1
|
Wang Y, Liu Y, Liu B, Yuan Y, Wei L, Wang M, Chen Z. A Benzil- and BODIPY-Based Turn-On Fluorescent Probe for Detection of Hydrogen Peroxide. Molecules 2023; 29:229. [PMID: 38202811 PMCID: PMC10780145 DOI: 10.3390/molecules29010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Faced with rising threats of terrorism, environmental and health risks, achieving sensitive and selective detection of peroxide-based explosives (PEs) has become a global focus. In this study, a turn-on fluorescent probe (BOD) based on benzil (H2O2-recognition element) and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative (fluorophore) was developed to sensitively and specifically detect hydrogen peroxide (H2O2). The synthesized BOD had a very weak fluorescence due to intramolecular donor-excited photo-induced electron transfer (d-PET) effect; however, it could emit a strong fluorescence since H2O2 selectively oxidized the benzil moiety and released free BODIPY fluorophore (BOD-COOH). As a result, the proposed BOD detected H2O2 in linear detection ranged from 25 to 125 µM with a detection limit of 4.41 µM. Meanwhile, the proposed BOD showed good selectivity toward H2O2, which is not affected by other common reactive oxygen species (ROS) and ions from explosive residues. In addition, a blue shift from 508 to 498 nm was observed in the absorption spectra upon addition of H2O2. More importantly, the BOD was successfully applied for rapid detection of H2O2 vapor with good sensitivity (down to 7 ppb), which holds great potential for practical use in public safety, forensic analysis and environmental monitoring.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Laboratory Science, Shanxi Medical University, Taiyuan 030001, China
- The Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan 030001, China
| | - Ye Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
| | - Bo Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
| | - Yihua Yuan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
| | - Lixia Wei
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
| | - Mingxiu Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhe Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, China
| |
Collapse
|
2
|
Szyposzyńska M, Spławska A, Ceremuga M, Kot P, Maziejuk M. Stationary Explosive Trace Detection System Using Differential Ion Mobility Spectrometry (DMS). SENSORS (BASEL, SWITZERLAND) 2023; 23:8586. [PMID: 37896679 PMCID: PMC10610698 DOI: 10.3390/s23208586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Detecting trace amounts of explosives is important for maintaining national security due to the growing threat of terror attacks. Particularly challenging is the increasing use of homemade explosives. Therefore, there is a constant need to improve existing technologies for detecting trace amounts of explosives. This paper describes the design of a stationary device (a gate) for detecting trace amounts of explosives and explosive taggants and the design of differential ion mobility spectrometers with a focus on the gas system. Nitromethane (NM), trimeric acetone peroxide (TATP), hexamine peroxide (HMTD), and explosive taggants 2,3-dimethyl-2,3-dinitrobutane (DMDNB) and 4-nitrotoluene (4NT) were used in this study. Gate measurements were carried out by taking air from the hands, pocket area, and shoes of the tested person. Two differential ion mobility spectrometers operating in two different modes were used as explosive detectors: a mode with a semi-permeable membrane to detect explosives with high vapor pressures (such as TATP) and a mode without a semi-permeable membrane (using direct introduction of the sample into the measuring chamber) to detect explosives with low vapor pressures (such as HMTD). The device was able to detect trace amounts of selected explosives/explosive taggants in 5 s.
Collapse
Affiliation(s)
- Monika Szyposzyńska
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| | - Aleksandra Spławska
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| | - Michał Ceremuga
- Military Institute of Armoured and Automotive Technology, Okuniewska 1, 05-070 Sulejówek, Poland;
| | - Piotr Kot
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| | - Mirosław Maziejuk
- Military Institute of Chemistry and Radiometry, al. gen. A. Chruściela “Montera” 105, 00-910 Warsaw, Poland; (A.S.); (P.K.); (M.M.)
