1
|
Dede M, van Dam A. Conjugation of visual enhancers in lateral flow immunoassay for rapid forensic analysis: A critical review. Anal Bioanal Chem 2025; 417:15-31. [PMID: 39384571 PMCID: PMC11695493 DOI: 10.1007/s00216-024-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
Collapse
Affiliation(s)
- Maria Dede
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
| | - Annemieke van Dam
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
- Department Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
| |
Collapse
|
2
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
3
|
Electrochemical ELASA: improving early cancer detection and monitoring. Anal Bioanal Chem 2023:10.1007/s00216-023-04546-5. [PMID: 36702904 DOI: 10.1007/s00216-023-04546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
The discovery of new molecular biomarkers of cancer during the last decades and the development of new diagnostic devices exploiting those have significantly contributed to the clinical analysis of cancer and to improve the outcomes. Among those, liquid biopsy sensors exploiting aptamers for the detection of cancer biomarkers in body fluids are useful and accurate tools for a fast and inexpensive non-invasive screening of population. The incorporation of aptamers in electrochemical sandwich biosensors using enzyme labels, a so-called ELASA, has demonstrated its utility to improve the detection schemes. In this review, we overview the existing ELASA assays for numerous cancer biomarkers as alternatives to the traditional ELISA and discuss their possibilities to reach the market, currently dominated by optical immunoassays.
Collapse
|
4
|
Pleshakova TO, Ivanov YD, Valueva AA, Shumyantseva VV, Ilgisonis EV, Ponomarenko EA, Lisitsa AV, Chekhonin VP, Archakov AI. Analysis of Single Biomacromolecules and Viruses: Is It a Myth or Reality? Int J Mol Sci 2023; 24:1877. [PMID: 36768195 PMCID: PMC9915366 DOI: 10.3390/ijms24031877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches". This new approach is fundamentally unique in terms of its research object (a single biomacromolecule). Most studies are currently performed using postgenomic technologies that allow the properties of several hundreds of millions or even billions of biomacromolecules to be analyzed. This paper discusses the relevance and theoretical, methodological, and practical issues related to the development potential of a single-molecule approach using methods based on molecular detectors.
Collapse
|
5
|
Sheng S, Yang H, Song Y, Chen R, Liang S, Fang H. Size-Dependent Spontaneous Separation of Colloidal Particles in Sub-Microliter Suspension by Cations. Int J Mol Sci 2022; 23:ijms23158055. [PMID: 35897631 PMCID: PMC9329736 DOI: 10.3390/ijms23158055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Great efforts have been made to separate micro/nanoparticles in small-volume specimens, but it is a challenge to achieve the simple, maneuverable and low-cost separation of sub-microliter suspension with large separation distances. By simply adding trace amounts of cations (Mg2+/Ca2+/Na+), we experimentally achieved the size-dependent spontaneous separation of colloidal particles in an evaporating droplet with a volume down to 0.2 μL. The separation distance was at a millimeter level, benefiting the subsequent processing of the specimen. Within only three separating cycles, the mass ratio between particles with diameters of 1.0 μm and 0.1 μm can be effectively increased to 13 times of its initial value. A theoretical analysis indicates that this spontaneous separation is attributed to the size-dependent adsorption between the colloidal particles and the aromatic substrate due to the strong hydrated cation-π interactions.
Collapse
Affiliation(s)
- Shiqi Sheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Haijun Yang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yongshun Song
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Ruoyang Chen
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Shanshan Liang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
| | - Haiping Fang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China; (S.S.); (Y.S.); (R.C.); (S.L.)
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Correspondence:
| |
Collapse
|
6
|
Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50:13012-13089. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10-18 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
Collapse
Affiliation(s)
- Sruthi Prasood Usha
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Hariharan Manoharan
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Rehan Deshmukh
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - V V R Sai
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain. .,ICREA, Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain
| |
Collapse
|
7
|
Zhang XK, Yang HM, Li MR, Gao XY, Sun XW, Sun XF, Tang JB. Development of site-specific antibody-conjugated immunoliposomes for sensitive detection of disease biomarkers. NANOSCALE 2021; 13:17648-17654. [PMID: 34664606 DOI: 10.1039/d1nr04659d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liposome-based immunoassay (LIA) is an attractive protocol for amplifying the detection signals because of the excellent ability of liposomes to encapsulate signal marker compounds. The antigen-binding activity of the conjugated antibodies on the liposomal surface is crucial for the specificity and sensitivity of LIA. We present here a general platform to ensure that antibodies can conjugate onto the surface of liposomes in a site-specific and oriented manner. A His-handle-modified antibody with Fc region-specific and covalent conjugation was first fabricated using a photoactivatable ZBpa-His tag that was engineered using the aminoacyl-tRNA synthetase/suppressor tRNA technique. Based on the high affinity between the His tag and divalent metal ions, the novel His-modified antibody was oriented onto the surface of nickel ion-modified liposomes encapsulating horseradish peroxidase. With the prostate-specific antigen as a model, the detection efficiency of the new immunoliposomes was evaluated by chemiluminescence immunoassay. The immunoliposomes exhibited a limit of detection of 0.2 pg mL-1, which was a six time improvement compared with that of the chemical-coupled antibody-liposome conjugates. Thus, the proposed immunoliposomes are expected to hold potential applications for the sensitive detection of various biomarkers in complicated serum samples.
