1
|
Guidez EB. Quasi-atomic orbital analysis of halogen bonding interactions. J Chem Phys 2023; 159:194307. [PMID: 37987522 DOI: 10.1063/5.0174171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
A quasi-atomic orbital analysis of the halogen bonded NH3⋯XF complexes (X = F, Cl, Br, and I) is performed to gain insight into the electronic properties associated with these σ-hole interactions. It is shown that significant sharing of electrons between the nitrogen lone pair of the ammonia molecule and the XF molecule occurs, resulting in a weakening of the X-F bond. In addition, the N-X bond shows increasing covalent character as the size of the halogen atom X increases. While the Mulliken outer complex NH3⋯XF appears to be overall the main species, the strength of the covalent interaction of the N-X bond becomes increasingly similar to that of the N-X bond in the [NH3X]+ cation as the size of X increases.
Collapse
Affiliation(s)
- Emilie B Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, USA
| |
Collapse
|
2
|
Abstract
Quantum calculations study the manner in which the involvement of a halogen atom as a proton acceptor in one or more H bonds (HBs) affects the strength of the halogen bond (XB) it can form with a nucleophile aligned with the X σ-hole. A variety of Lewis acids wherein X = F, Cl, Br, and I are attached to a tetrel atom C or Ge engaged in a XB with nucleophile NH3. One, two, and three HF molecules were positioned perpendicular to the XB axis so that they could form a HB to the X atom. Each such HB strengthened the XB by an increment of 1 kcal/mol or more that does not attenuate as each new HB is added, potentially increasing the interaction energy manyfold. Additionally, the presence of one or more HBs facilitates the formation of a XB by molecules which are reluctant to engage in such a bond in the absence of these auxiliary interactions. Even the F atom, which avoids such a XB, can be coaxed to participate in a XB of moderate strength by one or more of these external HBs.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
3
|
Naghani FF, Emamian S, Zare K. Exploring influence of fluorine substitution on the strength and nature of halogen bond between iodobenzene and hydrogen cyanide. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Saeedreza Emamian
- Chemistry Department, Shahrood Branch Islamic Azad University Shahrood Iran
| | - Karim Zare
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
4
|
Abstract
We demonstrate that a wide range of σ- and π-hole interaction energies can be related to (a) the electrostatic potentials and electric fields of the σ- and π-hole molecules at the approximate positions of the negative sites and (b) the electrostatic potentials and polarizabilities of the latter. This is consistent with the Coulombic nature of these interactions, which should be understood to include both electrostatics and polarization. The energies associated with polarization were estimated and were shown to overall be greater for the stronger interactions; no new factors need be introduced to account for these. All of the interactions can be treated in the same manner.
Collapse
|
5
|
Politzer P, Murray JS. Electrostatics and Polarization in σ‐ and π‐Hole Noncovalent Interactions: An Overview. Chemphyschem 2020; 21:579-588. [DOI: 10.1002/cphc.201900968] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Peter Politzer
- Department of ChemistryUniversity of New Orleans New Orleans, LA 70148 USA
| | - Jane S. Murray
- Department of ChemistryUniversity of New Orleans New Orleans, LA 70148 USA
| |
Collapse
|
6
|
|
7
|
Theoretical study of electronic and nonlinear optical properties of Janus all-cis-1,2,3,4,5,6-hexafluorocyclohexane derivative with an extended π conjugation. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2517-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K. Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine
N
‐Oxide Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rakesh Puttreddy
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - J. Mikko Rautiainen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Toni Mäkelä
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| |
Collapse
|
9
|
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K. Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine
N
‐Oxide Complexes. Angew Chem Int Ed Engl 2019; 58:18610-18618. [DOI: 10.1002/anie.201909759] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Rakesh Puttreddy
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - J. Mikko Rautiainen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Toni Mäkelä
