopamine and norepinephrine signaling in the nucleus accumbens in mediating the exaggerated response to novelty and point to norepinephrine signaling as a potential target in the treatment of impulse control disorders.
Collapse
Affiliation(s)
- Omar S. Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - John L. Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Park JW, Bhimani RV, Park J. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain. ACS Chem Neurosci 2017; 8:1913-1924. [PMID: 28594540 DOI: 10.1021/acschemneuro.7b00078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Central norepinephrine (NE) and dopamine (DA) are involved in a variety of physiological functions and behaviors. Accumulating evidence suggests that NE neurons originating from the locus coeruleus (LC) innervate DA neurons of the ventral tegmental area (VTA) and influence VTA-DA neural activity. However, the underlying mechanisms of how LC-NE regulates DA transmission via VTA-DA neurons remain largely unexplored. Herein, we investigated how electrical stimulation of the LC modulates VTA-DA neurotransmission in the nucleus accumbens (NAc). For this study, catecholamine release in the NAc and VTA evoked by electrical stimulation of the LC in urethane-anesthetized rats was simultaneously monitored with carbon-fiber microelectrodes using in vivo multichannel fast-scan cyclic voltammetry for comparison of its extracellular regulation. Pharmacological, anatomical, and electrochemical evidence suggest that electrical stimulation of the LC evokes NE release in the VTA and activates VTA-DA neurons, resulting in DA release in the NAc. The electrically evoked DA in the NAc was regulated by D2 receptors and DA transporters (DAT) as well as α1-adrenergic receptors in the VTA, whereas NE release in the VTA was regulated by α2-adrenergic receptors and NE transporters (NET) not by D2 receptors or DAT. These results suggest that electrical stimulation of LC modulates VTA-DA neurons and DA transmission in the NAc via NE receptors.
Collapse
Affiliation(s)
- Jin W. Park
- Department
of Biotechnical and Clinical Laboratory Sciences and ‡Neuroscience
Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, United States
| | - Rohan V. Bhimani
- Department
of Biotechnical and Clinical Laboratory Sciences and ‡Neuroscience
Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, United States
| | - Jinwoo Park
- Department
of Biotechnical and Clinical Laboratory Sciences and ‡Neuroscience
Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, United States
| |
Collapse
|
23
|
Cannella N, Cosa-Linan A, Roscher M, Takahashi TT, Vogler N, Wängler B, Spanagel R. [18F]-Fluorodeoxyglucose-Positron Emission Tomography in Rats with Prolonged Cocaine Self-Administration Suggests Potential Brain Biomarkers for Addictive Behavior. Front Psychiatry 2017; 8:218. [PMID: 29163237 PMCID: PMC5671955 DOI: 10.3389/fpsyt.2017.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior.
Collapse
Affiliation(s)
- Nazzareno Cannella
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Alejandro Cosa-Linan
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Mareike Roscher
- Medical Faculty Mannheim, Department of Clinical Radiology and Nuclear Medicine, Heidelberg University, Mannheim, Germany
| | - Tatiane T Takahashi
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Nils Vogler
- Medical Faculty Mannheim, Department of Clinical Radiology and Nuclear Medicine, Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Medical Faculty Mannheim, Department of Clinical Radiology and Nuclear Medicine, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Medical Faculty Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
24
|
Hamed A, Daszczuk P, Kursa MB, Turzyńska D, Sobolewska A, Lehner M, Boguszewski PM, Szyndler J. Non-parametric analysis of neurochemical effects and Arc expression in amphetamine-induced 50-kHz ultrasonic vocalization. Behav Brain Res 2016; 312:174-85. [DOI: 10.1016/j.bbr.2016.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
|
25
|
Zaniewska M, Filip M, Przegalinski E. The Involvement of Norepinephrine in Behaviors Related to Psychostimulant Addiction. Curr Neuropharmacol 2016; 13:407-18. [PMID: 26411968 PMCID: PMC4812804 DOI: 10.2174/1570159x13666150121225659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is generally accepted that the abuse-related effects of
amphetamines and cocaine result from the activation of the brain dopaminergic
(DA) system, the psychostimulants also alter other neurotransmitter systems. In
particular, they increase extracellular levels of norepinephrine (NE) and
serotonin by inhibiting respective plasma membrane transporters and/or inducing
release. The present review will discuss the preclinical findings on the effects
of the NE system modulation (lesions, pharmacological and genetic approaches) on
behaviors (locomotor hyperactivity, behavioral sensitization, modification of
intracranial self-stimulation, conditioned place preference, drug