| |
Collapse
|
3
|
Wang W, Li H, Huang W, Chen C, Xu C, Ruan H, Li B, Li H. Recent development and trends in the detection of peroxide-based explosives. Talanta 2023; 264:124763. [PMID: 37290336 DOI: 10.1016/j.talanta.2023.124763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Peroxide-based explosives (PBEs) are increasingly common in criminal and terrorist activity due to their easy synthesis and high explosive power. The rise in terrorist attacks involving PBEs has heightened the importance of detecting trace amounts of explosive residue or vapors. This paper aims to provide a review on the developments of techniques and instruments for detecting PBEs over the past ten years, specifically discussing advancements in ion mobility spectrometry, ambient mass spectrometry, fluorescence techniques, colorimetric methods, and electrochemical methods. We provide examples to illustrate their evolution and focus on new strategies for improving detection performance, specifically in terms of sensitivity, selectivity, high-throughput, and wide explosives coverage. Finally, we discuss future prospects for PBE detection. It is hoped this treatment will serve as a guide to the novitiate and as aid memoire to the researchers.
Collapse
Affiliation(s)
- Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Jinkai Instrument (Dalian) Company Limited, People's Republic of China
| | - Hang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Wei Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Chuang Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Chuting Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Huiwen Ruan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Bin Li
- Yunnan Police Officer Academy, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
4
|
The role of water and acid catalysis in the reaction of acetone with hydrogen peroxide: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Nsuamani ML, Zolotovskaya S, Abdolvand A, Daeid NN, Adegoke O. Thiolated gamma-cyclodextrin-polymer-functionalized CeFe 3O 4 magnetic nanocomposite as an intrinsic nanocatalyst for the selective and ultrasensitive colorimetric detection of triacetone triperoxide. CHEMOSPHERE 2022; 307:136108. [PMID: 35995197 DOI: 10.1016/j.chemosphere.2022.136108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Explosives are powerful destructive weapons used by criminals and terrorists across the globe and their use within military installation sites poses serious environmental health problems. Existing colorimetric sensors for triacetone triperoxide (TATP) relies on detecting its hydrolysed H2O2 form. However, such detection strategy limits the practicability for on-site TATP sensing. In this work, we have developed a novel peroxidase mimic catalytic colorimetric sensor for direct recognition of TATP. Ceria (Ce)-doped Fe3O4 nanoparticles (CeFe3O4) were synthesized via the hot-injection organic synthetic route in the presence of metal precursors and organic ligands. Thereafter, the organic-capped CeFe3O4 nanoparticles were surface-functionalized with amphiphilic polymers (Amp-poly) to render the nanoparticle stable, compact and biocompatible. Thiolated γ-cyclodextrin (γ-CD) was adsorbed on the Amp-poly-CeFe3O4 nanocomposite (NC) surface to form a γ-CD-Amp-poly-CeFe3O4 NC. γ-CD served both as a receptor and as a catalytic enhancer for TATP. Hemin (H), used as a catalytic signal amplifier was adsorbed on the γ-CD-Amp-poly-CeFe3O4 NC surface to form a γ-CD-Amp-poly-CeFe3O4-H NC that served as a functional nanozyme for the enhanced catalytic colorimetric detection of TATP. Under optimum experimental reaction conditions, TATP prepared in BIS-TRIS-Trisma Ac-KAc-NAc buffer, pH 3, was selectively and ultrasensitively detected without the need for acid hydrolysis based on the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 in the presence of the γ-CD-Amp-poly-CeFe3O4-H hybrid nanozyme. The obtained limit of detection of ∼0.05 μg/mL when compared with other published probes demonstrated superior sensitivity. The developed peroxidase mimic γ-CD-Amp-poly-CeFe3O4-H catalytic colorimetric sensor was successfully applied to detect TATP in soil, river water and tap water samples.
Collapse
Affiliation(s)
- M Laura Nsuamani
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Svetlana Zolotovskaya
- Materials Science & Engineering Research Cluster, School of Science & Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Amin Abdolvand
- Materials Science & Engineering Research Cluster, School of Science & Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Oluwasesan Adegoke
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK.
| |
Collapse
|
6
|
Bhosle AA, Banerjee M, Gupta V, Ghosh S, Bhasikuttan AC, Chatterjee A. Mechanochemical synthesis of an AIE-TICT-ESIPT active orange-emissive chemodosimeter for selective detection of hydrogen peroxide in aqueous media and living cells, and solid-phase quantitation using a smartphone. NEW J CHEM 2022. [DOI: 10.1039/d2nj03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the design and mechanochemical synthesis of a chemodosimeter, benzothiazole-derived unsymmetrical azine protected by 4-bromomethylphenylboronic acid (BTPAB), an orange aggregation-induced emission (AIE), for the selective detection of H2O2 in a turn-on manner.