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| |
Collapse
|
10
|
Politzer P, Murray JS, Clark T. Explicit Inclusion of Polarizing Electric Fields in σ- and π-Hole Interactions. J Phys Chem A 2019; 123:10123-10130. [DOI: 10.1021/acs.jpca.9b08750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Jane S. Murray
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
11
|
Extended Assemblies of Ru(bpy)(CO)2X2 (X = Cl, Br, I) Molecules Linked by 1,4-Diiodotetrafluoro-Benzene (DITFB) Halogen Bond Donors. CRYSTALS 2019. [DOI: 10.3390/cryst9060319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ruthenium carbonyl compounds, Ru(bpy)(CO)2X2 (X = Cl, Br or I) act as neutral halogen bond (XB) acceptors when co-crystallized with 1,4-diiodotetrafluoro-benzene (DITFB). The halogen bonding strength of the Ru-X⋅⋅⋅I halogen bonds follow the nucleophilic character of the halido ligand. The strongest halogen bond occurs between the chlorido ligand and the iodide atoms of the DITFB. All three halogen bonded complexes form polymeric assemblies in the solid state. In Ru(bpy)(CO)2Cl2⋅DITFB (1) and in Ru(bpy)(CO)2Br2⋅DITFB (2) both halido ligands are halogen bonded to only one DITFB donor. In Ru(bpy)(CO)2I2⋅DITFB (3) only one of the halido ligands is involved in halogen bonding acting as ditopic center for two DITFB donors. The polymeric structures of 1 and 2 are isomorphic wave-like single chain systems, while the iodine complexes form pairs of linear chains attached together with weak F⋅⋅⋅O≡C interactions between the closest neighbors. The stronger polarization of the iodide ligand compared to the Cl or Br ligands favors nearly linear C-I⋅⋅⋅I angles between the XB donor and the metal complex supporting the linear arrangement of the halogen bonded chain.
Collapse
|
12
|
|
13
|
An Overview of Strengths and Directionalities of Noncovalent Interactions: σ-Holes and π-Holes. CRYSTALS 2019. [DOI: 10.3390/cryst9030165] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantum mechanics, through the Hellmann–Feynman theorem and the Schrödinger equation, show that noncovalent interactions are classically Coulombic in nature, which includes polarization as well as electrostatics. In the great majority of these interactions, the positive electrostatic potentials result from regions of low electronic density. These regions are of two types, designated as σ-holes and π-holes. They differ in directionality; in general, σ-holes are along the extensions of covalent bonds to atoms (or occasionally between such extensions), while π-holes are perpendicular to planar portions of molecules. The magnitudes and locations of the most positive electrostatic potentials associated with σ-holes and π-holes are often approximate guides to the strengths and directions of interactions with negative sites but should be used cautiously for this purpose since polarization is not being taken into account. Since these maximum positive potentials may not be in the immediate proximities of atoms, interatomic close contacts are not always reliable indicators of noncovalent interactions. This is demonstrated for some heterocyclic rings and cyclic polyketones. We briefly mention some problems associated with using Periodic Table Groups to label interactions resulting from σ-holes and π-holes; for example, the labels do not distinguish between these two possibilities with differing directionalities.
Collapse
|
14
|
Marshall WG, Jones RH, Knight KS. The thermal expansion properties of halogen bond containing 1,4 dioxane halogen complexes. CrystEngComm 2019. [DOI: 10.1039/c9ce00803a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong halogen bonds formed between 1,4 dioxane and dihalogens lead to minimum expansion in the direction of these bonds.
Collapse
Affiliation(s)
- W. G. Marshall
- ISIS Facility
- STFC Rutherford Appleton Lab
- Didcot OX11 0QX
- UK
| | - R. H. Jones
- School of Chemical and Physical Sciences
- Keele University
- Keele
- UK
| | - K. S. Knight
- Department of Earth Sciences
- University College London
- London
- UK
- Department of Earth Sciences
| |
Collapse
|
15
|
Wysokiński R, Michalczyk M, Zierkiewicz W, Scheiner S. Influence of monomer deformation on the competition between two types of σ-holes in tetrel bonds. Phys Chem Chem Phys 2019; 21:10336-10346. [DOI: 10.1039/c9cp01759c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Competition between two competing sites on a tetrel atom is explained by balance between structural deformation and σ-hole intensity.