self-administration, extinction/reinstatement of drug seeking behavior) related
to the psychostimulant addiction.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | | | | |
Collapse
|
26
|
Mejias-Aponte CA. Specificity and impact of adrenergic projections to the midbrain dopamine system. Brain Res 2016; 1641:258-73. [PMID: 26820641 DOI: 10.1016/j.brainres.2016.01.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson's disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Carlos A Mejias-Aponte
- National Institute on Drug Abuse Histology Core, Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Scardochio T, Trujillo-Pisanty I, Conover K, Shizgal P, Clarke PBS. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations. Front Behav Neurosci 2015; 9:331. [PMID: 26696851 PMCID: PMC4672056 DOI: 10.3389/fnbeh.2015.00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023] Open
Abstract
Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls potentially provides a marker distinguishing positive affect from positive reinforcement.
Collapse
Affiliation(s)
- Tina Scardochio
- Department of Pharmacology and Therapeutics, Neuropsychopharmacology, McGill University Montreal, QC, Canada
| | - Ivan Trujillo-Pisanty
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| | - Kent Conover
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| | - Peter Shizgal
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, Neuropsychopharmacology, McGill University Montreal, QC, Canada ; Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University Montreal, QC, Canada
| |
Collapse
|
28
|
Wang H, Treadway T, Covey DP, Cheer JF, Lupica CR. Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area. Cell Rep 2015; 12:1997-2008. [PMID: 26365195 PMCID: PMC4857883 DOI: 10.1016/j.celrep.2015.08.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/02/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Cocaine is a highly addictive drug that acts upon the brain’s reward circuitry via the inhibition of mono-amine uptake. Endogenous cannabinoids (eCB) are lipid molecules released from midbrain dopamine (DA) neurons that modulate cocaine’s effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arach-idonoylglycerol (2-AG), in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine.
Collapse
Affiliation(s)
- Huikun Wang
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA
| | - Tyler Treadway
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA
| | - Daniel P Covey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling. Neuropsychopharmacology 2015; 40:1151-62. [PMID: 25374094 PMCID: PMC4367457 DOI: 10.1038/npp.2014.296] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/07/2014] [Accepted: 10/25/2014] [Indexed: 11/09/2022]
Abstract
Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.
Collapse
|
30
|
Heal DJ, Gosden J, Smith SL. Dopamine reuptake transporter (DAT) "inverse agonism"--a novel hypothesis to explain the enigmatic pharmacology of cocaine. Neuropharmacology 2014; 87:19-40. [PMID: 24953830 DOI: 10.1016/j.neuropharm.2014.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
Abstract
The long held view is cocaine's pharmacological effects are mediated by monoamine reuptake inhibition. However, drugs with rapid brain penetration like sibutramine, bupropion, mazindol and tesofensine, which are equal to or more potent than cocaine as dopamine reuptake inhibitors, produce no discernable subjective effects such as drug "highs" or euphoria in drug-experienced human volunteers. Moreover they are dysphoric and aversive when given at high doses. In vivo experiments in animals demonstrate that cocaine's monoaminergic pharmacology is profoundly different from that of other prescribed monoamine reuptake inhibitors, with the exception of methylphenidate. These findings led us to conclude that the highly unusual stimulant profile of cocaine and related compounds, eg methylphenidate, is not mediated by monoamine reuptake inhibition alone. We describe the experimental findings which suggest cocaine serves as a negative allosteric modulator to alter the function of the dopamine reuptake transporter (DAT) and reverse its direction of transport. This results in a firing-dependent, retro-transport of dopamine into the synaptic cleft. The proposed mechanism of cocaine is, therefore, different from other small molecule negative allostereric modulators of the monoamine reuptake transporters, eg SoRI-6238, which merely reduce the rate of inward transport. Because the physiological role of DAT is to remove dopamine from the synapse and the action of cocaine is the opposite of this, we have postulated that cocaine's effect is analogous to an inverse agonist. If this hypothesis is validated then cocaine is the prototypical compound that exemplifies a new class of monoaminergic drugs; DAT "inverse agonists". This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- David J Heal
- RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK.
