Lima KAL, da Silva DA, Mendonça FLL, Gargano R, Ribeiro Junior LA. Computational insights into popsilicene as a new planar silicon allotrope composed of 5-8-5 rings.
Sci Rep 2024;
14:18884. [PMID:
39143308 PMCID:
PMC11324756 DOI:
10.1038/s41598-024-69788-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Silicon-based two-dimensional (2D) materials have garnered significant attention due to their unique properties and potential applications in electronics, optoelectronics, and other advanced technologies. Here, we present a comprehensive investigation of a novel silicon allotrope, Popsilicene (Pop-Si), derived from the structure of Popgraphene. Using density functional theory and ab initio molecular dynamics simulations, we explore the thermal stability, mechanical and electronic properties, and optical characteristics of Pop-Si. Our results demonstrate that Pop-Si exhibits good thermal stability at 1000 K. Electronic structure calculations reveal that Pop-Si is metallic, with a high density of states at the Fermi level. Furthermore, our analysis of the optical properties indicates that Pop-Si has pronounced UV-Vis optical activity, making it a promising candidate for optoelectronic devices. Mechanical property assessments show that Pop-Si has Young's modulus ranging from 10 to 92 GPa and a Poisson's ratio of 0.95. These results combined suggest its potential for practical applications.
Collapse