Collapse
Affiliation(s)
- Rafał Wysokiński
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
16
|
Clark T, Murray JS, Politzer P. A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys Chem Chem Phys 2018; 20:30076-30082. [PMID: 30484786 DOI: 10.1039/c8cp06786d] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since quantum mechanical calculations do not typically lend themselves to chemical interpretation, analyses of bonding interactions depend largely upon models (the octet rule, resonance theory, charge transfer, etc.). This sometimes leads to a blurring of the distinction between mathematical modelling and physical reality. The issue of polarization vs. charge transfer is an example; energy decomposition analysis is another. The Hellmann-Feynman theorem at least partially bridges the gap between quantum mechanics and conceptual chemistry. It proceeds rigorously from the Schrödinger equation to demonstrating that the forces exerted upon the nuclei in molecules, complexes, etc., are entirely classically coulombic attractions with the electrons and repulsions with the other nuclei. In this paper, we discuss these issues in the context of noncovalent interactions. These can be fully explained in coulombic terms, electrostatics and polarization (which include electronic correlation and dispersion).
Collapse
Affiliation(s)
- Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | | | | |
Collapse
|
17
|
Murray JS, Zadeh DH, Lane P, Politzer P. The role of ‘Excluded’ electronic charge in noncovalent interactions. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1527044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jane S. Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA, U.S.A
| | - Dariush H. Zadeh
- Erie Community College, State University of New York, Williamsville, NY, U.S.A
| | - Pat Lane
- Department of Chemistry, University of New Orleans, New Orleans, LA, U.S.A
| | - Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA, U.S.A
| |
Collapse
|
18
|
Wang C, Danovich D, Shaik S, Wu W, Mo Y. Attraction between electrophilic caps: A counterintuitive case of noncovalent interactions. J Comput Chem 2018; 40:1015-1022. [DOI: 10.1002/jcc.25566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Changwei Wang
- School of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - David Danovich
- Institute of ChemistryThe Hebrew University Jerusalem 91904 Israel
| | - Sason Shaik
- Institute of ChemistryThe Hebrew University Jerusalem 91904 Israel
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen University Xiamen 360015 China
| | - Yirong Mo
- Department of ChemistryWestern Michigan University Kalamazoo Michigan 49008
| |
Collapse
|
19
|
Clark T, Murray JS, Politzer P. The σ-Hole Coulombic Interpretation of Trihalide Anion Formation. Chemphyschem 2018; 19:3044-3049. [DOI: 10.1002/cphc.201800750] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Timothy Clark
- Computer-Chemie-Centrum Department of Chemistry and Pharmacy; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Jane S. Murray
- Department of Chemistry; University of New Orleans; New Orleans, LA 70148 USA
| | - Peter Politzer
- Department of Chemistry; University of New Orleans; New Orleans, LA 70148 USA
| |
Collapse
|
20
|
Song YD, Wang L, Wang QT. Computational study of the NO, SO 2, and NH 3 adsorptions on fragments of 3N-graphene and Al/3N graphene. J Mol Model 2018; 24:210. [PMID: 30022434 DOI: 10.1007/s00894-018-3734-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are -220.5 kJ mol-1 for Al/3NG-NO, -111.9 kJ mol-1 for Al/3NG-NH3, and -347.7 kJ mol-1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Qian-Ting Wang
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China.
| |
Collapse
|
21
|
Esrafili MD, Mousavian P, Mohammadian-Sabet F. Tuning of pnicogen and chalcogen bonds by an aerogen-bonding interaction: a comparative ab initio study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1492746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Parisasadat Mousavian
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Fariba Mohammadian-Sabet
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
22
|
Shen D, Su P, Wu W. What kind of neutral halogen bonds can be modulated by solvent effects? Phys Chem Chem Phys 2018; 20:26126-26139. [DOI: 10.1039/c8cp05358h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Halogen bonds with a large portion of polarization can be modulated by solvent effects.