Collapse
Affiliation(s)
- Xiao-Kun Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Hong-Ming Yang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Meng-Ran Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Xiao-Yi Gao
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| | - Xiao-Wei Sun
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong Province, China
| | - Xi-Feng Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong Province, China
| | - Jin-Bao Tang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
8
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
9
|
Tan H, Chen L, Li X, Li M, Zhao M. A target-driven DNA-based molecular machine for rapid and homogeneous detection of arginine-vasopressin. Analyst 2020; 145:880-886. [PMID: 31825412 DOI: 10.1039/c9an02060h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rapid detection of physiological changes of neuropeptides is of great importance as they are involved in a wide range of physiological processes and behaviors. Abnormalities in their expression level are correlated with various neurological diseases. However, current methods such as radioimmunoassay, enzyme-linked immunosorbent assays and liquid chromatography tandem mass spectrometry relied on cumbersome operation steps and could not rapidly provide the information of their concentration fluctuations. Thus motivated, we developed a target-driven DNA-based molecular machine that could be triggered only in the presence of a specific target neuropeptide. Using arginine-vasopressin (AVP) as a model neuropeptide, we integrated the DNA-based molecular machine with fluorescence signal transduction and amplification technology. The assay was rapid and homogeneous, which offered a linear range of 75-700 pM and a limit-of-detection as low as 75 pM. It holds great potential for further applications in real-time monitoring of the variations of the AVP level in biological samples.
Collapse
Affiliation(s)
- Haocheng Tan
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
10
|
Wang S, Xiao C, Guo L, Ling L, Li M, Li H, Guo X. Rapidly quantitative analysis of γ-glutamyltranspeptidase activity in the lysate and blood via a rational design of the molecular probe by matrix-assisted laser desorption ionization mass spectrometry. Talanta 2019; 205:120141. [DOI: 10.1016/j.talanta.2019.120141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
|
11
|
Linscheid MW. Molecules and elements for quantitative bioanalysis: The allure of using electrospray, MALDI, and ICP mass spectrometry side-by-side. MASS SPECTROMETRY REVIEWS 2019; 38:169-186. [PMID: 29603315 DOI: 10.1002/mas.21567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just slightly adapted workflows, already in use for quantification in bioanalysis. Imaging mass spectrometry (MSI) with MALDI and laser ablation ICP-MS complemented the range of application in recent years.
Collapse
MESH Headings
- Animals
- Chelating Agents/chemistry
- Chromatography, High Pressure Liquid/instrumentation
- Chromatography, High Pressure Liquid/methods
- Heterocyclic Compounds, 1-Ring/chemistry
- Humans
- Lanthanoid Series Elements/chemistry
- Nucleotides/analysis
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Workflow
Collapse
|
12
|
Ruiz-Tórtola Á, Prats-Quílez F, González-Lucas D, Bañuls MJ, Maquieira Á, Wheeler G, Dalmay T, Griol A, Hurtado J, García-Rupérez J. High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. BIOMEDICAL OPTICS EXPRESS 2018; 9:1717-1727. [PMID: 29675313 PMCID: PMC5905917 DOI: 10.1364/boe.9.001717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 05/20/2023]
Abstract
A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods.
Collapse
Affiliation(s)
- Ángela Ruiz-Tórtola
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Francisco Prats-Quílez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Daniel González-Lucas
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María-José Bañuls
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Guy Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan Hurtado
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
13
|
Sun D, Ran Y, Wang G. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating. SENSORS 2017; 17:s17112559. [PMID: 29113127 PMCID: PMC5713131 DOI: 10.3390/s17112559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022]
Abstract
A compact and label-free optical fiber sensor based on a taper interferometer cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for detection of a breast cancer biomarker (HER2). The tapered fiber-optic interferometer is extremely sensitive to the ambient refractive index (RI). In addition, being insensitive to the RI variation, the FBG can be applied as a temperature thermometer due to its independent response to the temperature. Surface functionalization to the sensor is carried out to achieve specific targeting of the unlabeled biomarkers. The result shows that the proposed sensor presents a low limit-of-detection (LOD) of 2 ng/mL, enabling its potentials of application in early diagnosis on the breast cancer.