| | - Jane Gosden
- RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK
| | - Sharon L Smith
- RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK.
| |
Collapse
|
31
|
Hadad NA, Knackstedt LA. Addicted to palatable foods: comparing the neurobiology of Bulimia Nervosa to that of drug addiction. Psychopharmacology (Berl) 2014; 231:1897-912. [PMID: 24500676 PMCID: PMC4484591 DOI: 10.1007/s00213-014-3461-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE Bulimia nervosa (BN) is highly comorbid with substance abuse and shares common phenotypic and genetic predispositions with drug addiction. Although treatments for the two disorders are similar, controversy remains about whether BN should be classified as addiction. OBJECTIVES Here, we review the animal and human literature with the goal of assessing whether BN and drug addiction share a common neurobiology. RESULTS Similar neurobiological features are present following administration of drugs and bingeing on palatable food, especially sugar. Specifically, both disorders involve increases in extracellular dopamine (DA), D1 binding, D3 messenger RNA (mRNA), and ΔFosB in the nucleus accumbens (NAc). Animal models of BN reveal increases in ventral tegmental area (VTA) DA and enzymes involved in DA synthesis that resemble changes observed after exposure to addictive drugs. Additionally, alterations in the expression of glutamate receptors and prefrontal cortex activity present in human BN or following sugar bingeing in animals are comparable to the effects of addictive drugs. The two disorders differ in regards to alterations in NAc D2 binding, VTA DAT mRNA expression, and the efficacy of drugs targeting glutamate to treat these disorders. CONCLUSIONS Although additional empirical studies are necessary, the synthesis of the two bodies of research presented here suggests that BN shares many neurobiological features with drug addiction. While few Food and Drug Administration-approved options currently exist for the treatment of drug addiction, pharmacotherapies developed in the future, which target the glutamate, DA, and opioid systems, may be beneficial for the treatment of both BN and drug addiction.
Collapse
Affiliation(s)
- Natalie A Hadad
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611-2250, USA
| | | |
Collapse
|
32
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
33
|
Chang SL, Connaghan KP, Wei Y, Li MD. NeuroHIV and use of addictive substances. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:403-40. [PMID: 25175871 DOI: 10.1016/b978-0-12-801284-0.00013-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past three decades, substance abuse has been identified as a key comorbidity of human immunodeficiency virus-1 (HIV-1) infection. Many studies have found that the use and abuse of addictive substances hastens the progression of HIV-1 infection and HIV-associated neurocognitive disorders. Advances in highly active antiretroviral therapy (HAART) in the mid-1990s have been successful in limiting the HIV-1 viral load and maintaining a relatively healthy immune response, allowing the life expectancy of patients infected with HIV to approach that of the general population. However, even with HAART, HIV-1 viral proteins are still expressed and eradication of the virus, particularly in the brain, the key reservoir organ, does not occur. In the post-HAART era, the clinical challenge in the treatment of HIV infection is inflammation of the central nervous system (CNS) and its subsequent neurological disorders. To date, various explicit and implicit connections have been identified between the neuronal circuitry involved in immune responses and brain regions affected by and implicated in substance abuse. This chapter discusses past and current medical uses of prototypical substances of abuse, including morphine, alcohol, cocaine, methamphetamine, marijuana, and nicotine, and the evidence that systemic infections, particularly HIV-1 infection, cause neurological dysfunction as a result of inflammation in the CNS, which can increase the risk of substance abuse.