Collapse
Affiliation(s)
- Dan Shen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| |
Collapse
|
23
|
Song YD, Wang L, Wu LM. Theoretical study of the CO, NO, and N2 adsorptions on Li-decorated graphene and boron-doped graphene. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption properties of common gas molecules (CO, NO, and N2) on the surface of Li-decorated pristine graphene and Li-decorated boron doped graphene are investigated using density functional theory. The adsorption energy, charge transfer, and density of states of gas molecules on three surfaces have been calculated and discussed, respectively. The results show that Li-decorated pristine graphene has strong interaction with CO and N2. Compared with Li-decorated pristine graphene, Li-decorated boron doped graphene exhibit a comparable adsorption ability of CO and N2. Moreover, Li-decorated boron doped graphene have a more significant adsorption energy to NO than that of Li-decorated pristine graphene because of the chemical interaction of the NO gas molecule. The strong interaction between the NO molecule and substrate (Li-decorated boron doped graphene) induces dramatic changes to the electrical conductivity of Li-decorated boron doped graphene. The results indicate that Li-decorated boron doped graphene would be an excellent candidate for sensing NO gas.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, People’s Republic of China
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian 350118, People’s Republic of China
| | - Li-Ming Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
24
|
Del Bene JE, Alkorta I, Elguero J. Halogen Bonding Involving CO and CS with Carbon as the Electron Donor. Molecules 2017; 22:E1955. [PMID: 29137153 PMCID: PMC6150174 DOI: 10.3390/molecules22111955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
MP2/aug'-cc-pVTZ calculations have been carried out to investigate the halogen-bonded complexes formed when CO and CS act as electron-pair donors through C to ClF, ClNC, ClCl, ClOH, ClCN, ClCCH, and ClNH₂. CO forms only complexes stabilized by traditional halogen bonds, and all ClY molecules form traditional halogen-bonded complexes with SC, except ClF which forms only an ion-pair complex. Ion-pair complexes are also found on the SC:ClNC and SC:ClCl surfaces. SC:ClY complexes stabilized by traditional halogen bonds have greater binding energies than the corresponding OC:ClY complexes. The largest binding energies are found for the ion-pair SC-Cl⁺:-Y complexes. The transition structures which connect the complex and the ion pair on SC:ClNC and SC:ClCl potential surfaces provide the barriers for inter-converting these structures. Charge-transfer from the lone pair on C to the σ-hole on Cl is the primary charge-transfer interaction stabilizing OC:ClY and SC:ClY complexes with traditional halogen bonds. A secondary charge-transfer occurs from the lone pairs on Cl to the in-plane and out-of-plane π antibonding orbitals of ClY. This secondary interaction assumes increased importance in the SC:ClNH₂ complex, and is a factor leading to its unusual structure. C-O and C-S stretching frequencies and 13C chemical shieldings increase upon complex formation with ClY molecules. These two spectroscopic properties clearly differentiate between SC:ClY complexes and SC-Cl⁺:-Y ion pairs. Spin-spin coupling constants 1xJ(C-Cl) for OC:ClY complexes increase with decreasing distance. As a function of the C-Cl distance, 1xJ(C-Cl) and ¹J(C-Cl) provide a fingerprint of the evolution of the halogen bond from a traditional halogen bond in the complexes, to a chlorine-shared halogen bond in the transition structures, to a covalent bond in the ion pairs.
Collapse
Affiliation(s)
- Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, USA.
