1
|
Wu J, Wu C, Zou S, Li X, Ho B, Sun R, Liu C, Chen M. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning. Bioengineering (Basel) 2023; 10:1358. [PMID: 38135949 PMCID: PMC10740413 DOI: 10.3390/bioengineering10121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Extruded bioprinting is widely used for the biomanufacturing of personalized, complex tissue structures, which requires biomaterial inks with a certain viscosity to enable printing. However, there is still a lack of discussion on the controllable preparation and printability of biomaterial inks with different viscosities. In this paper, biomaterial inks composed of gelatin, sodium alginate, and methylcellulose were utablesed to investigate the feasibility of adjustment of rheological properties, thereby analyzing the effects of different rheological properties on the printing process. Based on the response surface methodology, the relationship between the material components and the rheological properties of biomaterial inks was discussed, followed by the prediction of the rheological properties of biomaterial inks. The prediction accuracies of the power-law index and consistency coefficient could reach 96% and 79%, respectively. The material group can be used to prepare biomaterial inks with different viscosity properties in a wide range. Latin hypercube sampling and computational fluid dynamics were used to analyze the effects of different rheological properties and extrusion pressure on the flow rate at the nozzle. The relationship between the rheological properties of the biomaterial ink and the flow rate was established, and the simulation results showed that the changes in the rheological properties of the biomaterial ink in the high-viscosity region resulted in slight fluctuations in the flow rate, implying that the printing process for high-viscosity biomaterial inks may have better versatility. In addition, based on the characteristics of biomaterial inks, the printing process was optimized from the planning of the print pattern to improve the location accuracy of the starting point, and the length accuracy of filaments can reach 99%. The effect of the overlap between the fill pattern and outer frame on the print quality was investigated to improve the surface quality of complex structures. Furthermore, low- and high-viscosity biomaterial inks were tested, and various printing protocols were discussed for improving printing efficiency or maintaining cell activity. This study provides feasible printing concepts for a wider range of biomaterials to meet the biological requirements of cell culture and tissue engineering.
Collapse
Affiliation(s)
- Jiahao Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Chunya Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Siyang Zou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Xiguang Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Bo Ho
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Ruijiang Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Chang Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
| | - Mingjun Chen
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China; (J.W.); (S.Z.); (X.L.); (B.H.); (R.S.); (C.L.); (M.C.)
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
2
|
Tan B, Huo Z, Sun L, Ren L, Zhao P, Feng N, Wan H, Guan G. Ionic liquid-modulated synthesis of MnO2 nanowires for promoting propane combustion: Microstructure engineering and regulation mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
The simulation of a green room-temperature ternary solution of water, methanol and 1-ethyl-3-methyl imidazolium chloride by all-atom Monte Carlo and DFT computational approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Tang Z, Fang K, Bukhari MN, Song Y, Zhang K. Effects of Viscosity and Surface Tension of a Reactive Dye Ink on Droplet Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9481-9488. [PMID: 32787136 DOI: 10.1021/acs.langmuir.0c01392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In textile inkjet printing, understanding the effect of viscosity and surface tension of a reactive dye ink on droplet formation is of great significance. As an organic ecofriendly solvent, polyethylene glycol with a molecular weight of -400 g/mol (PEG400) was used to prepare reactive dye inks with or without Surfynol 465 (S465) to explain separately how viscosity and surface tension affect the droplet formation of a reactive dye ink. The intermolecular interactions in the ink and physical properties of the ink were investigated by measuring the visible absorption spectra, hydrodynamic radius, viscosity, and surface tension. Droplet formation under a single variable influence of viscosity or surface tension was observed by taking photographs using a high-speed camera. Results show that a high ink viscosity condition generates no satellite droplet formation and a slower droplet velocity, and a higher surface tension tends to cause ligament rupture from the nozzle tip and the droplet. Moreover, a twill cotton fabric printed using the PEG-S465-dye ink at a 30% PEG400 concentration showed higher ink penetration, dye fixation rate, ideal color strength, and rubbing fastness.
Collapse
Affiliation(s)
- Zhiyuan Tang
- College of Textiles & Clothing, Qingdao University, 308 Ningxia Road Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Kuanjun Fang
- College of Textiles & Clothing, Qingdao University, 308 Ningxia Road Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Mohd Nadeem Bukhari
- College of Textiles & Clothing, Qingdao University, 308 Ningxia Road Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Yawei Song
- College of Textiles & Clothing, Qingdao University, 308 Ningxia Road Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Kun Zhang
- College of Textiles & Clothing, Qingdao University, 308 Ningxia Road Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Zheng B, Zhang Y, Zhang Z, Liu L, Chen S, Zhang S. Azetidinium-based Hypergolic Ionic Liquids with High Strain Energy. ChemistrySelect 2018. [DOI: 10.1002/slct.201702456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bingxiao Zheng
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum, Beijing; Beijing 102249 China
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Yanqiang Zhang
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- Zhengzhou Institute of Emerging Industrial Technology; Zhengzhou 450000 China
| | - Zejun Zhang
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Long Liu
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Shengli Chen
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum, Beijing; Beijing 102249 China
| | - Suojiang Zhang
- State Key Laboratory of Multiphase Complex Systems; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|