1
|
Jin L, Dai N, Yang X. Preliminary study on the optical diagnosis of orbital rhabdomyosarcoma by Raman spectroscopy. Sci Rep 2024; 14:9735. [PMID: 38679641 PMCID: PMC11056361 DOI: 10.1038/s41598-024-60520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
To investigate the Raman spectral features of orbital rhabdomyosarcoma (ORMS) tissue and normal orbital tissue in vitro, and to explore the feasibility of Raman spectroscopy for the optical diagnosis of ORMS. 23 specimens of ORMS and 27 specimens of normal orbital tissue were obtained from resection surgery and measured in vitro using Raman spectroscopy coupled to a fiber optic probe. The important spectral differences between the tissue categories were exploited for tissue classification with the multivariate statistical techniques of principal component analysis (PCA) and linear discriminant analysis (LDA). Compared to normal tissue, the Raman peak intensities located at 1450 and 1655 cm-1 were significantly lower for ORMS (p < 0.05), while the peak intensities located at 721, 758, 1002, 1088, 1156, 1206, 1340, 1526 cm-1 were significantly higher (p < 0.05). Raman spectra differences between normal tissue and ORMS could be attributed to the changes in the relative amounts of biochemical components, such as nucleic acids, tryptophan, phenylalanine, carotenoid and lipids. The Raman spectroscopy technique together with PCA-LDA modeling provides a diagnostic accuracy of 90.0%, sensitivity of 91.3%, and specificity of 88.9% for ORMS identification. Significant differences in Raman peak intensities exist between normal orbital tissue and ORMS. This work demonstrated for the first time that the Raman spectroscopy associated with PCA-LDA diagnostic algorithms has promising potential for accurate, rapid and noninvasive optical diagnosis of ORMS at the molecular level.
Collapse
Affiliation(s)
- Ling Jin
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nengli Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Pezzotti G, Ofuji S, Imamura H, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Mazda O, Togo A, Kimura S, Iwata T, Shiba H, Ouhara K, Aoki T, Kawai T. In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in Streptococcus mutans and Streptococcus sanguinis Commensal Cultures. Int J Mol Sci 2023; 24:ijms24076694. [PMID: 37047667 PMCID: PMC10095091 DOI: 10.3390/ijms24076694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Satomi Ofuji
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Azusa Togo
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Aoki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
3
|
Koster HJ, Guillen-Perez A, Gomez-Diaz JS, Navas-Moreno M, Birkeland AC, Carney RP. Fused Raman spectroscopic analysis of blood and saliva delivers high accuracy for head and neck cancer diagnostics. Sci Rep 2022; 12:18464. [PMID: 36323705 PMCID: PMC9630497 DOI: 10.1038/s41598-022-22197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
As a rapid, label-free, non-destructive analytical measurement requiring little to no sample preparation, Raman spectroscopy shows great promise for liquid biopsy cancer detection and diagnosis. We carried out Raman analysis and mass spectrometry of plasma and saliva from more than 50 subjects in a cohort of head and neck cancer patients and benign controls (e.g., patients with benign oral masses). Unsupervised data models were built to assess diagnostic performance. Raman spectra collected from either biofluid provided moderate performance to discriminate cancer samples. However, by fusing together the Raman spectra of plasma and saliva for each patient, subsequent analytical models delivered an impressive sensitivity, specificity, and accuracy of 96.3%, 85.7%, and 91.7%, respectively. We further confirmed that the metabolites driving the differences in Raman spectra for our models are among the same ones that drive mass spectrometry models, unifying the two techniques and validating the underlying ability of Raman to assess metabolite composition. This study bolsters the relevance of Raman to provide additive value by probing the unique chemical compositions across biofluid sources. Ultimately, we show that a simple data augmentation routine of fusing plasma and saliva spectra provided significantly higher clinical value than either biofluid alone, pushing forward the potential of clinical translation of Raman spectroscopy for liquid biopsy cancer diagnostics.