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
25
|
Scheiner S. Comparison of Various Means of Evaluating Molecular Electrostatic Potentials for Noncovalent Interactions. J Comput Chem 2017; 39:500-510. [PMID: 29083034 DOI: 10.1002/jcc.25085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/12/2023]
Abstract
The various heterodimers formed by a series of Lewis acids with NH3 as Lewis base are identified. Lewis acids include those that can form chalcogen (HSF and HSBr), pnicogen (H2 PF and H2 PBr), and tetrel (H3 SiF and H3 SiBr) bonds, as well as H-bonds and halogen bonds. The molecular electrostatic potential (MEP) of each Lewis acid is considered in a number of ways. Pictorial versions show broad regions of positive and negative MEP, on surfaces that vary with respect to either the value of the chosen isopotential, or their distance from the nuclei. Specific points are identified where the MEP reaches a maximum on a particular isodensity surface (Vs,max ). The locations and values of Vs,max were evaluated on different isodensity surfaces, and compared to the stabilities of the various equilibrium geometries. As the chosen isodensity is decreased, and the MEP maxima drift away from the molecule, some points maintain their angular positions with respect to the molecule, whereas others undergo a reorientation. The lowering isodensity also causes some of the maxima to disappear. In general, there is a fairly good correlation between the energetic ordering of the equilibrium structures and the values of Vs,max . A number of possible Lewis acid sites on the heteroaromatic imidazole ring were also considered and presents some cautions about application of Vs,max as the principal criterion for predicting equilibrium geometries. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300
| |
Collapse
|
26
|
Politzer P, Murray JS. σ-holes and π-holes: Similarities and differences. J Comput Chem 2017; 39:464-471. [PMID: 28877367 DOI: 10.1002/jcc.24891] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/28/2017] [Accepted: 06/17/2017] [Indexed: 12/26/2022]
Abstract
σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, 70148
| | - Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, 70148
| |
Collapse
|
27
|
Murray JS, Politzer P. Molecular electrostatic potentials and noncovalent interactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1326] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jane S. Murray
- Department of ChemistryUniversity of New OrleansNew OrleansLAUSA
| | - Peter Politzer
- Department of ChemistryUniversity of New OrleansNew OrleansLAUSA
| |
Collapse
|
28
|
Wang Y, Li X, Zeng Y, Meng L, Zhang X. Theoretical insights into the π-hole interactions in the complexes containing triphosphorus hydride (P 3H 3) and its derivatives. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2017; 73:195-202. [PMID: 28362282 DOI: 10.1107/s2052520616019223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 06/07/2023]
Abstract
The π-hole of triphosphorus hydride (P3H3) and its derivatives Z3X3 (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...Z3X3 complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...Z3X3 and HCN...Z3X3...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (VS,max) and the interaction energy. Moreover, the VS,max of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...Z3X3 complexes is greater than that in the HCN...Z3X3...HCN complexes.
Collapse
Affiliation(s)
- Yuehong Wang
- College of Chemistry and Material Sciences, Key Laboratory of Inorganic Nano-materials of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xiaoyan Li
- College of Chemistry and Material Sciences, Key Laboratory of Inorganic Nano-materials of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yanli Zeng
- College of Chemistry and Material Sciences, Key Laboratory of Inorganic Nano-materials of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Lingpeng Meng
- College of Chemistry and Material Sciences, Key Laboratory of Inorganic Nano-materials of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Xueying Zhang
- College of Chemistry and Material Sciences, Key Laboratory of Inorganic Nano-materials of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
29
|
Nunes R, Costa PJ. Ion-Pair Halogen Bonds in 2-Halo-Functionalized Imidazolium Chloride Receptors: Substituent and Solvent Effects. Chem Asian J 2017; 12:586-594. [PMID: 28052536 DOI: 10.1002/asia.201601690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/02/2017] [Indexed: 01/14/2023]
Abstract
The interaction of 2-halo-functionalized imidazolium derivatives (n-X+ ; X=Cl, Br, I) with a chloride anion through ion-pair halogen bonds (n-X⋅Cl) was studied by means of DFT and ab initio calculations. A method benchmark was performed on 2-bromo-1H-imidazol-3-ium in association with chloride (1-Br⋅Cl); MP2 yielded the best results when compared with CCSD(T) calculations. The interaction energies (ΔE) in the gas phase are high and, although the electrostatic interaction is strong owing to the ion-pair nature of the system, large X⋅⋅⋅Cl- Wiberg bond orders and contributions from charge transfer (nCl- →σ*C-X) are obtained. These values drop considerably in chloroform and water; this shows that solvent plays a role in modulating the interaction and that gas-phase calculations are particularly unrealistic for experimental applications. The introduction of electron-withdrawing groups in the 4,5-positions of the imidazolium (e.g., -NO2 , -F) increases the halogen-bond strength in both the gas phase and solvent, including water. The effect of the substituents on the 1,3-positions (N-H groups) also depends on the solvent. The variation of ΔE can be predicted through a two-parameter linear regression that optimizes the weights of charge-transfer and electrostatic interactions, which are different in vacuum and in solvent (chloroform and water). These results could be used in the rational design of efficient chloride receptors based on halogen bonds that work in solution, in particular, in an aqueous environment.