Collapse
Affiliation(s)
- Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA; Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
34
|
Neisewander JL, Cheung THC, Pentkowski NS. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development. Neuropharmacology 2013; 76 Pt B:301-19. [PMID: 23973315 DOI: 10.1016/j.neuropharm.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of monoamine systems, including drug history, abstinence, and social context, should be considered when evaluating potential treatments to better model treatment effects in humans. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Janet L Neisewander
- School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
35
|
Cocaine sensitization increases I h current channel subunit 2 (HCN₂) protein expression in structures of the mesocorticolimbic system. J Mol Neurosci 2012. [PMID: 23203153 DOI: 10.1007/s12031-012-9920-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alteration of the biological activity among neuronal components of the mesocorticolimbic (MCL) system has been implicated in the pathophysiology of drug abuse. Changes in the electrophysiological properties of neurons involved in the reward circuit seem to be of utmost importance in addiction. The hyperpolarization-activated cyclic nucleotide current, I h, is a prominent mixed cation current present in neurons. The biophysical properties of the I h and its potential modulatory role in cell excitability depend on the expression profile of the hyperpolarization-activated cyclic nucleotide gated channel (HCN) subunits. We investigated whether cocaine-induced behavioral sensitization, an animal model of drug addiction, elicits region-specific changes in the expression of the HCN₂ channel's subunit in the MCL system. Tissue samples from the ventral tegmental area, prefrontal cortex, nucleus accumbens, and hippocampus were analyzed using Western blot. Our findings demonstrate that cocaine treatment induced a significant increase in the expression profile of the HCN₂ subunit in both its glycosylated and non-glycosylated protein isoforms in all areas tested. The increase in the glycosylated isoform was only observed in the ventral tegmental area. Together, these data suggest that the observed changes in MCL excitability during cocaine addiction might be associated with alterations in the subunit composition of their HCN channels.
Collapse
|
36
|
A single injection of a novel κ opioid receptor agonist salvinorin A attenuates the expression of cocaine-induced behavioral sensitization in rats. Behav Pharmacol 2012; 23:162-70. [PMID: 22293826 DOI: 10.1097/fbp.0b013e3283512c1e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kappa opioid receptor (KOPr) activation antagonizes many cocaine-related behaviors but adverse side-effects such as sedation, dysphoria, and depression limit their therapeutic use. Recently, salvinorin A (Sal A), a naturally occurring KOPr agonist, has been shown to attenuate cocaine-induced drug seeking in a model of relapse in rats. The present study evaluated the effects of acute Sal A exposure on cocaine-induced hyperactivity and cocaine sensitization in rats. Acute treatment with a dose of Sal A that decreased drug seeking in a previous study (0.3 mg/kg) significantly attenuated the expression of cocaine sensitization. This dose of Sal A failed to affect spontaneous locomotion or to produce a conditioned taste aversion to a novel-tasting saccharin solution. However, Sal A decreased climbing and swimming time and increased time spent immobile in the forced swim test. These findings indicate that Sal A, just like traditional KOPr agonists, attenuates cocaine-induced behavioral sensitization but does not produce the adverse effect of conditioned aversion, suggesting improved potential compliance. However, prodepressive effects were also produced and these effects may limit the therapeutic potential.