Collapse
Affiliation(s)
- Akhil A. Bhosle
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Varsha Gupta
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| |
Collapse
|
7
|
Zhang L, Chen Q, Yang L, He Y, Guo K, Yang J, Han JM. Expeditious base-free solid-state reaction between phenyl boronates and hydrogen peroxide on silica gel. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00495f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expeditious base-free reaction between a phenyl boronate film and H2O2 vapor can be realized on a silica gel surface, playing an important role in sensor manufacturing applications and chemical production.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qianqian Chen
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Li Yang
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yining He
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Keke Guo
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jialin Yang
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Ji-Min Han
- State Key Laboratory of Explosion Science and Technology of China, Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| |
Collapse
|
8
|
Arman A, Sağlam Ş, Üzer A, Apak R. Direct Electrochemical Determination of Peroxide-Type Explosives Using Well-Dispersed Multi-Walled Carbon Nanotubes/Polyethyleneimine-Modified Glassy Carbon Electrodes. Anal Chem 2021; 93:11451-11460. [PMID: 34425678 DOI: 10.1021/acs.analchem.1c01397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sensitive and selective determination of peroxide-based explosives (PBEs) in the field/on site is an important analytical challenge. Most methods claiming to detect PBEs are indirect, actually detecting their decomposition product, H2O2. Here, we present an electrochemical sensor for direct detection of organic peroxide explosives, that is, triacetone triperoxide (TATP) and hexamethylenetriperoxide diamine (HMTD), using well-dispersed multiwalled carbon nanotubes/polyethyleneimine (MWCNTs/PEI)-modified glassy carbon (GC) electrode, namely, GC/MWCNTs/PEI electrode. This is the first use of the conductive polyelectrolyte PEI as an electrode modifier for pristine PBE sensing. The potential range, scan rate, solvent selection, and supporting electrolyte concentration were optimized for PBEs. As a distinct advantage over other similar methods, our sensor electrode responded to intact TATP solutions in neutral medium, meaning that TATP did not interact with acids/bases that would transform it into H2O2. Calibration curves were linear in the range of 10-200 mg L-1 for TATP and 25-200 mg L-1 for HMTD. Using differential pulse voltammetry, detection limits of 1.5 mg L-1 TATP and 3.0 mg L-1 HMTD were obtained from direct electrochemical reduction in 80/20% (v/v) H2O-acetone solvent medium. Electroactive camouflage materials such as passenger belongings (e.g., sweetener, detergent, sugar, and paracetamol-caffeine-based analgesic drugs), common ions, and other explosives were shown not to interfere with the proposed method. The nonresponsive behavior of our electrode to H2O2 prevents "false positives" from other peroxide materials of everyday use. This electrochemical sensor could also detect other nitro-explosives at different potentials and was statistically validated against standard GC-MS and spectrophotometric methods.
Collapse
Affiliation(s)
- Aysu Arman
- Institute of Graduate Studies, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey.,Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Şener Sağlam
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Ayşem Üzer
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Reşat Apak
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey.,Turkish Academy of Sciences (TUBA), Bayraktar neighborhood, Vedat Dalokay St. No: 112, Cankaya, Ankara 06670, Turkey
| |
Collapse
|
9
|
Detection of Triacetone Triperoxide (TATP) and Hexamethylene Triperoxide Diamine (HMTD) from the Gas Phase with Differential Ion Mobility Spectrometry (DMS). SENSORS 2021; 21:s21134545. [PMID: 34283071 PMCID: PMC8272047 DOI: 10.3390/s21134545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
One of the significant problems in the modern world is the detection of improvised explosives made of materials synthesized at home. Such compounds include triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD). An attempt was made to construct an instrument allowing for the simultaneous detection of both compounds despite the large difference of vapor pressure: very high for TATP and very low for HMTD. The developed system uses differential ion mobility spectrometry (DMS) in combination with a specially designed gas sample injection system. The created system of detectors allowed for the detection of a high concentration of TATP and a very low concentration of HMTD. TATP detection was possible despite the presence of impurities—acetone remaining from the technological process and formed as a coproduct of diacetone diperoxide (DADP) synthesis. Ammonia added to the carrier gas improved the possibility of detecting the abovementioned explosives, reducing the intensity of the acetone signal. The obtained results were then compared with the detection capabilities of drift tube ion mobility spectrometer (DT-IMS), which has not made possible such detection as DMS.