Collapse
Affiliation(s)
- Rafael Nunes
- Centro de Química e Bioquímica, DQB, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Paulo J Costa
- Centro de Química e Bioquímica, DQB, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
30
|
Khalili B, Rimaz M. Interplay between non-covalent pnicogen bonds and halogen bonds interactions in ArH2N---PH2FO---BrF nanostructured complexes: a substituent effects investigation. Struct Chem 2017. [DOI: 10.1007/s11224-017-0911-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Marshall WG, Jones RH, Knight KS, Clews J, Darton RJ, Miller W, Coles SJ, Pitak MB. Structural organization in the trimethylamine iodine monochloride complex. CrystEngComm 2017. [DOI: 10.1039/c7ce00869d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of a strong N⋯I–Cl halogen bond and a weak C–H⋯Cl hydrogen bond lead to the formation of dimeric species in the solid.
Collapse
Affiliation(s)
| | - Richard H. Jones
- Birchall Centre for Inorganic Materials
- School of Chemical and Physical Sciences
- Keele University
- Keele
- ST5 5BG UK
| | - Kevin S. Knight
- ISIS Facility
- STFC Rutherford Appleton Lab
- Harwell Oxford
- Oxon
- UK
| | - John Clews
- Birchall Centre for Inorganic Materials
- School of Chemical and Physical Sciences
- Keele University
- Keele
- ST5 5BG UK
| | - Richard J. Darton
- Birchall Centre for Inorganic Materials
- School of Chemical and Physical Sciences
- Keele University
- Keele
- ST5 5BG UK
| | - William Miller
- Birchall Centre for Inorganic Materials
- School of Chemical and Physical Sciences
- Keele University
- Keele
- ST5 5BG UK
| | - Simon J. Coles
- UK National Crystallography Service, Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Mateusz B. Pitak
- UK National Crystallography Service, Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| |
Collapse
|
32
|
Xu H, Cheng J, Yang X, Liu Z, Bo X, Li Q. Interplay between the σ-tetrel bond and σ-halogen bond in PhSiF3⋯4-iodopyridine⋯N-base. RSC Adv 2017. [DOI: 10.1039/c7ra02068f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Oliveira V, Kraka E, Cremer D. Quantitative Assessment of Halogen Bonding Utilizing Vibrational Spectroscopy. Inorg Chem 2016; 56:488-502. [PMID: 27966937 DOI: 10.1021/acs.inorgchem.6b02358] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A total of 202 halogen-bonded complexes have been studied using a dual-level approach: ωB97XD/aug-cc-pVTZ was used to determine geometries, natural bond order charges, charge transfer, dipole moments, electron and energy density distributions, vibrational frequencies, local stretching force constants, and relative bond strength orders n. The accuracy of these calculations was checked for a subset of complexes at the CCSD(T)/aug-cc-pVTZ level of theory. Apart from this, all binding energies were verified at the CCSD(T) level. A total of 10 different electronic effects have been identified that contribute to halogen bonding and explain the variation in its intrinsic strength. Strong halogen bonds are found for systems with three-center-four-electron (3c-4e) bonding such as chlorine donors in interaction with substituted phosphines. If halogen bonding is supported by hydrogen bonding, genuine 3c-4e bonding can be realized. Perfluorinated diiodobenzenes form relatively strong halogen bonds with alkylamines as they gain stability due to increased electrostatic interactions.