Collapse
Affiliation(s)
- Hanna J. Koster
- grid.27860.3b0000 0004 1936 9684Biomedical Engineering, University of California, Davis, CA USA
| | - Antonio Guillen-Perez
- grid.27860.3b0000 0004 1936 9684Electrical and Computer Engineering, University of California, Davis, CA USA
| | - Juan Sebastian Gomez-Diaz
- grid.27860.3b0000 0004 1936 9684Electrical and Computer Engineering, University of California, Davis, CA USA
| | | | - Andrew C. Birkeland
- grid.27860.3b0000 0004 1936 9684Department of Otolaryngology, University of California, CA Davis, USA
| | - Randy P. Carney
- grid.27860.3b0000 0004 1936 9684Biomedical Engineering, University of California, Davis, CA USA
| |
Collapse
|
4
|
Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer 2022; 126:1125-1139. [PMID: 34893761 PMCID: PMC8661339 DOI: 10.1038/s41416-021-01659-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Despite significant improvements in the way breast cancer is managed and treated, it continues to persist as a leading cause of death worldwide. If detected and diagnosed early, when tumours are small and localised, there is a considerably higher chance of survival. However, current methods for detection and diagnosis lack the required sensitivity and specificity for identifying breast cancer at the asymptomatic or very early stages. Thus, there is a need to develop more rapid and reliable methods, capable of detecting disease earlier, for improved disease management and patient outcome. Raman spectroscopy is a non-destructive analytical technique that can rapidly provide highly specific information on the biochemical composition and molecular structure of samples. In cancer, it has the capacity to probe very early biochemical changes that accompany malignant transformation, even prior to the onset of morphological changes, to produce a fingerprint of disease. This review explores the application of Raman spectroscopy in breast cancer, including discussion on its capabilities in analysing both ex-vivo tissue and liquid biopsy samples, and its potential in vivo applications. The review also addresses current challenges and potential future uses of this technology in cancer research and translational clinical application.
Collapse
|
5
|
The effects of bismuth oxide nanoparticles and cisplatin on MCF-7 breast cancer cells irradiated with Ir-192 High Dose Rate brachytherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Zheng C, Jia HY, Liu LY, Wang Q, Jiang HC, Teng LS, Geng CZ, Jin F, Tang LL, Zhang JG, Wang X, Wang S, Alejandro FE, Wang F, Yu LX, Zhou F, Xiang YJ, Huang SY, Fu QY, Zhang Q, Gao DZ, Ma ZB, Li L, Fan ZM, Yu ZG. Molecular fingerprint of precancerous lesions in breast atypical hyperplasia. J Int Med Res 2021; 48:300060520931616. [PMID: 32589079 PMCID: PMC7325464 DOI: 10.1177/0300060520931616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To identify atypical hyperplasia (AH) of the breast by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and to explore the molecular fingerprinting characteristics of breast AH. METHODS Breast hyperplasia was studied in 11 hospitals across China from January 2015 to December 2016. All patients completed questionnaires on women's health. The differences between patients with and without breast AH were compared. AH breast lesions were detected by Raman spectroscopy followed by the SHINERS technique. RESULTS There were no significant differences in clinical features and risk-related factors between patients with breast AH (n = 37) and the control group (n = 2576). Fifteen cases of breast AH lesions were detected by Raman spectroscopy. The main different Raman peaks in patients with AH appeared at 880, 1001, 1086, 1156, 1260, and 1610 cm-1, attributed to the different vibrational modes of nucleic acids, β-carotene, and proteins. Shell-isolated nanoparticles had different enhancement effects on the nucleic acid, protein, and lipid components in AH. CONCLUSION Raman spectroscopy can detect characteristic molecular changes in breast AH lesions, and may thus be useful for the non-invasive early diagnosis and for investigating the mechanism of tumorigenesis in patients with breast AH.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hong Ying Jia
- Center of Evidence-based Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Yuan Liu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Wang
- Breast Disease Center, Guangdong Maternal and Child Health Care Hospital, Guangzhou, Guangdong, China
| | - Hong Chuan Jiang
- Department of General Surgery, Beijing Chaoyang Hospital, Beijing, China
| | - Li Song Teng
- Department of Oncology Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Cui Zhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li Li Tang
- Department of Breast Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Guo Zhang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiang Wang