Collapse
|
10
|
Tawfik SM, Abd-Elaal AA, Lee YI. Selective dual detection of Hg 2+ and TATP based on amphiphilic conjugated polythiophene-quantum dot hybrid materials. Analyst 2021; 146:2894-2901. [PMID: 33720268 DOI: 10.1039/d1an00166c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The design of multifunctional sensors based on biocompatible hybrid materials consisting of conjugated polythiophene-quantum dots for multiple environmental pollutants is a promising strategy for the development of new monitoring technologies. Herein, we present a new approach for the "on-off-on" sensing of Hg2+ and triacetone triperoxide (TATP) based on amphiphilic polythiophene-coated CdTe QDs (PQDs, PLQY ∼78%). The emission of the PQDs is quenched by Hg2+ ions via electron transfer interactions. Based on the strong interaction between TATP and Hg2+ ions, the addition of TATP to the PQD-Hg2+ complex results in a remarkable recovery of the PQD emission. Under the optimized conditions, the PQD sensor shows a good linear response to Hg2+ and TATP with detection limits of 7.4 nM and 0.055 mg L-1, respectively. Furthermore, the "on-off-on" sensor demonstrates good biocompatibility, high stability, and excellent selectivity in the presence of other metal ions and common explosives. Importantly, the proposed method can be used to determine the level of Hg2+ and TATP in environmental water samples.
Collapse
Affiliation(s)
- Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Ali A Abd-Elaal
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Republic of Korea.
| |
Collapse
|
11
|
Caron T, Palmas P, Frénois C, Méthivier C, Pasquinet E, Pradier CM, Serein-Spirau F, Hairault L, Montméat P. Detection of hydrogen peroxide using dioxazaborocanes: elucidation of the sensing mechanism at the molecular level by NMR and XPS measurements. NEW J CHEM 2020. [DOI: 10.1039/d0nj00038h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The H2O2vapour cleaves the N–B bond and inhibits the fluorescence of the dixazaborocane.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Françoise Serein-Spirau
- Institut Charles Gerhardt
- UMR CNRS 5253
- Equipe AM2N
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 05
| | | | | |
Collapse
|
12
|
Gökdere B, Üzer A, Durmazel S, Erçağ E, Apak R. Titanium dioxide nanoparticles-based colorimetric sensors for determination of hydrogen peroxide and triacetone triperoxide (TATP). Talanta 2019; 202:402-410. [PMID: 31171201 DOI: 10.1016/j.talanta.2019.04.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 11/28/2022]
Abstract
Due to its relatively simple preparation and readily available precursors, determination of triacetone triperoxide (TATP) by portable devices has become important. In this work, two different titanium dioxide nanoparticles (TiO2NPs)-based colorimetric sensors based on complex formation on the solid surface were developed for determination of H2O2 and TATP. The first sensor, (3-aminopropyl)triethoxysilane (APTES) modified-TiO2NPs-based paper sensor (APTES@TiO2NPs), exploits peroxo-titanate binary complex formation between APTES@TiO2NPs and H2O2 on chromatographic paper. The second sensor, 4-(2-pyridylazo)-resorcinol-modified-TiO2NPs-based solid sensor (PAR@TiO2NPs), relies on the formation of a ternary complex between Ti(IV), PAR and H2O2. The developed sensors were also applied to TATP determination after acidic hydrolysis of samples to H2O2. The limits of detection (LODs) of APTES@TiO2NPs-based paper sensor were 3.14 × 10-4 and 5.13 × 10-4 mol L-1 for H2O2 and TATP, respectively, whereas the LODs of PAR@TiO2NPs solid sensor were 6.06 × 10-7 and 3.54 × 10-7 mol L-1 for H2O2 and TATP, respectively. Possible interferences of common soil ions, passenger belongings used as camouflage materials during public transport (e.g., detergent, sweetener, acetylsalicylic acid and paracetamol-caffeine based analgesic drugs) and of other explosives were examined. The developed methods were statistically validated using t- and F- tests against the titanyl sulfate (TiOSO4) colorimetric literature method.