Collapse
|
37
|
Jacobsen JPR, Siesser WB, Sachs BD, Peterson S, Cools MJ, Setola V, Folgering JHA, Flik G, Caron MG. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry 2012; 17:694-704. [PMID: 21537332 PMCID: PMC3536482 DOI: 10.1038/mp.2011.50] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Probably the foremost hypothesis of depression is the 5-hydroxytryptamine (5-HT, serotonin) deficiency hypothesis. Accordingly, anomalies in putative 5-HT biomarkers have repeatedly been reported in depression patients. However, whether such anomalies in fact reflect deficient central 5-HT neurotransmission remains unresolved. We employed a naturalistic model of 5-HT deficiency, the tryptophan hydroxylase 2 (Tph2) R439H knockin mouse, to address this question. We report that Tph2 knockin mice have reduced basal and stimulated levels of extracellular 5-HT (5-HT(Ext)). Interestingly, cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) and fenfluramine-induced plasma prolactin levels are markedly diminished in the Tph2 knockin mice. These data seemingly confirm that low CSF 5-HIAA and fenfluramine-induced plasma prolactin reflects chronic, endogenous central nervous system (CNS) 5-HT deficiency. Moreover, 5-HT(1A) receptor agonist-induced hypothermia is blunted and frontal cortex 5-HT(2A) receptors are increased in the Tph2 knockin mice. These data likewise parallel core findings in depression, but are usually attributed to anomalies in the respective receptors rather than resulting from CNS 5-HT deficiency. Further, 5-HT(2A) receptor function is enhanced in the Tph2 knockin mice. In contrast, 5-HT(1A) receptor levels and G-protein coupling is normal in Tph2 knockin mice, indicating that the blunted hypothermic response relates directly to the low 5-HT(Ext). Thus, we show that not only low CSF 5-HIAA and a blunted fenfluramine-induced prolactin response, but also blunted 5-HT(1A) agonist-induced hypothermia and increased 5-HT(2A) receptor levels are bona fide biomarkers of chronic, endogenous 5-HT deficiency. Potentially, some of these biomarkers could identify patients likely to have 5-HT deficiency. This could have clinical research utility or even guide pharmacotherapy.
Collapse
Affiliation(s)
- JPR Jacobsen
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - WB Siesser
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - BD Sachs
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - S Peterson
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - MJ Cools
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - V Setola
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | | | - G Flik
- BrainsOnline, Groningen, The Netherlands
| | - MG Caron
- Department of Cell Biology, Duke University, Durham, NC, USA,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
38
|
Abstract
Cocaine (benzoylmethylecgonine), a natural alkaloid, is a powerful psychostimulant and a highly addictive drug. Unfortunately, the relationships between its behavioral and electrophysiological effects are not clear. We investigated the effects of cocaine on the firing of midbrain dopaminergic (DA) neurons, both in anesthetized and awake rats, using pre-implanted multielectrode arrays and a recently developed telemetric recording system. In anesthetized animals, cocaine (10 mg/kg, intraperitoneally) produced a general decrease of the firing rate and bursting of DA neurons, sometimes preceded by a transient increase in both parameters, as previously reported by others. In awake rats, however, injection of cocaine led to a very different pattern of changes in firing. A decrease in firing rate and bursting was observed in only 14% of DA neurons. Most of the other DA neurons underwent increases in firing rate and bursting: these changes were correlated with locomotor activity in 52% of the neurons, but were uncorrelated in 29% of them. Drug concentration measurements indicated that the observed differences between the two conditions did not have a pharmacokinetic origin. Taken together, our results demonstrate that cocaine injection differentially affects the electrical activity of DA neurons in awake and anesthetized states. The observed increases in neuronal activity may in part reflect the cocaine-induced synaptic potentiation found ex vivo in these neurons. Our observations also show that electrophysiological recordings in awake animals can uncover drug effects, which are masked by general anesthesia.
Collapse
|
39
|
Citó MDCDO, da Silva FCC, Silva MIG, Moura BA, Macêdo DS, Woods DJ, Fonteles MMDF, Vasconcelos SMMD, Sousa FCFD. Reversal of cocaine withdrawal-induced anxiety by ondansetron, buspirone and propranolol. Behav Brain Res 2012; 231:116-23. [DOI: 10.1016/j.bbr.2012.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
40
|
Baladi MG, Daws LC, France CP. You are what you eat: influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct- and indirect-acting dopamine receptor agonists. Neuropharmacology 2012; 63:76-86. [PMID: 22710441 DOI: 10.1016/j.neuropharm.2012.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/21/2011] [Accepted: 02/07/2012] [Indexed: 12/27/2022]
Abstract
The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. This article is part of a Special Issue entitled 'Central Control of Food Intake'.