- Department of Breast Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Wang
- Breast Disease Center, Peking University People's Hospital, Beijing, China
| | | | - Fei Wang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Xiang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Juan Xiang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shu Ya Huang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qin Ye Fu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiang Zhang
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - De Zong Gao
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhong Bing Ma
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Li
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhi Min Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhi Gang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Depciuch J, Stanek-Widera A, Khinevich N, Bandarenka HV, Kandler M, Bayev V, Fedotova J, Lange D, Stanek-Tarkowska J, Cebulski J. The Spectroscopic Similarity between Breast Cancer Tissues and Lymph Nodes Obtained from Patients with and without Recurrence: A Preliminary Study. Molecules 2020; 25:molecules25143295. [PMID: 32708082 PMCID: PMC7397234 DOI: 10.3390/molecules25143295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Lymph nodes (LNs) play a very important role in the spread of cancer cells. Moreover, it was noticed that the morphology and chemical composition of the LNs change in the course of cancer development. Therefore, finding and monitoring similarities between these characteristics of the LNs and tumor tissues are essential to improve diagnostics and therapy of this dreadful disease. In the present study, we used Raman and Fourier transform infrared (FTIR) spectroscopies to compare the chemical composition of the breast cancer tissues and LNs collected from women without (I group-4 patients) and with (II group-4 patients) recurrence. It was shown that the similarity of the chemical composition of the breast tissues and LNs is typical for the II group of the patients. The average Raman spectrum of the breast cancer tissues from the I group was not characterized by vibrations in the 800-1000 cm-1 region originating from collagen and carbohydrates, which are typical for tumor-affected breast tissues. At the same time, this spectrum contains peaks at 1029 cm-1, corresponding to PO2- from DNA, RNA and phospholipids, and 1520 cm-1, which have been observed in normal breast tissues before. It was shown that Raman bands of the average LN spectrum of the II group associated with proteins and carbohydrates are more intensive than those of the breast tissues spectrum. The intensity of the Raman spectra collected from the samples of the II group is almost three times higher compared to the I group. The vibrations of carbohydrates and amide III are much more intensive in the II group's case. The Raman spectra of the breast cancer tissues and LNs of the II group's samples do not contain bands (e.g., 1520 cm-1) found in the Raman spectra of the normal breast tissues elsewhere. FTIR spectra of the LNs of the I group's women showed a lower level of vibrations corresponding to functional group building nucleic acid, collagen, carbohydrates, and proteins in comparison with the breast cancer tissues. Pearson's correlation test showed positive and more significant interplay between the nature of the breast tissues and LN spectra obtained for the II group of patients than that in the I group's spectra. Moreover, principal component analysis (PCA) showed that it is possible to distinguish Raman and FTIR spectra of the breast cancer tissues and LNs collected from women without recurrence of the disease.
Collapse
Affiliation(s)
- Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
- Correspondence: (J.D.); (J.F.)
| | - Agata Stanek-Widera
- Faculty of Medicine, University of Technology, Rolna 43, 40-555 Katowice, Poland; (A.S.-W.); (D.L.)
| | - Nadia Khinevich
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (N.K.); (H.V.B.)
| | - Hanna V. Bandarenka
- Laboratory of Applied Plasmonics, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus; (N.K.); (H.V.B.)
- Polytechnic School, Arizona State University, Mesa, AZ 85212, USA
| | - Michal Kandler
- Institute of Physics, University of Rzeszow, College of Natural Sciences, PL-35959 Rzeszow, Poland; (M.K.); (J.C.)
| | - Vadim Bayev
- Research Institute for Nuclear Problems of Belarusian State University, 220030 Minsk, Belarus;
| | - Julia Fedotova
- Research Institute for Nuclear Problems of Belarusian State University, 220030 Minsk, Belarus;
- Correspondence: (J.D.); (J.F.)
| | - Dariusz Lange
- Faculty of Medicine, University of Technology, Rolna 43, 40-555 Katowice, Poland; (A.S.-W.); (D.L.)