Collapse
Affiliation(s)
- Bahar Gökdere
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| | - Ayşem Üzer
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| | - Selen Durmazel
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey; Department of Chemistry, Institute of Graduate Studies, Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
| | - Erol Erçağ
- Aytar Caddesi, Fecri Ebcioğlu Sokak, No. 6/8, Levent, Istanbul, 34340, Turkey
| | - Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Piyade St. No. 27, Çankaya, Ankara, 06690, Turkey.
| |
Collapse
|
13
|
|
14
|
de Araujo WR, Cardoso TM, da Rocha RG, Santana MH, Muñoz RA, Richter EM, Paixão TR, Coltro WK. Portable analytical platforms for forensic chemistry: A review. Anal Chim Acta 2018; 1034:1-21. [DOI: 10.1016/j.aca.2018.06.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/18/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
|
15
|
Taha YM, Saowapon MT, Osthoff HD. Detection of triacetone triperoxide by thermal decomposition peroxy radical chemical amplification coupled to cavity ring-down spectroscopy. Anal Bioanal Chem 2018; 410:4203-4212. [DOI: 10.1007/s00216-018-1072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022]
|
16
|
Kumar JS, Murmu NC, Samanta P, Banerjee A, Ganesh RS, Inokawa H, Kuila T. Novel synthesis of a Cu2O–graphene nanoplatelet composite through a two-step electrodeposition method for selective detection of hydrogen peroxide. NEW J CHEM 2018. [DOI: 10.1039/c7nj04510g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimized electrodeposition technique for the synthesis of Cu2O–graphene composite for H2O2sensing.
Collapse
Affiliation(s)
- J. Sharath Kumar
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Naresh Chandra Murmu
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Pranab Samanta
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Amit Banerjee
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu 432-8011
- Japan
| | - R. Sankar Ganesh
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu 432-8011
- Japan
| | - Hiroshi Inokawa
- Research Institute of Electronics
- Shizuoka University
- Hamamatsu 432-8011
- Japan
| | - Tapas Kuila
- Surface Engineering & Tribology
- Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
17
|
Podrażka M, Bączyńska E, Kundys M, Jeleń PS, Witkowska Nery E. Electronic Tongue-A Tool for All Tastes? BIOSENSORS-BASEL 2017; 8:bios8010003. [PMID: 29301230 PMCID: PMC5872051 DOI: 10.3390/bios8010003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 11/16/2022]
Abstract
Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis.
Collapse
Affiliation(s)
- Marta Podrażka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Ewa Bączyńska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
- Laboratory of Cell Biophysics, The Nencki Institute PAS, Pasteur Street 3, 02-093 Warsaw, Poland.
| | - Magdalena Kundys
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Paulina S Jeleń
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Emilia Witkowska Nery
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
18
|
Krauss ST, Nauman AQ, Garner GT, Landers JP. Color manipulation through microchip tinting for colorimetric detection using hue image analysis. LAB ON A CHIP 2017; 17:4089-4096. [PMID: 29068448 DOI: 10.1039/c7lc00796e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colorimetry with microfluidic devices has been proven to be an advantageous method for in situ analyses where limited resources and rapid response for untrained users are desired. Image analysis using a small camera or cell phone can be easily incorporated for an objective readout, eliminating variations from normal differences in color perception and environmental factors during analysis. The image analysis using the parameter hue, for example, has been utilized as a highly effective, objective analysis method that correlates with the psychological way color is perceived. Hue analysis, however, is best used for colorimetric reactions that result in distinct changes from one color to a markedly different color and can be inadequate to distinguish between subtle or monotonal (colorless-to-colored) color changes. We address this with three unique color manipulation (i.e., tinting) techniques that provide greater discrimination with such color changes, thus yielding improved limits of detection for various colorimetric reactions that may have previously been limited. Tinting is invoked through dyeing the reagent substrate, colored printing the device, or colored lighting during image capture, and is shown to effectively shift the background color of the reaction detection area. Hydrogen peroxide, a constituent of peroxide-based explosives, is associated with a monochromatic color change upon reaction, and this is used to demonstrate the effectiveness of the tinting methods in improving the limit of detection from an undetectable color change to 0.1 mg mL-1.