Collapse
Affiliation(s)
- Vytor Oliveira
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU) , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU) , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU) , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
34
|
Wang J, Mo L, Li X, Geng Z, Zeng Y. The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactions. J Mol Model 2016; 22:299. [PMID: 27900582 DOI: 10.1007/s00894-016-3169-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/15/2016] [Indexed: 01/15/2023]
Abstract
The σ-hole and π-hole of the protonated 2-halogenated imidazolium cation (XC3H4N2+; X = F, Cl, Br, I) were investigated and analyzed. The monomers of (CH3)3SiY(Y=F, Cl, Br, I), considered as the Lewis base, were combined with the σ-hole and π-hole of XC3H4N2+ to form the σ-hole and π-hole interactions in the bimolecular complexes (CH3)3SiY · · · XC3H4N2+ and (CH3)3SiY · · · C3(X)H4N2+(X/Y=F, Cl, Br, I), respectively. For both the σ-hole and π-hole interactions, the equilibrium geometries of complexes show regular changes according to the sequence of heavy sequence of the noncovalent interaction acceptors and donors. The electrostatic energy is the main contribution in the formation of both kinds of interactions, it has linear relations with the V S,max values of σ-hole and the V' S,max values of π-hole. Both the σ-hole and π-hole interactions belong to the closed-shell and noncovalent interactions. The π-hole interactions are stronger than the σ-hole interactions. For the π-hole interactions, the contribution percents of the dispersion energies are somewhat greater than those of the σ-hole interactions, while it is contrary for the polarization energy. Graphical Abstract The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactionsᅟ.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lixin Mo
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xiaoyan Li
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Zongke Geng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
35
|
Xu H, Cheng J, Li Q, Li W. Some measures for making a traditional halogen bond be chlorine-shared or ion-pair one in FCl•NH3 complex. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1255798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huili Xu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| |
Collapse
|
36
|
Affiliation(s)
- Bo Lu
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Xueying Zhang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| |
Collapse
|
37
|
Sahoo DK, Mundlapati VR, Gagrai AA, Biswal HS. Efficient SO2Capture through Multiple Chalcogen Bonds, Sulfur-Centered Hydrogen Bonds and S•••π Interactions: A Computational Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201600061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| | - V. Rao Mundlapati
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| | - Arun Anand Gagrai
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| |
Collapse
|
38
|
Song YD, Wang L, Wu LM. Theoretical study of the structures and first hyperpolarizabilities of C60Cl n and Li@C60Cl n (n = 4, 6, 8, 10). J Mol Model 2016; 22:137. [PMID: 27188724 DOI: 10.1007/s00894-016-2999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/24/2016] [Indexed: 11/24/2022]
Abstract
We recently reported (Song Y-D et al., 2016, J Mol Model 22:50) that doping with Li greatly affects the static first hyperpolarizability of C60Cl2. In this work, with a view to creating nonlinear optical materials with high thermodynamic stability and wide transparent regions, a series of Li@C60Cl n (n = 4, 6, 8, 10) were designed. The structures, electrostatic potentials, electronic structures, absorption spectra, and linear and nonlinear optical properties of C60Cl n and Li@C60Cl n were systematically investigated using density functional theory (DFT) methods. The results of our calculations indicated that the stability of these molecules decreases in the order Li@C60Cl10 > Li@C60Cl8 > Li@C60Cl6 > Li@C60Cl4. It is clear that the number of Cl atoms greatly influences the stability of Li@C60Cl n . Li@C60Cl n showed greater thermodynamic stability than Li@C60Cl2. We also investigated the first hyperpolarizabilities of Li@C60Cl n and found them to be 2973, 3640, 4307, and 2627 au for n = 4, 6, 8, and 10, respectively-higher than that of Li@C60Cl2. Finally, we noted that the transparent region could be modulated by increasing the number of Cl atoms: Li@C60Cl n possess wider transparent regions than that of Li@C60Cl2. We therefore believe that this study has highlighted an effective method for designing nonlinear optical materials with high thermodynamic stability and wide transparent regions.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China.