Collapse
Affiliation(s)
- Dandan Sun
- College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China.
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
| | - Guanjun Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
14
|
Sallam KM, El-Bayoumy ASA, Farouk N. Radiolabeling of melatonin using different oxidizing agents for immunoassay purpose. RADIOCHEMISTRY 2017. [DOI: 10.1134/s10663622170600133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Pan M, Li S, Wang J, Sheng W, Wang S. Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. SENSORS 2017; 17:s17091984. [PMID: 28867795 PMCID: PMC5621032 DOI: 10.3390/s17091984] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
This study describes the development of a reproducible and label-free surface plasmon resonance (SPR) immunosensor and its application in the detection of harmful enrofloxacin (ENRO) in animal-derived foods. The experimental parameters for the immunosensor construction and regeneration, including the pH value (4.5), concentration for coating ENRO-ovalbumin conjugate (ENRO-OVA) (100 μg·mL−1), concentration of anti-ENRO antibody (80 nM) and regeneration solution (0.1 mol·L−1 HCl) were evaluated in detail. With the optimized parameters, the proposed SPR immunosensor obtained a good linear response to ENRO with high sensitivity (IC50: 3.8 ng·mL−1) and low detection limit (IC15: 1.2 ng·mL−1). The proposed SPR immunosensor was further validated to have favorable performances for ENRO residue detection in typical animal-derived foods after a simple matrix pretreatment procedure, as well as acceptable accuracy (recovery: 84.3–96.6%), precision (relative standard deviation (n = 3): 1.8–4.6%), and sensitivity (IC15 ≤ 8.4 ng·mL−1). Each SPR chip for analysis can be reused at least 100 times with good stability and the analysis cycle containing the steps of sample uploading/chip regeneration/baseline recovery can be completed within 6 min (one cycle) and auto-operated by a predetermined program. These results demonstrated that the proposed SPR immunosensor provided an effective strategy for accurate, sensitive, and rapid detection for ENRO residue, which has great potential for routine analysis of large numbers of samples for measuring different types of compounds.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shijie Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
16
|
Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H, Wang Z, Sun X, Shen YD, Yang JY, Xu ZL. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
|
18
|
Yi SY, Lee U, Chung BH, Jung J. A scanometric antibody probe for facile and sensitive immunoassays. Chem Commun (Camb) 2016; 51:8865-7. [PMID: 25926018 DOI: 10.1039/c5cc02838h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed a novel scanometric antibody probe for rapid, sensitive, and naked-eye-visible immunoassays. Using this probe, we clearly demonstrated the successful scanometric detection and identification of influenza A viruses on a microarray. In addition, the sensitivity of the scanometric immunoassay was comparable to that of the fluorescence-based method.
Collapse
Affiliation(s)
- So Yeon Yi
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 305-806, Daejeon, Republic of Korea.
| | | | | | | |
Collapse
|
19
|
You J, Jang K, Lee S, Bang D, Haam S, Choi CH, Park J, Na S. Label-free detection of zinc oxide nanowire using a graphene wrapping method. Biosens Bioelectron 2015; 68:481-486. [DOI: 10.1016/j.bios.2015.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
|
20
|
Tenório-Daussat CL, Hauser-Davis RA, Saint'Pierre TD, Tholey A, Schaumlöffel D. Peptide labeling with lanthanide-NHS-ester-DOTA investigated by nano-HPLC. Microchem J 2015. [DOI: 10.1016/j.microc.2014.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Park J, Bang D, Jang K, Kim E, Haam S, Na S. Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nat Commun 2014; 5:3456. [DOI: 10.1038/ncomms4456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/14/2014] [Indexed: 11/09/2022] Open
|
22
|
Genovese D, Rampazzo E, Bonacchi S, Montalti M, Zaccheroni N, Prodi L. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. NANOSCALE 2014; 6:3022-3036. [PMID: 24531884 DOI: 10.1039/c3nr05599j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fast and efficient energy transfer among dyes confined in nanocontainers provides the basis of outstanding functionalities in new-generation luminescent probes. This feature article provides an overview of recent research achievements on luminescent Pluronic-Silica NanoParticles (PluS NPs), a class of extremely monodisperse core-shell nanoparticles whose design can be easily tuned to match specific needs for diverse applications based on luminescence, and that have already been successfully tested in in vivo imaging. An outline of their outstanding properties, such as tuneability, bright and photoswitchable fluorescence and electrochemiluminescence, will be supported by a critical discussion of our recent works in this field. Furthermore, novel data and simulations will be presented to (i) thoroughly examine common issues arising from the inclusion of multiple dyes in a small silica core, and (ii) show the emergence of a cooperative behaviour among embedded dyes. Such cooperative behaviour provides a handle for fine control of brightness, emission colour and self-quenching phenomena in PluS NPs, leading to significantly enhanced signal to noise ratios.