Collapse
Affiliation(s)
- Michelle G Baladi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
41
|
Impulsive action induced by amphetamine, cocaine and MK801 is reduced by 5-HT2C receptor stimulation and 5-HT2A receptor blockade. Neuropharmacology 2011; 61:468-77. [DOI: 10.1016/j.neuropharm.2011.02.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 11/18/2022]
|
42
|
Michaeli A, Yaka R. Dopamine-related drugs act presynaptically to potentiate GABAA receptor currents in VTA dopamine neurons. Neuropharmacology 2011; 61:234-44. [DOI: 10.1016/j.neuropharm.2011.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/28/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|
43
|
Purohit V, Rapaka R, Shurtleff D. Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol 2011; 44:102-10. [PMID: 21717292 DOI: 10.1007/s12035-011-8195-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Although the incidence of HIV-associated dementia (HAD) has declined, HIV-associated neurocognitive disorders (HAND) remain a significant health problem despite use of highly active antiretroviral therapy. In addition, the incidence and/or severity of HAND/HAD are increased with concomitant use of drugs of abuse, such as cocaine, marijuana, and methamphetamine. Furthermore, exposure to most drugs of abuse increases brain levels of dopamine, which has been implicated in the pathogenesis of HIV. This review evaluates the potential role of dopamine in the potentiation of HAND/HAD by drugs of abuse. In the brain, multiplication of HIV in infected macrophages/microglia could result in the release of HIV proteins such as gp120 and Tat, which can bind to and impair dopamine transporter (DAT) functions, leading to elevated levels of dopamine in the dopaminergic synapses in the early asymptomatic stage of HIV infection. Exposure of HIV-infected patients to drugs of abuse, especially cocaine and methamphetamine, can further increase synaptic levels of dopamine via binding to and subsequently impairing the function of DAT. This accumulated synaptic dopamine can diffuse out and activate adjacent microglia through binding to dopamine receptors. The activation of microglia may result in increased HIV replication as well as increased production of inflammatory mediators such as tumor necrosis factor (TNF)-alpha and chemokines. Increased HIV replication can lead to increased brain viral load and increased shedding of HIV proteins, gp120 and Tat. These proteins, as well as TNF-alpha, can induce cell death of adjacent dopaminergic neurons via apoptosis. Autoxidation and metabolism of accumulated synaptic dopamine can lead to generation of reactive oxygen species (hydrogen peroxide), quinones, and semiquinones, which can also induce apoptosis of neurons. Increased cell death of dopaminergic neurons can eventually lead to dopamine deficit that may exacerbate the severity and/or accelerate the progression of HAND/HAD.
Collapse
Affiliation(s)
- Vishnudutt Purohit
- Chemistry and Physiological Systems Research Branch, Division of Basic Neuroscience & Behavioral Research, National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard Room 4277, MSC 9555, Bethesda, MD 20892-9555, USA.
| | | | | |
Collapse
|
44
|
Xue Y, Steketee JD, Rebec GV, Sun W. Activation of D₂-like receptors in rat ventral tegmental area inhibits cocaine-reinstated drug-seeking behavior. Eur J Neurosci 2011; 33:1291-8. [PMID: 21261759 PMCID: PMC3070830 DOI: 10.1111/j.1460-9568.2010.07591.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relapse is a hallmark of cocaine addiction. Cocaine-induced neuroplastic changes in the mesocorticolimbic circuits critically contribute to this phenomenon. Pre-clinical evidence indicates that relapse to cocaine-seeking behavior depends on activation of dopamine neurons in the ventral tegmental area. Thus, blocking such activation may inhibit relapse. Because the activity of dopamine neurons is regulated by D₂-like autoreceptors expressed on somatodendritic sites, this study, using the reinstatement model, aimed to determine whether activation of D₂-like receptors in the ventral tegmental area can inhibit cocaine-induced reinstatement of extinguished cocaine-seeking behavior. Rats were trained to self-administer i.v. cocaine (0.25 mg/infusion) under a modified fixed-ratio 5 schedule. After such behavior was well learned, rats went through extinction training to extinguish cocaine-seeking behavior. The effect of quinpirole, a selective D₂-like receptor agonist microinjected into the ventral tegmental area, on cocaine-induced reinstatement was then assessed. Quinpirole (0-3.2 μg/side) dose-dependently decreased cocaine-induced reinstatement and such effects were reversed by the selective D₂-like receptor antagonist eticlopride when co-microinjected with quinpirole into the ventral tegmental area. The effect appeared to be specific to the ventral tegmental area because quinpirole microinjected into the substantia nigra had no effect. Because D₂-like receptors are expressed on rat ventral tegmental area dopamine neurons projecting to the pre-frontal cortex and nucleus accumbens, our data suggest that these dopamine circuits may play a critical role in cocaine-induced reinstatement. The role of potential changes in D₂-like receptors and related signaling molecules of dopamine neurons in the vulnerability to relapse was discussed.