| | - Jadwiga Stanek-Tarkowska
- Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszow, PL-35959 Rzeszow, Poland;
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, College of Natural Sciences, PL-35959 Rzeszow, Poland; (M.K.); (J.C.)
| |
Collapse
|
8
|
Gebrekidan MT, Erber R, Hartmann A, Fasching PA, Emons J, Beckmann MW, Braeuer A. Breast Tumor Analysis Using Shifted-Excitation Raman Difference Spectroscopy (SERDS). Technol Cancer Res Treat 2018; 17:1533033818782532. [PMID: 29991340 PMCID: PMC6048663 DOI: 10.1177/1533033818782532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/13/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
We used a shifted-excitation Raman difference spectroscopy method for the ex vivo classification of resected and formalin-fixed breast tissue samples as normal (healthy) tissue, fibroadenoma, or invasive carcinoma. We analyzed 8 tissue samples containing invasive carcinoma that were surrounded by normal tissue and 3 tissue samples with fibroadenoma only. We made various measurement sites on various tissue samples, in total 240 measurements for each type of tissue. Although the acquired raw spectra contain enough information to clearly differentiate between normal and tumor (fibroadenoma and invasive carcinoma) tissue, the differentiation between fibroadenoma and invasive carcinoma was possible only after the shifted-excitation Raman difference spectroscopy isolation of pure Raman spectra from the heavily fluorescence interfered raw spectra. We used 784 and 785 nm as excitation wavelengths for the shifted-excitation Raman difference spectroscopy method. The differences in the obtained pure Raman spectra are assigned to the different chemical compositions of normal breast tissue, fibroadenoma, and invasive breast carcinoma. Principal component analysis and linear discriminant analysis showed excellent classification results in the Raman shift range between 1000 and 1800 cm-1. Invasive breast carcinoma was identified with 99.15% sensitivity, and the absence of invasive carcinoma was identified with 90.40% specificity. Tumor tissue in tumor-containing tissue was identified with 100% sensitivity, and the absence of tumor in no-tumor containing tissue was identified with 100% specificity. As gold standard for the determination of the sensitivity and the specificity, we considered the conventional histopathological classification. In summary, shifted-excitation Raman difference spectroscopy could be potentially very useful to support histopathological diagnosis in breast pathology.
Collapse
Affiliation(s)
- Medhanie Tesfay Gebrekidan
- Lehrstuhl für Technische Thermodynamik, Friedrich-Alexander-Universität
(FAU), Erlangen-Nürnberg, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT),
Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Germany
- Institut für Thermische Verfahrenstechnik, Umwelt- und
Naturstoffverfahrenstechnik, Technische Universität Bergakademie Freiberg (TUBAF), Freiberg,
Germany
| | - Ramona Erber
- Pathologisches Institut, Friedrich-Alexander-Universität (FAU),
Erlangen-Nürnberg, Germany
| | - Arndt Hartmann
- Pathologisches Institut, Friedrich-Alexander-Universität (FAU),
Erlangen-Nürnberg, Germany
| | - Peter A. Fasching
- Pathologisches Institut, Friedrich-Alexander-Universität (FAU),
Erlangen-Nürnberg, Germany
| | - Julius Emons
- Frauenklinik, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg,
Germany
| | - Mathias W. Beckmann
- Frauenklinik, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg,
Germany
| | - Andreas Braeuer
- Lehrstuhl für Technische Thermodynamik, Friedrich-Alexander-Universität
(FAU), Erlangen-Nürnberg, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT),
Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Germany
- Institut für Thermische Verfahrenstechnik, Umwelt- und
Naturstoffverfahrenstechnik, Technische Universität Bergakademie Freiberg (TUBAF), Freiberg,
Germany
| |
Collapse
|
9
|
Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K. Raman and infrared spectroscopy of carbohydrates: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:317-335. [PMID: 28599236 DOI: 10.1016/j.saa.2017.05.045] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 05/10/2023]
Abstract
Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (d-(-)-ribose, 2-deoxy-d-ribose, l-(-)-arabinose, d-(+)-xylose, d-(+)-glucose, d-(+)-galactose and d-(-)-fructose) and disaccharides (d-(+)-sucrose, d-(+)-maltose and d-(+)-lactose), and then more complex ones, i.e. trisaccharides (d-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050cm-1), IV (3050-2800cm-1) and II (1200-800cm-1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200cm-1) and I (800-100cm-1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.