Collapse
Affiliation(s)
- Damiano Genovese
- Dipartimento di Chimica "Giacomo Ciamician", via Selmi 2, Bologna 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Lü S, Zheng W, Ji L, Luo Q, Hao X, Li X, Wang F. Synthesis, characterization, screening and docking analysis of 4-anilinoquinazoline derivatives as tyrosine kinase inhibitors. Eur J Med Chem 2013; 61:84-94. [DOI: 10.1016/j.ejmech.2012.07.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/16/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
24
|
Mousavi MZ, Chen HY, Wu SH, Peng SW, Lee KL, Wei PK, Cheng JY. Magnetic nanoparticle-enhanced SPR on gold nanoslits for ultra-sensitive, label-free detection of nucleic acid biomarkers. Analyst 2013; 138:2740-8. [DOI: 10.1039/c3an36655c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Kretschy D, Koellensperger G, Hann S. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: a review. Anal Chim Acta 2012; 750:98-110. [PMID: 23062431 PMCID: PMC3475989 DOI: 10.1016/j.aca.2012.06.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 01/02/2023]
Abstract
This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given.
Collapse
Affiliation(s)
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences, BOKU Vienna, Department of Chemistry, Division of Analytical Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
26
|
Ji L, Wu JH, Luo Q, Li X, Zheng W, Zhai G, Wang F, Lü S, Feng YQ, Liu J, Xiong S. Quantitative mass spectrometry combined with separation and enrichment of phosphopeptides by titania coated magnetic mesoporous silica microspheres for screening of protein kinase inhibitors. Anal Chem 2012; 84:2284-91. [PMID: 22304342 DOI: 10.1021/ac202897u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe herein the development of a matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) approach for screening of protein kinase inhibitors (PKIs). MS quantification of phosphopeptides, the kinase-catalyzed products of nonphosphorylated substrates, is a great challenge due to the ion suppression effect of highly abundant nonphosphorylated peptides in enzymatic reaction mixtures. To address this issue, a novel type of titania coated magnetic hollow mesoporous silica spheres (TiO(2)/MHMSS) material was fabricated for capturing phosphopeptides from the enzymatic reaction mixtures prior to MS analysis. Under optimized conditions, even in the presence of 1000-fold of a substrate peptide of tyrosine kinase epidermal growth factor receptor (EGFR), the phosphorylated substrates at the femtomole level can be detected with high accuracy and reproducibility. With a synthetic nonisotopic labeled phosphopeptide, of which the sequence is similar to that of the phosphorylated substrate, as the internal standard, the MS signal ratio of the phosphorylated substrate to the standard is linearly correlated with the molar ratio of the two phosphopeptides in peptide mixtures over the range of 0.1 to 4 with r(2) being 0.99. The IC(50) values of three EGFR inhibitors synthesized in our laboratory were then determined, and the results are consistent with those determined by an enzyme-linked immunosorbent assay (ELISA). The developed method is sensitive, cost/time-effective, and operationally simple and does not require isotope/radioative-labeling, providing an ideal alterative for screening of PKIs as therapeutic agents.