Collapse
Affiliation(s)
- YueQiang Xue
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Jeffery D. Steketee
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - George V. Rebec
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10 Street, Bloomington, IN 47405
| | - WenLin Sun
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
45
|
Kõiv K, Zobel R, Raudkivi K, Kivastik T, Harro J. The effect of denervation of the locus coeruleus projections with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on cocaine-induced locomotion and place preference in rats. Behav Brain Res 2011; 216:172-9. [DOI: 10.1016/j.bbr.2010.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/17/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
46
|
Martin BJ, Naughton BJ, Thirtamara-Rajamani K, Yoon DJ, Han DD, Devries AC, Gu HH. Dopamine transporter inhibition is necessary for cocaine-induced increases in dendritic spine density in the nucleus accumbens. Synapse 2010; 65:490-6. [PMID: 20936687 DOI: 10.1002/syn.20865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/14/2010] [Indexed: 11/06/2022]
Abstract
Repeated exposure to cocaine produces changes in the nervous system that facilitate drug-seeking behaviors. These drug-seeking behaviors have been studied with animal models, such as cocaine-induced locomotor sensitization. Cocaine is hypothesized to induce locomotor sensitization by neural changes, including an increase in the density of spines on the dendrites of neurons in the nucleus accumbens (NAC). However, how cocaine increases dendritic spine density in the NAC has been difficult to discern because cocaine inhibits the function of multiple targets, including the transporters for dopamine, serotonin, and norepinephrine. Previously, our lab created a tool that is useful for determining how inhibiting the dopamine transporter (DAT) contributes to the effects of cocaine by generating mice that express a cocaine-insensitive DAT (DAT-CI mice). In this study, we used DAT-CI mice to determine the contribution of DAT inhibition in cocaine-induced increases in dendritic spine density in the NAC. We repeatedly injected DAT-CI mice with either cocaine or saline, and measured both dendritic spine density in the NAC and locomotor activity. Unlike wild-type mice, DAT-CI mice did not show an increase in dendritic spine density in the NAC or in locomotor activity in response to repeated injections of cocaine. These data show that cocaine-induced increases in dendritic spine density in the NAC require DAT inhibition. Thus, DAT-inhibition may play a role in mediating the long-lasting neural changes associated with drug addiction.
Collapse
Affiliation(s)
- Bradley J Martin
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H. Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for β-2 adrenergic receptors. Neuropsychopharmacology 2010; 35:2165-78. [PMID: 20613718 PMCID: PMC2939933 DOI: 10.1038/npp.2010.86] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20-25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective β-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of β-ARs. The β-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the β-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through β-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Andy Weyer
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Chad E Beyer
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Holly Caretta
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
48
|
Abstract
Serotonin-selective reuptake inhibitors (SSRIs) have been shown to enhance the locomotor stimulatory, discriminative-stimulus, and convulsive effects of cocaine in rodents. A pharmacokinetic mechanism for the interaction is supported by increases in the brain levels of cocaine by fluoxetine treatment. Furthermore, the locomotor-stimulant effects of cocaine in rodents are enhanced by fluoxetine and fluvoxamine, SSRIs known to inhibit cocaine-metabolizing cytochrome P450 enzymes, whereas citalopram, an SSRI that does not inhibit P450 enzymes, does not enhance cocaine's locomotor-stimulant effects. Citalopram, however, attenuated the discriminative-stimulus effects of cocaine in squirrel monkeys trained to discriminate cocaine from saline, though it enhanced the discriminative-stimulus effects of a low dose of cocaine in rats trained to discriminate high and low doses of the drug. This study investigated the effects of citalopram on cocaine's discriminative-stimulus effects in rats trained more simply to discriminate cocaine from saline. Citalopram alone produced predominantly saline-appropriate responding, but when administered before cocaine, citalopram dose-dependently shifted the cocaine dose-response curve leftward. The present findings suggest that enhancement of cocaine's discriminative-stimulus effects may occur through a mechanism different from that underlying enhancement of cocaine's locomotor effects or that another action of citalopram selectively blocks locomotor enhancement.