Collapse
Affiliation(s)
- Shannon T Krauss
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
19
|
Calvo-Gredilla P, García-Calvo J, Cuevas JV, Torroba T, Pablos JL, García FC, García JM, Zink-Lorre N, Font-Sanchis E, Sastre-Santos Á, Fernández-Lázaro F. Solvent-Free Off-On Detection of the Improvised Explosive Triacetone Triperoxide (TATP) with Fluorogenic Materials. Chemistry 2017; 23:13973-13979. [DOI: 10.1002/chem.201702412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 01/14/2023]
Affiliation(s)
| | - José García-Calvo
- Department of Chemistry; Faculty of Science; University of Burgos; 09001 Burgos Spain
| | - José V. Cuevas
- Department of Chemistry; Faculty of Science; University of Burgos; 09001 Burgos Spain
| | - Tomás Torroba
- Department of Chemistry; Faculty of Science; University of Burgos; 09001 Burgos Spain
| | - Jesús-Luis Pablos
- Department of Chemistry; Faculty of Science; University of Burgos; 09001 Burgos Spain
| | - Félix C. García
- Department of Chemistry; Faculty of Science; University of Burgos; 09001 Burgos Spain
| | - José-Miguel García
- Department of Chemistry; Faculty of Science; University of Burgos; 09001 Burgos Spain
| | - Nathalie Zink-Lorre
- Organic Chemistry Area; Institute of Bioengineering; Miguel Hernández University; 03202 Elche, Alicante Spain
| | - Enrique Font-Sanchis
- Organic Chemistry Area; Institute of Bioengineering; Miguel Hernández University; 03202 Elche, Alicante Spain
| | - Ángela Sastre-Santos
- Organic Chemistry Area; Institute of Bioengineering; Miguel Hernández University; 03202 Elche, Alicante Spain
| | - Fernando Fernández-Lázaro
- Organic Chemistry Area; Institute of Bioengineering; Miguel Hernández University; 03202 Elche, Alicante Spain
| |
Collapse
|
20
|
Rawe BW, Brown CM, MacKinnon MR, Patrick BO, Bodwell GJ, Gates DP. A C-Pyrenyl Poly(methylenephosphine): Oxidation “Turns On” Blue Photoluminescence in Solution and the Solid State. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin W. Rawe
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Christopher M. Brown
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Marc R. MacKinnon
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| | - Brian O. Patrick
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Graham J. Bodwell
- Department
of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| | - Derek P. Gates
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
21
|
Zhang Y, Jiao Z, Xu W, Fu Y, Zhu D, Xu J, He Q, Cao H, Cheng J. Design, synthesis and properties of a reactive chromophoric/fluorometric probe for hydrogen peroxide detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj00851a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A succinct chromophoric/fluorometric probe, AVPM, for sensitive and selective H2O2detection.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Zinuo Jiao
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Wei Xu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yanyan Fu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Defeng Zhu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Xu
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Qingguo He
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Huimin Cao
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
22
|
Visible and UV resonance Raman spectroscopy of the peroxide-based explosive HMTD and its photoproducts. Forensic Chem 2016. [DOI: 10.1016/j.forc.2016.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
JIANG DD, PENG LY, ZHOU QH, CHEN C, LIU JW, WANG S, LI HY. Quantitative Detection of Hexamethylene Triperoxide Diamine in Complex Matrix by Dopant-assisted Photoionization Ion Mobility Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60972-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Kangas MJ, Burks RM, Atwater J, Lukowicz RM, Williams P, Holmes AE. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives. Crit Rev Anal Chem 2016; 47:138-153. [PMID: 27636675 PMCID: PMC5351797 DOI: 10.1080/10408347.2016.1233805] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is a significant demand for devices that can rapidly detect chemical–biological–explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.