Collapse
Affiliation(s)
- Liyun Ji
- Beijing National Laboratory for Molecular Sciences, Beijing Centre for Mass Spectrometry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kurkina T, Balasubramanian K. Towards in vitro molecular diagnostics using nanostructures. Cell Mol Life Sci 2012; 69:373-88. [PMID: 22009454 PMCID: PMC11115035 DOI: 10.1007/s00018-011-0855-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Nanostructures appear to be promising for a number of applications in molecular diagnostics, mainly due to the increased surface-to-volume ratio they can offer, the very low limit of detection achievable, and the possibility to fabricate point-of-care diagnostic devices. In this paper, we review examples of the use of nanostructures as diagnostic tools that bring in marked improvements over prevalent classical assays. The focus is laid on the various sensing paradigms that possess the potential or have demonstrated the capability to replace or augment current analytical strategies. We start with a brief introduction of the various types of nanostructures and their physical properties that determine the transduction principle. This is followed by a concise collection of various functionalization protocols used to immobilize biomolecules on the nanostructure surface. The sensing paradigms are discussed in two contexts: the nanostructure acting as a label for detection, or the nanostructure acting as a support upon which the molecular recognition events take place. In order to be successful in the field of molecular diagnostics, it is important that the nanoanalytical tools be evaluated in the appropriate biological environment. The final section of the review compiles such examples, where the nanostructure-based diagnostic tools have been tested on realistic samples such as serum, demonstrating their analytical power even in the presence of complex matrix effects. The ability of nanodiagnostic tools to detect ultralow concentrations of one or more analytes coupled with portability and the use of low sample volumes is expected to have a broad impact in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Tetiana Kurkina
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Kannan Balasubramanian
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Borgmann S, Schulte A, Neugebauer S, Schuhmann W. Amperometric Biosensors. ADVANCES IN ELECTROCHEMICAL SCIENCES AND ENGINEERING 2011. [DOI: 10.1002/9783527644117.ch1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Kretschy D, Gröger M, Zinkl D, Petzelbauer P, Koellensperger G, Hann S. High-throughput flow injection analysis of labeled peptides in cellular samples - ICP-MS analysis versus fluorescence based detection. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 307:105-111. [PMID: 22723737 PMCID: PMC3378036 DOI: 10.1016/j.ijms.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A high throughput method based on flow injection analysis was developed and validated for the quantification of the peptide Bβ(15-42) in cellular samples comparing different labeling strategies and detection methods. The used labels were 1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraaceticacid (In-DOTA) and 2-(4-isothiocyanatobenzyl) - 1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid (In-DOTA-Bn) for elemental labeling. 6-Hydroxy-9-(2-carboxyphenyl)- (3H)-xanthen-3-on (fluorescein) was employed as fluorescence label. The explored peptide (mass = 3 kD) is a novel candidate drug, which shows an anti-inflammatory effect after an event of myocardial infarction. The analysed samples were fractioned cell compartments of human umbilical cord vein endothelial cells (HUVEC) maintained via lysis with Triton X buffer. In order to enhance sensitivity and selectivity of peptide quantification via flow injection the peptide was labeled prior to incubation using elemental and fluorescence labels. Quantification of the elemental and fluorescence labeled peptide was performed via flow injection analysis combined with inductive coupled plasma sector field mass spectrometry (FIA-ICP-SFMS) or fluorescence detection (FIA-FLD), respectively. The employed quantification strategies were external calibration in the case of fluorescence detection and external calibration with and without internal standardization and on-line IDMS in the case of ICP-MS detectionThe limit of detection (LOD) for FIA-ICP-MS was 9 pM In-DOTA-Bβ(15-42) (0.05 fmol absolute) whereas FIA-FLD showed a LOD of 100 pM (3 fmol absolute) for the fluorescein labeled peptide. Short term precision of FIA-ICP-MS was superior for all ICP-MS based quantification strategies compared to FIA-FLD (FIA-ICP-SFMS: 0.3-3.3%; FIA-FLD: 6.5%). Concerning long term precision FIA-ICP-SFMS with on-line IDMS and internal standardization showed the best results (3.1 and 4.6%, respectively) whereas the external calibration of both applied methodological approaches was only in the range of 10 %.The concentrations in the Triton X soluble fraction relative to the applied amount of Indium in the cell culture were in the range of 0.75-1.8% for In-DOTA or 0.30-0.79% for the 2-(4-isothiocyanatobenzyl) - 1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid (In-DOTA-Bn) labeled peptide Bβ(15-42). In the Triton X insoluble fraction the relative concentrations of Indium were 0.03-0.18% for the In-DOTA labeled peptide and 0.03-0.13% for Bβ(15-42)-In-DOTA-Bn.
Collapse
Affiliation(s)
- Daniela Kretschy
- University of Natural Resources and Life Sciences, BOKU Vienna, Department of Chemistry, Division of Analytical Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Marion Gröger
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Daniela Zinkl
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Gunda Koellensperger
- University of Natural Resources and Life Sciences, BOKU Vienna, Department of Chemistry, Division of Analytical Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, BOKU Vienna, Department of Chemistry, Division of Analytical Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
30
|
Kretschy D, Koellensperger G, Hann S. Stability assessment of different chelating moieties used for elemental labeling of bio-molecules. Metallomics 2011; 3:1304-9. [PMID: 21922111 DOI: 10.1039/c1mt00114k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrating elemental labeling in quantitative LC-ICP-MS based bio-analysis requires fundamental experiments concerning the stability of complexes during analysis. In a competitive approach complex stability of the chelating moieties 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraaceticacid (DOTA), 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) and diethylenetriaminepentaacetic dianhydride (DTPA) in combination with 11 different lanthanides was investigated under typical chromatographic conditions. Measurements were carried out via LC-ICP-QMS using a novel mixed mode separation method. The influence of chromatographic separation, pH and temperature on complex stability constants was assessed regarding further applications of multiplexing in bio-analytical assays. The limit of detection (LOD) for LC-ICP-QMS was 0.03 nM for all investigated Tm complexes (0.15 fmol absolute). Quantification of the complexes was performed via external, flow injection based calibration. For all investigated complexes the stability was significantly decreased by the chromatographic conditions. Moreover, complexation by DOTA revealed two different signals suggesting the presence of a stable intermediate product. Ln(3+)-DOTA and Ln(3+)-NOTA complexes provided high stability at 5 °C and 37 °C over a time of 12 hours, whereas Ln(3+)-DTPA complexes showed significant degradation at 37 °C.