Collapse
Affiliation(s)
- Ewelina Wiercigroch
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Ewelina Szafraniec
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Krzysztof Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marta Z Pacia
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Kamila Kochan
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| |
Collapse
|
10
|
Nogueira VC, Raniero L, Costa GB, de Freitas Coelho NPM, Miranda FC, Arisawa EÂL. Comparative Study of Morphometric and Fourier Transform Infrared Spectroscopy Analyses of the Collagen Fibers in the Repair Process of Cutaneous Lesions. Adv Wound Care (New Rochelle) 2016; 5:55-64. [PMID: 26862463 PMCID: PMC4742994 DOI: 10.1089/wound.2015.0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023] Open
Abstract
Objective: Compare the efficacy of light-emitting diode (LED) and therapeutic ultrasound (TUS), combined with a semipermeable dressing (D), at forming collagen in skin lesions by morphometry and Fourier transform infrared spectroscopy (FT-IR). Materials and Methods: Surgical skin wounds (2.5 cm) were created on 84 male Wistar rats divided into four groups (n=21): Group I (Control), Group II (LED), Group III (LED+D), and Group IV (US+D). On days 7, 14, and 21, the tissue samples were removed and divided into two pieces, one was used for histological examination (collagen) and the other for FT-IR. Results: The histomorphometric analysis showed no significant differences among groups for collagen deposition at 7 days. However, at 14 days, more deposition of collagen was noted in the groups LED (p<0.05) and LED+D (p<0.001) than in the control. At 21 days, the groups LED, LED+D, and US+D presented significantly greater deposition of collagen when compared with the control. The FT-IR spectra, at 14 days, LED+D had greater amounts of type I collagen, a better organization of fibers, and greater difference of mean separation between the groups, not observed at 7 and 21 days. Innovation: The histomorphometric and FT-IR analyses suggest that the association of semipermeable dressing to LED therapy and to TUS modulates biological events, increasing fibroblast/collagen response and accelerating dermal maturation. Conclusion: The histomorphometric and FT-IR analyses showed that LED therapy is more efficacious than TUS, when combined with a semipermeable dressing, and induced the collagen production in skin lesions.
Collapse
Affiliation(s)
- Veruska Cronemberger Nogueira
- Universidade do Vale do Paraíba, UNIVAP, Teresina, São Paulo, Brazil
- Universidade Estadual do Piauí, UESPI, Teresina, Piauí, Brazil
- Faculdade Integral Diferencial, FACID, Teresina, Piauí, Brazil
| | - Leandro Raniero
- Universidade do Vale do Paraíba, UNIVAP, Teresina, São Paulo, Brazil
| | | | - Nayana Pinheiro Machado de Freitas Coelho
- Universidade do Vale do Paraíba, UNIVAP, Teresina, São Paulo, Brazil
- Universidade Estadual do Piauí, UESPI, Teresina, Piauí, Brazil
- Faculdade Integral Diferencial, FACID, Teresina, Piauí, Brazil
| | | | | |
Collapse
|
11
|
Majzner K, Wojcik T, Szafraniec E, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M. Nuclear accumulation of anthracyclines in the endothelium studied by bimodal imaging: fluorescence and Raman microscopy. Analyst 2015; 140:2302-10. [PMID: 25599102 DOI: 10.1039/c4an01882f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthracycline antibiotics display genotoxic activity towards cancer cells but their clinical utility is limited by their cardiac and vascular toxicity. The aim of this study was to develop a Raman-based methodology to study the nuclear accumulation of anthracyclines in the endothelium. For this purpose bimodal confocal Raman and fluorescence imaging was used to monitor cellular composition changes as a result of anthracycline exposure on endothelial cells (EA.hy926), and nuclear drug accumulation, respectively. Simultaneously effects of anthracyclines on endothelium viability were investigated by caspases-3 and -7 and MTT assays. We demonstrated that nuclear accumulation of DOX and EDOX was similar; however, EDNR accumulated in endothelial nuclei at concentrations 10 times higher than DNR. In turn, epimers of DOX or DNR were both consistently less toxic on the endothelium as compared to their congeners as evidenced by MTT and caspase assays. In summary, bimodal Raman and fluorescence-based nucleus profiling proves to be a valuable tool to study structure-activity relationship of nuclear accumulation and toxicity of anthracyclines in endothelium.