Collapse
|
49
|
Fletcher PJ, Sinyard J, Higgins GA. Genetic and pharmacological evidence that 5-HT2C receptor activation, but not inhibition, affects motivation to feed under a progressive ratio schedule of reinforcement. Pharmacol Biochem Behav 2010; 97:170-8. [PMID: 20624416 DOI: 10.1016/j.pbb.2010.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/25/2010] [Accepted: 07/05/2010] [Indexed: 12/27/2022]
Abstract
Previous work showed that 5-HT(2C) receptor agonists reduce cocaine self-administration on a progressive ratio (PR) schedule of reinforcement, whereas a 5-HT(2C) receptor antagonist enhances responding for cocaine. The present experiments examined the effects of Ro60-0175 (5-HT(2C) agonist) and SB242084 (5-HT(2C) receptor antagonist) in rats on responding for food on a PR schedule; responding was also determined in mice lacking functional 5-HT(2C) receptors. In food-restricted rats, lever pressing reinforced by regular food pellets or sucrose pellets was reduced by Ro60-0175. This effect was blocked by SB242084, and was absent in mice lacking functional 5-HT(2C) receptors. A number of studies examined the effects of SB242084 on responding for food under a variety of conditions. These included manipulation of food type (regular pellets versus sucrose pellets), nutritional status of the animals (food restriction versus no restriction), and rate of progression of the increase in ratio requirements on the PR schedule. In all cases there was no evidence of enhanced responding for food by SB242084. Mice lacking functional 5-HT(2C) receptors did not differ from wildtype mice in responding for food in either food-restricted or non-restricted states. The effects of Ro60-0175 are consistent with its effects on food consumption and motivation to self-administer cocaine. Unlike their effects on cocaine self-administration, pharmacological blockade of 5-HT(2C) receptors, and genetic disruption of 5-HT(2C) receptor function do not alter the motivation to respond for food. Because the 5-HT(2C) receptor exerts a modulatory effect on dopamine function, the differential effects of reduced 5-HT(2C) receptor mediated transmission on responding for food versus cocaine may relate to a differential role of this neurotransmitter in mediating these two behaviours.
Collapse
Affiliation(s)
- Paul J Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
50
|
Abstract
Central dopaminergic and noradrenergic systems play essential roles in controlling several forebrain functions. Consequently, perturbations of these neurotransmissions may contribute to the pathophysiology of neuropsychiatric disorders. For many years, there was a focus on the serotonin (5‐HT) system because of the efficacy of selective serotonin reuptake inhibitors (SSRIs), the most prescribed antidepressants in the treatment of major depressive disorder (MDD). Given the interconnectivity within the monoaminergic network, any action on one system may reverberate in the other systems. Analysis of this network and its dysfunctions suggests that drugs with selective or multiple modes of action on dopamine (DA) and norepinephrine (NE) may have robust therapeutic effects. This review focuses on NE‐DA interactions as demonstrated in electrophysiological and neurochemical studies, as well as on the mechanisms of action of agents with either selective or dual actions on DA and NE. Understanding the mode of action of drugs targeting these catecholaminergic neurotransmitters can improve their utilization in monotherapy and in combination with other compounds particularly the SSRIs. The elucidation of such relationships can help design new treatment strategies for MDD, especially treatment‐resistant depression.
Collapse
|