Collapse
Affiliation(s)
- Daniela Kretschy
- University of Natural Resources and Life Sciences, BOKU Vienna, Department of Chemistry, Division of Analytical Chemistry, Vienna, Austria.
| | | | | |
Collapse
|
31
|
SalmanOgli A. Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol 2011; 2:1-19. [PMID: 26069481 PMCID: PMC4451628 DOI: 10.1007/s12645-011-0015-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022] Open
Abstract
In this article, the syntheses and optical properties of core/shell quantum dot (CdSe/ZnS) and their applications are reviewed. Nevertheless, the main focus is to provide an overview on biological applications of quantum dots that contain imaging, targeting, and sensing. We discuss the different synthetic methods, optical properties (photoluminescence intensity, absorption, and fluorescence spectra), and their dependence on shape, size, and inner structure of quantum dots. Also, the different mechanisms of quantum dots bio-targeting (passive and active mechanisms) are discussed. The impact of quantum dots in bioimaging is reviewed regarding its photoluminescence intensity, absorption and emission spectrum, and photo-stability on high-quality and sensitivity imaging. Further, the difference between near infrared and visible emission quantum dots in deep tissue imaging will be reviewed and some of done works are considered and compared with each other. And finally, the biosensing potential/application of quantum dots in medical diagnosis is going to be highlighted.
Collapse
Affiliation(s)
- Ahmad SalmanOgli
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:229-46. [PMID: 21391305 PMCID: PMC4126610 DOI: 10.1002/wnan.136] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of tools and processes used to fabricate, measure, and image nanoscale objects has lead to a wide range of work devoted to producing sensors that interact with extremely small numbers (or an extremely small concentration) of analyte molecules. These advances are particularly exciting in the context of biosensing, where the demands for low concentration detection and high specificity are great. Nanoscale biosensors, or nanobiosensors, provide researchers with an unprecedented level of sensitivity, often to the single molecule level. The use of biomolecule-functionalized surfaces can dramatically boost the specificity of the detection system, but can also yield reproducibility problems and increased complexity. Several nanobiosensor architectures based on mechanical devices, optical resonators, functionalized nanoparticles, nanowires, nanotubes, and nanofibers have been demonstrated in the lab. As nanobiosensor technology becomes more refined and reliable, it is likely it will eventually make its way from the lab to the clinic, where future lab-on-a-chip devices incorporating an array of nanobiosensors could be used for rapid screening of a wide variety of analytes at low cost using small samples of patient material.
Collapse
Affiliation(s)
- Leon M Bellan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | |
Collapse
|
33
|
A new method for the quantification of superoxide dismutase mimics with an allopurinol–xanthine oxidase–lucigenin enhanced system. J Biol Inorg Chem 2011; 16:753-61. [DOI: 10.1007/s00775-011-0777-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
34
|
|
35
|
Chung PY, Lin TH, Schultz G, Batich C, Jiang P. Nanopyramid surface plasmon resonance sensors. APPLIED PHYSICS LETTERS 2010; 96:261108. [PMID: 20661318 PMCID: PMC2909300 DOI: 10.1063/1.3460273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/13/2010] [Indexed: 05/14/2023]
Abstract
We report the achievement of sensitive chemical and biological sensing using periodic gold nanopyramids with nanoscale sharp tips created by a simple and scalable colloidal templating approach. The sharp tips and the long-range periodic structure of the nanopyramid arrays enable the excitement of both localized and propagating surface plasmons. The optical reflection and the detection sensitivity of the templated nanopyramid surface plasmon resonance sensors agree reasonably well with the theoretical predictions using a finite-difference time-domain model. We have also demonstrated that specific antigen-antibody binding can be detected by using nanopyramid arrays in a real-time and label-free manner.