Collapse
Affiliation(s)
- K Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
12
|
Huang X, Irmak S, Lu YF, Pipinos I, Casale G, Subbiah J. Spontaneous and coherent anti-Stokes Raman spectroscopy of human gastrocnemius muscle biopsies in CH-stretching region for discrimination of peripheral artery disease. BIOMEDICAL OPTICS EXPRESS 2015; 6:2766-2777. [PMID: 26309742 PMCID: PMC4541506 DOI: 10.1364/boe.6.002766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Peripheral Artery Disease (PAD) is a common manifestation of atherosclerosis, characterized by lower leg ischemia and myopathy in association with leg dysfunction. In the present study, Spontaneous and coherent anti-Stokes Raman scattering (CARS) spectroscopic techniques in CH-stretching spectral region were evaluated for discriminating healthy and diseased tissues of human gastrocnemius biopsies of control and PAD patients. Since Raman signatures of the tissues in the fingerprint region are highly complex and CH containing moieties are dense, CH-stretching limited spectral range was used to classify the diseased tissues. A total of 181 Raman spectra from 9 patients and 122 CARS spectra from 12 patients were acquired. Due to the high dimensionality of the data in Raman and CARS measurements, principal component analysis (PCA) was first performed to reduce the dimensionality of the data (6 and 9 principal scores for Raman and CARS, respectively) in the CH-stretching region, followed by a discriminant function analysis (DFA) to classify the samples into different categories based on disease severity. The CH2 and CH3 vibrational signatures were observed in the Raman and CARS spectroscopy. Raman and CARS data in conjunction with PCA-DFA analysis were capable of differentiating healthy and PAD gastrocnemius with an accuracy of 85.6% and 78.7%, respectively.
Collapse
Affiliation(s)
- X. Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| | - S. Irmak
- Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
| | - Y. F. Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, USA
| | - I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-5182, USA
| | - G. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-5182, USA
| | - J. Subbiah
- Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583-0726, USA
| |
Collapse
|
13
|
Lu P, Wang J, Lin J, Lin J, Liu N, Huang Z, Li B, Zeng H, Chen R. Gold nanoaggregates for probing single-living cell based on surface-enhanced Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051005. [PMID: 25388888 DOI: 10.1117/1.jbo.20.5.051005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Gold nanoparticles are delivered into living cells by transient electroporation method to obtain intracellular surface-enhanced Raman spectroscopy (SERS). The subcellular localization of gold nanoparticles is characterized by transmission electron microscopy, and the forming large gold nanoaggregates are mostly found in the cytoplasm. The SERS detection of cells indicates that this kind of gold nanostructures induces a high signal enhancement of cellular chemical compositions, in addition to less cellular toxicity than that of silver nanoparticles. These results demonstrate that rapid incorporation of gold nanoparticles by electroporation into cells has great potential applications in the studies of cell biology and biomedicine.
