1
|
Clemente CM, Capece L, Martí MA. Best Practices on QM/MM Simulations of Biological Systems. J Chem Inf Model 2023; 63:2609-2627. [PMID: 37100031 DOI: 10.1021/acs.jcim.2c01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
During the second half of the 20th century, following structural biology hallmark works on DNA and proteins, biochemists shifted their questions from "what does this molecule look like?" to "how does this process work?". Prompted by the theoretical and practical developments in computational chemistry, this led to the emergence of biomolecular simulations and, along with the 2013 Nobel Prize in Chemistry, to the development of hybrid QM/MM methods. QM/MM methods are necessary whenever the problem we want to address involves chemical reactivity and/or a change in the system's electronic structure, with archetypal examples being the studies of an enzyme's reaction mechanism and a metalloprotein's active site. In the last decades QM/MM methods have seen an increasing adoption driven by their incorporation in widely used biomolecular simulation software. However, properly setting up a QM/MM simulation is not an easy task, and several issues need to be properly addressed to obtain meaningful results. In the present work, we describe both the theoretical concepts and practical issues that need to be considered when performing QM/MM simulations. We start with a brief historical perspective on the development of these methods and describe when and why QM/MM methods are mandatory. Then we show how to properly select and analyze the performance of the QM level of theory, the QM system size, and the position and type of the boundaries. We show the relevance of performing prior QM model system (or QM cluster) calculations in a vacuum and how to use the corresponding results to adequately calibrate those derived from QM/MM. We also discuss how to prepare the starting structure and how to select an adequate simulation strategy, including those based on geometry optimizations as well as free energy methods. In particular, we focus on the determination of free energy profiles using multiple steered molecular dynamics (MSMD) combined with Jarzynski's equation. Finally, we describe the results for two illustrative and complementary examples: the reaction performed by chorismate mutase and the study of ligand binding to hemoglobins. Overall, we provide many practical recommendations (or shortcuts) together with important conceptualizations that we hope will encourage more and more researchers to incorporate QM/MM studies into their research projects.
Collapse
Affiliation(s)
- Camila M Clemente
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Marcelo A Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
2
|
Mori M, Stelitano G, Gelain A, Pini E, Chiarelli LR, Sammartino JC, Poli G, Tuccinardi T, Beretta G, Porta A, Bellinzoni M, Villa S, Meneghetti F. Shedding X-ray Light on the Role of Magnesium in the Activity of Mycobacterium tuberculosis Salicylate Synthase (MbtI) for Drug Design. J Med Chem 2020; 63:7066-7080. [PMID: 32530281 PMCID: PMC8008425 DOI: 10.1021/acs.jmedchem.0c00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The
Mg2+-dependent Mycobacterium tuberculosis salicylate synthase (MbtI) is a key enzyme involved in the biosynthesis
of siderophores. Because iron is essential for the survival and pathogenicity
of the microorganism, this protein constitutes an attractive target
for antitubercular therapy, also considering the absence of homologous
enzymes in mammals. An extension of the structure–activity
relationships of our furan-based candidates allowed us to disclose
the most potent competitive inhibitor known to date (10, Ki = 4 μM), which also proved
effective on mycobacterial cultures. By structural studies, we characterized
its unexpected Mg2+-independent binding mode. We also investigated
the role of the Mg2+ cofactor in catalysis, analyzing the
first crystal structure of the MbtI–Mg2+–salicylate
ternary complex. Overall, these results pave the way for the development
of novel antituberculars through the rational design of improved MbtI
inhibitors.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Giovanni Stelitano
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Elena Pini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Laurent R Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
| | - José C Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
| | - Giulio Poli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Giangiacomo Beretta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - Alessio Porta
- Dipartimento di Chimica, Università degli Studi di Pavia, via T. Taramelli 12, 27100 Pavia, Italy
| | - Marco Bellinzoni
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, F-75015 Paris, France
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano,Italy
| |
Collapse
|
3
|
Unke OT, Koner D, Patra S, Käser S, Meuwly M. High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab5922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Brickel S, Meuwly M. Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction. J Phys Chem B 2018; 123:448-456. [DOI: 10.1021/acs.jpcb.8b11059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel CH-4056, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel CH-4056, Switzerland
| |
Collapse
|
5
|
Sánchez-Moreno I, Bordes I, Castillo R, Ruiz-Pernía JJ, Moliner V, García-Junceda E. Tuning the Phosphoryl Donor Specificity of Dihydroxyacetone Kinase from ATP to Inorganic Polyphosphate. An Insight from Computational Studies. Int J Mol Sci 2015; 16:27835-49. [PMID: 26610480 PMCID: PMC4661931 DOI: 10.3390/ijms161126073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/23/2022] Open
Abstract
Dihydroxyacetone (DHA) kinase from Citrobacter freundii provides an easy entry for the preparation of DHA phosphate; a very important C3 building block in nature. To modify the phosphoryl donor specificity of this enzyme from ATP to inorganic polyphosphate (poly-P); a directed evolution program has been initiated. In the first cycle of evolution, the native enzyme was subjected to one round of error-prone PCR (EP-PCR) followed directly (without selection) by a round of DNA shuffling. Although the wild-type DHAK did not show activity with poly-P, after screening, sixteen mutant clones showed an activity with poly-phosphate as phosphoryl donor statistically significant. The most active mutant presented a single mutation (Glu526Lys) located in a flexible loop near of the active center. Interestingly, our theoretical studies, based on molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) optimizations, suggest that this mutation has an effect on the binding of the poly-P favoring a more adequate position in the active center for the reaction to take place.
Collapse
Affiliation(s)
- Israel Sánchez-Moreno
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC. Juan de la Cierva 3, Madrid 28006, Spain.
| | - Isabel Bordes
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | - Raquel Castillo
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | | | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I. Castellón 12071, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General, CSIC. Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
6
|
de Farias Silva N, Lameira J, Alves CN, Martí S. Computational study of the mechanism of half-reactions in class 1A dihydroorotate dehydrogenase from Trypanosoma cruzi. Phys Chem Chem Phys 2013; 15:18863-71. [DOI: 10.1039/c3cp52692e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Ferrer S, Martí S, Moliner V, Tuñón I, Bertrán J. Understanding the different activities of highly promiscuous MbtI by computational methods. Phys Chem Chem Phys 2012; 14:3482-9. [DOI: 10.1039/c2cp23149b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|