Collapse
|
36
|
Organometallic derivatizing agents in bioanalysis. Anal Bioanal Chem 2010; 397:3483-94. [DOI: 10.1007/s00216-010-3611-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 01/27/2023]
|
37
|
Lü S, Luo Q, Li X, Wu J, Liu J, Xiong S, Feng YQ, Wang F. Inhibitor screening of protein kinases using MALDI-TOF MS combined with separation and enrichment of phosphopeptides by TiO2 nanoparticle deposited capillary column. Analyst 2010; 135:2858-63. [DOI: 10.1039/c0an00339e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Washburn AL, Gunn LC, Bailey RC. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 2009; 81:9499-506. [PMID: 19848413 PMCID: PMC2783283 DOI: 10.1021/ac902006p] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in label-free biosensing techniques have shown the potential to simplify clinical analyses. With this motivation in mind, this paper demonstrates for the first time the use of silicon-on-insulator microring optical resonator arrays for the robust and label-free detection of a clinically important protein biomarker in undiluted serum, using carcinoembryonic antigen (CEA) as the test case. We utilize an initial-slope-based quantitation method to sensitively detect CEA at clinically relevant levels and to determine the CEA concentrations of unknown samples in both buffer and undiluted fetal bovine serum. Comparison with a commercial enzyme-linked immunosorbent assay (ELISA) kit reveals that the label-free microring sensor platform has a comparable limit of detection (2 ng/mL) and superior accuracy in the measurement of CEA concentration across a 3 order of magnitude dynamic range. Notably, we report the lowest limit of detection to date for a microring resonator sensor applied to a clinically relevant cancer biomarker. Although this report describes the robust biosensing capabilities of silicon photonic microring resonator arrays for a single parameter assay, future work will focus on utilizing the platform for highly multiplexed, label-free bioanalysis.
Collapse
Affiliation(s)
- Adam L. Washburn
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - L. Cary Gunn
- Genalyte, Inc., 11760 Sorrento Valley Road, Suite R, San Diego, CA 92121
| | - Ryan C. Bailey
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| |
Collapse
|
39
|
Quantitation of non-amplified genomic DNA by bead-based hybridization and template mediated extension coupled to alkaline phosphatase signal amplification. Biotechnol Lett 2009; 32:229-34. [PMID: 19838631 DOI: 10.1007/s10529-009-0149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Klenow I polymerase activity was combined with solid phase DNA hybridization to detect non-amplified genomic DNA (gDNA) sequences from Escherichia coli. Aminopropyl-controlled pore glass surface-bound oligonucleotides were hybridized to fragmented gDNA. The template-mediated extension at the 3'-terminus of the immobilized probe was then promoted in the presence of Klenow I polymerase and digoxigenin-labeled nucleotides. Detection of the extended probes was accomplished with an anti-digoxigenin alkaline phosphatase conjugate protocol coupled to colorimetric or fluorescent detection. Using the colorimetric protocol, the proof-of-concept was established. The fluorescence-based methodology, on the other hand, provided the basis for a quantitative interpretation of the data, affording a detection limit of 5 pM gDNA.
Collapse
|
40
|
Terenghi M, Elviri L, Careri M, Mangia A, Lobinski R. Multiplexed Determination of Protein Biomarkers Using Metal-Tagged Antibodies and Size Exclusion Chromatography−Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2009; 81:9440-8. [DOI: 10.1021/ac901853g] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mattia Terenghi
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Lisa Elviri
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Maria Careri
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Alessandro Mangia
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ryszard Lobinski
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
41
|
Corgier BP, Bellon S, Anger-Leroy M, Blum LJ, Marquette CA. Protein-diazonium adduct direct electrografting onto SPRi-biochip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9619-9623. [PMID: 19572537 DOI: 10.1021/la900762s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A direct protein immobilization method for surface plasmon resonance imaging (SPRi) gold chip arraying is exposed. The biomolecule electroaddressing strategy, previously demonstrated by our team on carbon surfaces, is here valuably involved and adapted to create a straightforward and efficient protein immobilization process onto SPRi-biochips. The proteins, modified with an aryl-diazonium adduct, are addressed to the SPRi chip surface through the electroreduction of the aryl-diazonium. The biomolecule deposition was followed through SPRi live measurements during the electrografting process. A specially designed setup enabled us to directly observe the mass increasing at the sensor surface while the proteins were electrografted. A pin electrospotting method, allowing the achievement of distinct sensing layers on gold SPRi-biochips, was used to generate microarray biochips. The integrity of the immobilized proteins and the specificity of the detection, based on antigen/antibody interactions, were demonstrated for the detection of specific antibodies and ovalbumin. The SPRi detection limit of ovalbumin using the electroaddressing of anti-ovalbumin IgG was compared with two other immobilization procedures, cystamine-glutaraldehyde self-assembled monolayer and pyrrole, and was found to be a decade lower than these ones (100 ng/mL, i.e., 2 nM).