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Li-Ming Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| |
Collapse
|
39
|
Esrafili MD, Akhgarpour H. Anab initiostudy on competition between pnicogen and chalcogen bond interactions in binary XHS:PH2X complexes (X = F, Cl, CCH, COH, CH3, OH, OCH3and NH2). Mol Phys 2016. [DOI: 10.1080/00268976.2016.1158421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Gao L, Zeng Y, Zhang X, Meng L. Comparative studies on group III σ-hole and π-hole interactions. J Comput Chem 2016; 37:1321-7. [PMID: 26949204 DOI: 10.1002/jcc.24347] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/02/2016] [Accepted: 02/07/2016] [Indexed: 12/24/2022]
Abstract
The σ-hole of M2 H6 (M = Al, Ga, In) and π-hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2 H6 ···NH3 and MH3 ···N2 P2 F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ-hole interactions and π-hole interactions. The two types of interactions are all partial-covalent interactions; the π-hole interactions are stronger than σ-hole interactions. The electrostatic energy is the largest contribution for forming the σ-hole and π-hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ-hole interactions are somewhat greater than those of the π-hole interactions. However, the polarization contributions for the π-hole interactions are somewhat greater than those for the σ-hole interactions.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lingpeng Meng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| |
Collapse
|
41
|
Song YD, Wang L, Wu LM, Chen QL, Liu FK, Tang XW. The encapsulated lithium effect on the first hyperpolarizability of C60Cl2 and C60F2. J Mol Model 2016; 22:50. [PMID: 26841975 DOI: 10.1007/s00894-016-2918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2.
Collapse
Affiliation(s)
- Yao-Dong Song
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China.
| | - Liang Wang
- School of Humanities, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Li-Ming Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
| | - Qiao-Ling Chen
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Fa-Kun Liu
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| | - Xiao-Wen Tang
- College of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, People's Republic of China
| |
Collapse
|
42
|
An ab initio study on cationic chalcogen bond interactions between F3−H S+ (n= 0–2) and nitrogen bases. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
|
44
|
Affiliation(s)
- Marta Marín-Luna
- Instituto de Química Médica (CSIC), C/Juan de la Cierva, 3, 28006-Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), C/Juan de la Cierva, 3, 28006-Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), C/Juan de la Cierva, 3, 28006-Madrid, Spain
| |
Collapse
|
45
|
Wei Y, Li Q, Li W, Cheng J, McDowell SAC. Influence of the protonation of pyridine nitrogen on pnicogen bonding: competition and cooperativity. Phys Chem Chem Phys 2016; 18:11348-56. [PMID: 27055488 DOI: 10.1039/c6cp00551a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio MP2/aug-cc-pVTZ calculations were performed to investigate the pnicogen-bonded complexes of PyZX2 (Py = pyridine, Z = P and As, X = H and F) and their protonated analogues.
Collapse
Affiliation(s)
- Yuanxin Wei
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Sean A. C. McDowell
- Department of Biological and Chemical Sciences
- The University of the West Indies
- Cave Hill Campus
- Barbados
| |
Collapse
|
46
|
Si MK, Ganguly B. Computational evidence that hyperconjugative orbital interactions are responsible for the stability of intramolecular Te⋯O/Te⋯S non-covalent interactions and comparable to hydrogen bonds in quasi-cyclic systems. NEW J CHEM 2016. [DOI: 10.1039/c6nj01707j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intramolecular secondary bonding interactions involving quasi-cyclic tellurium are comparable to H-bond strength and partially governed by orbital interactions.
Collapse
Affiliation(s)
- Mrinal Kanti Si
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt & Marine Chemicals Research Institute
- Gujarat
- India
- Academy of Scientific and Innovative Research
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt & Marine Chemicals Research Institute
- Gujarat
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
47
|
Esrafili MD, Vakili M. Strengthening halogen… halogen interactions by hydrogen and lithium bonds in NCM···NCX···YCH3 and CNM···CNX···YCH3 (M = H, Li and X,Y = Cl, Br) complexes: a comparative study. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Mahshad Vakili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
48
|
Cheng N, Liu Y, Zhang C. Theoretical studies of traditional and halogen-shared halogen bonds: the doped all-metal aromatic clusters MAl3 − (M = Si, Ge, Sn, Pb) as halogen bond acceptors. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1752-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Esrafili MD, Nurazar R. Chalcogen bonds formed through π-holes: SO3 complexes with nitrogen and phosphorus bases. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1098742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Roghaye Nurazar
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
50
|
Esrafili MD, Mohammadian-Sabet F. Tuning tetrel bonds via cation–π interactions: anab initiostudy on concerted interaction in M+–C6H5XH3–NCY complexes (M = Li, Na, K; X = Si, Ge; Y = H, F, OH). Mol Phys 2015. [DOI: 10.1080/00268976.2015.1086498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|