Collapse
Affiliation(s)
- Peng Lu
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Jing Wang
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Jinyong Lin
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Juqiang Lin
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Nenrong Liu
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Zufang Huang
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Buhong Li
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Haishan Zeng
- British Columbia Cancer Research Centre, Imaging Unit-Integrative Oncology Department, Vancouver, British Columbia, V5Z 1L3 Canada
| | - Rong Chen
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| |
Collapse
|
14
|
Wang J, Lin D, Lin J, Yu Y, Huang Z, Chen Y, Lin J, Feng S, Li B, Liu N, Chen R. Label-free detection of serum proteins using surface-enhanced Raman spectroscopy for colorectal cancer screening. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:087003. [PMID: 25138208 DOI: 10.1117/1.jbo.19.8.087003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/28/2014] [Indexed: 05/18/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectra of serum proteins purified from human serum samples were employed to detect colorectal cancer. Acetic acid as a new aggregating agent was introduced to increase the magnitude of the SERS enhancement. High-quality SERS spectra of serum proteins were acquired from 103 cancer patients and 103 healthy volunteers. Tentative assignments of SERS bands reflect that some specific biomolecular contents and protein secondary structures change with colorectal cancer progression. Principal component analysis combined with linear discriminant analysis was used to assess the capability of this approach for identifying colorectal cancer, yielding diagnostic accuracies of 100% (sensitivity: 100%; specificity: 100%) based on albumin SERS spectroscopy and 99.5% (sensitivity: 100%; specificity: 99%) based on globulin SERS spectroscopy, respectively. A partial least squares (PLS) approach was introduced to develop diagnostic models. An albumin PLS model successfully predicted the unidentified subjects with a diagnostic accuracy of 93.5% (sensitivity: 95.6%; specificity: 91.3%) and the globulin PLS model gave a diagnostic accuracy of 93.5% (sensitivity: 91.3%; specificity: 95.6%). These results suggest that serum protein SERS spectroscopy can be a sensitive and clinically powerful means for colorectal cancer detection.
Collapse
Affiliation(s)
- Jing Wang
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Duo Lin
- Fujian University of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Fuzhou 350122, China
| | - Juqiang Lin
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Yun Yu
- Fujian University of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Fuzhou 350122, China
| | - Zufang Huang
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Yanping Chen
- Teaching Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou 350014, China
| | - Jinyong Lin
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Shangyuan Feng
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Buhong Li
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Nenrong Liu
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| | - Rong Chen
- Fujian Normal University, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of Optoelectronic Science and Technology for Medicine, Fuzhou 350007, China
| |
Collapse
|
15
|
Sattlecker M, Stone N, Bessant C. Current trends in machine-learning methods applied to spectroscopic cancer diagnosis. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Qazi HH, Mohammad ABB, Akram M. Recent progress in optical chemical sensors. SENSORS (BASEL, SWITZERLAND) 2012; 12:16522-56. [PMID: 23443392 PMCID: PMC3571796 DOI: 10.3390/s121216522] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/08/2012] [Accepted: 11/24/2012] [Indexed: 11/16/2022]
Abstract
Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described.
Collapse
Affiliation(s)
- Hummad Habib Qazi
- Infocomm Research Alliance (ICRA), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; E-Mail:
| | - Abu Bakar bin Mohammad
- Infocomm Research Alliance (ICRA), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; E-Mail:
| | - Muhammad Akram
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; E-Mail:
| |
Collapse
|
17
|
Ong YH, Lim M, Liu Q. Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. OPTICS EXPRESS 2012; 20:22158-71. [PMID: 23037364 DOI: 10.1364/oe.20.022158] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Raman spectroscopy has been explored as a promising label-free technique in discriminating apoptosis and necrosis induced cell death in leukemia cells. In addition to Principal component analysis (PCA) as commonly employed in Raman data analysis, another less commonly used but powerful method is Biochemical Component Analysis (BCA). In BCA, a Raman spectrum is decomposed into the contributions from several known basic biochemical components, such as proteins, lipid, nucleic acids and glycogen groups etc. The differences in terms of classification accuracy and interpretability of resulting data between these two methods in Raman spectroscopy have not been systematically investigated to our knowledge. In this study, we utilized both methods to analyze the Raman spectra measured from live cells, apoptotic and necrotic leukemia cells. The comparison indicates that two methods yield comparable accuracy in sample classification when the numbers of basic components are equal. The changes in the contributions of biochemical components in BCA can be interpreted by cell biology principles in apoptosis and necrosis. In contrast, the contributions of most principle components in PCA are difficult to interpret except the first one. The capability of BCA to unveil fine biochemical changes in cell spectra and excellent accuracy in classification can impel the broad application of Raman spectroscopy in biological research.
Collapse
Affiliation(s)
- Yi Hong Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | | | | |
Collapse
|
18
|
|
19
|
High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0925-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
|