Collapse
Affiliation(s)
- Benjamin P Corgier
- Laboratoire de Génie Enzymatique et Biomoléculaire, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires Université Lyon 1, CNRS 5246 ICBMS Batiment CPE, 43, bd du 11 novembre 1918, 69622 Villeurbanne, Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Neugebauer S, Zimdars A, Liepold P, Gębala M, Schuhmann W, Hartwich G. Optimization of an Electrochemical DNA Assay by Using a 48-Electrode Array and Redox Amplification Studies by Means of Scanning Electrochemical Microscopy. Chembiochem 2009; 10:1193-9. [DOI: 10.1002/cbic.200800767] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Selvaraju T, Das J, Jo K, Kwon K, Huh CH, Kim TK, Yang H. Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9883-9888. [PMID: 18690735 DOI: 10.1021/la801828a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Compared to enzymes, Au nanocatalysts show better long-term stability and are more easily prepared. Au nanoparticles (AuNPs) are used as catalytic labels to achieve ultrasensitive DNA detection via fast catalytic reactions. In addition, magnetic beads (MBs) are employed to permit low nonspecific binding of DNA-conjugated AuNPs and to minimize the electrocatalytic current of AuNPs as well as to take advantage of easy magnetic separation. In a sandwich-type electrochemical sensor, capture-probe-conjugated MBs and an indium-tin oxide electrode modified with a partially ferrocene-modified dendrimer act as the target-binding surface and the signal-generating surface, respectively. A thiolated detection-probe-conjugated AuNP exhibits a high level of unblocked active sites and permits the easy access of p-nitrophenol and NaBH 4 to these sites. Electroactive p-aminophenol is generated at these sites and is then electrooxidized to p-quinoneimine at the electrode. The p-aminophenol redox cycling by NaBH 4 offers large signal amplification. The nonspecific binding of detection-probe-conjugated AuNPs is lowered by washing DNA-linked MB-AuNP assemblies with a formamide-containing solution, and the electrocatalytic oxidation of NaBH 4 by AuNPs is minimized because long-range electron transfer between the electrode and the AuNPs bound to MBs is not feasible. The high signal amplification and low background current enable the detection of 1 fM target DNA.
Collapse
Affiliation(s)
- Thangavelu Selvaraju
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We critically evaluate the usefulness of different nanostructures described as labels, nanoscaffolds or separation media in immunoassays and nucleic-acid hybridization assays. Many of the great number of publications describe only theoretical aspects of using these nanostructures or nanoparticles, but do not verify their applicability in the presence of potential interferents that can be present in the sample matrix. We attempt a systematic study of the advantages and the limitations of using these new reagents in bioassays, the different assay formats for individual and multiplexed detection, and the capability of these assays in analyzing real samples.
Collapse
Affiliation(s)
- A. Gómez-Hens
- Department of Analytical Chemistry, “Marie Curie Annex” Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | | | | |
Collapse
|
45
|
Duan CF, Yu YQ, Cui H. Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst 2008; 133:1250-5. [DOI: 10.1039/b807163b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Waggoner PS, Craighead HG. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. LAB ON A CHIP 2007; 7:1238-55. [PMID: 17896006 DOI: 10.1039/b707401h] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Micro- and nanoelectromechanical systems, including cantilevers and other small scale structures, have been studied for sensor applications. Accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules have been demonstrated using a variety of these devices that undergo static deflections or shifts in resonant frequency upon analyte binding. In particular, biological detection of viruses, antigens, DNA, and other proteins is of great interest. While the majority of currently used detection schemes are reliant on biomarkers, such as fluorescent labels, time, effort, and chemical activity could be saved by developing an ultrasensitive method of label-free mass detection. Micro- and nanoscale sensors have been effectively applied as label-free detectors. In the following, we review the technologies and recent developments in the field of micro- and nanoelectromechanical sensors with particular emphasis on their application as biological sensors and recent work towards integrating these sensors in microfluidic systems.
Collapse
Affiliation(s)
- Philip S Waggoner
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
47
|
de Boer AR, Lingeman H, Niessen WM, Irth H. Mass spectrometry-based biochemical assays for enzyme-inhibitor screening. Trends Analyt Chem 2007. [DOI: 10.1016/j.trac.2007.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Bettmer J, Jakubowski N, Prange A. Elemental tagging in inorganic mass spectrometric bioanalysis. Anal Bioanal Chem 2006; 386:7-11. [PMID: 16924386 DOI: 10.1007/s00216-006-0557-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J Bettmer
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany.
| | | | | |
Collapse
|