Collapse
Affiliation(s)
- Michael J Kangas
- a Department of Chemistry , Doane University , Crete , Nebraska , USA
| | - Raychelle M Burks
- b Department of Chemistry , St. Edwards University , Austin , Texas , USA
| | - Jordyn Atwater
- a Department of Chemistry , Doane University , Crete , Nebraska , USA
| | - Rachel M Lukowicz
- a Department of Chemistry , Doane University , Crete , Nebraska , USA
| | | | - Andrea E Holmes
- a Department of Chemistry , Doane University , Crete , Nebraska , USA
| |
Collapse
|
25
|
Zhang Y, Fu YY, Zhu DF, Xu JQ, He QG, Cheng JG. Recent advances in fluorescence sensor for the detection of peroxide explosives. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Bezemer KDB, Koeberg M, van der Heijden AEDM, van Driel CA, Blaga C, Bruinsma J, van Asten AC. The Potential of Isotope Ratio Mass Spectrometry (IRMS) and Gas Chromatography-IRMS Analysis of Triacetone Triperoxide in Forensic Explosives Investigations. J Forensic Sci 2016; 61:1198-207. [DOI: 10.1111/1556-4029.13135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/30/2015] [Accepted: 12/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Karlijn D. B. Bezemer
- Netherlands Forensic Institute; PO Box 24044 2490 AA The Hague The Netherlands
- Delft University of Technology; PO Box 5 2600 AA Delft The Netherlands
- Faculty of Science; Van 't Hoff Institute for Molecular Sciences; University of Amsterdam; PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Mattijs Koeberg
- Netherlands Forensic Institute; PO Box 24044 2490 AA The Hague The Netherlands
| | - Antoine E. D. M. van der Heijden
- Delft University of Technology; PO Box 5 2600 AA Delft The Netherlands
- TNO Technical Sciences; PO Box 45 2280 AA Rijswijk The Netherlands
| | | | - Cornelia Blaga
- Netherlands Forensic Institute; PO Box 24044 2490 AA The Hague The Netherlands
| | - Jildert Bruinsma
- Netherlands Forensic Institute; PO Box 24044 2490 AA The Hague The Netherlands
| | - Arian C. van Asten
- Netherlands Forensic Institute; PO Box 24044 2490 AA The Hague The Netherlands
- Faculty of Science; Van 't Hoff Institute for Molecular Sciences; University of Amsterdam; PO Box 94157 1090 GD Amsterdam The Netherlands
- CLHC; Amsterdam Center for Forensic Science and Medicine; PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
27
|
González-Calabuig A, Cetó X, Del Valle M. Electronic tongue for nitro and peroxide explosive sensing. Talanta 2016; 153:340-6. [PMID: 27130125 DOI: 10.1016/j.talanta.2016.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/30/2022]
Abstract
This work reports the application of a voltammetric electronic tongue (ET) towards the simultaneous determination of both nitro-containing and peroxide-based explosive compounds, two families that represent the vast majority of compounds employed either in commercial mixtures or in improvised explosive devices. The multielectrode array was formed by graphite, gold and platinum electrodes, which exhibited marked mix-responses towards the compounds examined; namely, 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), N-methyl-N,2,4,6-tetranitroaniline (Tetryl) and triacetone triperoxide (TATP). Departure information was the set of voltammograms, which were first analyzed by means of principal component analysis (PCA) allowing the discrimination of the different individual compounds, while artificial neural networks (ANNs) were used for the resolution and individual quantification of some of their mixtures (total normalized root mean square error for the external test set of 0.108 and correlation of the obtained vs. expected concentrations comparison graphs r>0.929).
Collapse
Affiliation(s)
- Andreu González-Calabuig
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Cetó
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
28
|
One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Yu HA, Lewis SW, Beardah MS, NicDaeid N. Assessing a novel contact heater as a new method of recovering explosives traces from porous surfaces. Talanta 2016; 148:721-8. [DOI: 10.1016/j.talanta.2015.07.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022]
|
30
|
Krawczyk T. Enhanced electrospray ionization mass spectrometric detection of hexamethylene triperoxide diamine (HMTD) after oxidation to tetramethylene diperoxide diamine dialdehyde (TMDDD). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2257-2262. [PMID: 26522318 DOI: 10.1002/rcm.7385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Hexamethylene triperoxide diamine (HMTD) is one of the peroxide-based explosives that are difficult to detect using standard analytical methodologies. METHODS It was analyzed by electrospray ionization mass spectrometry (ESI-MS) on a UPLC-TOF instrument. Alkali metal salts were used to promote the formation of ions. RESULTS In the full scan positive ion mode a 3 ng (13 pmol) limit of detection was achieved if [HMTD + Me](+) ions (Me = Li, Na, K) were detected. It was found that HMTD easily undergoes oxidation to tetramethylene diperoxide diamine dialdehyde (TMDDD) in the source as well as in the samples. TMDDD can be detected as [TMDDD + Me](+) ions, but better ionization efficiency leads to the detection limit of TMDDD at the 2 pg (0.01 pmol) level. In butyl acetate the yield of oxidation of HMTD to TMDDD reaches 25% within 20 min at 120 °C, which offers a simple way of improving the detection limit of HMTD by two orders of magnitude. CONCLUSIONS A simple procedure of detection of HMTD that matches the most sensitive methods available was developed. It uses standard equipment available in many laboratories. It was shown that the frequently reported [HMTD-H](+) cation observed by various authors was in fact a misinterpretation of the results, and should be attributed to [TMDDD + H](+).
Collapse
Affiliation(s)
- Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100, Gliwice, Poland
| |
Collapse
|
31
|
Can Z, Üzer A, Türkekul K, Erçağ E, Apak R. Determination of Triacetone Triperoxide with a N,N-Dimethyl-p-phenylenediamine Sensor on Nafion Using Fe3O4 Magnetic Nanoparticles. Anal Chem 2015; 87:9589-94. [DOI: 10.1021/acs.analchem.5b01775] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ziya Can
- Department of Chemistry,
Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| | - Ayşem Üzer
- Department of Chemistry,
Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| | - Kader Türkekul
- Department of Chemistry,
Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| | - Erol Erçağ
- Department of Chemistry,
Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| | - Reşat Apak
- Department of Chemistry,
Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
32
|
Lubczyk D, Hahma A, Brutschy M, Siering C, Waldvogel SR. A New Reference Material and Safe Sampling of Terrorists Peroxide Explosives by a Non-Volatile Matrix. PROPELLANTS EXPLOSIVES PYROTECHNICS 2015. [DOI: 10.1002/prep.201500011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Fitzgerald M, Gardiner MG, Armitt D, Dicinoski GW, Wall C. Confirmation of the Molecular Structure of Tetramethylene Diperoxide Dicarbamide (TMDD) and Its Sensitiveness Properties. J Phys Chem A 2015; 119:905-10. [DOI: 10.1021/jp510827h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark Fitzgerald
- Weapons and Combat Systems Division, Defence Science and Technology Organisation, West Avenue, Edinburgh, South Australia 5111, Australia
| | - Michael G. Gardiner
- School of Physical Sciences (Chemistry) and §Australian Centre
for Research on Separation Science (ACROSS), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| | - David Armitt
- Weapons and Combat Systems Division, Defence Science and Technology Organisation, West Avenue, Edinburgh, South Australia 5111, Australia
| | | | - Craig Wall
- Weapons and Combat Systems Division, Defence Science and Technology Organisation, West Avenue, Edinburgh, South Australia 5111, Australia
| |
Collapse
|
34
|
Chen L, Gao Y, Fu Y, Zhu D, He Q, Cao H, Cheng J. Borate ester endcapped fluorescent hyperbranched conjugated polymer for trace peroxide explosive vapor detection. RSC Adv 2015. [DOI: 10.1039/c5ra02472b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hyperbranched polymer S1/ZnO nanorod array composite is very promising for a highly sensitive fluorescence device for detecting peroxide explosives.
Collapse
Affiliation(s)
- Lei Chen
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yixun Gao
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yanyan Fu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Defeng Zhu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Qingguo He
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Huimin Cao
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
35
|
Kubo Y, Nishiyabu R, James TD. Hierarchical supramolecules and organization using boronic acid building blocks. Chem Commun (Camb) 2015; 51:2005-20. [DOI: 10.1039/c4cc07712a] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current progress on hierarchical supramolecules using boronic acids has been highlighted in this feature article. The feasibility of the structure-directing ability is fully discussed from the standpoint of the generation of new smart materials.
Collapse
Affiliation(s)
- Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | | |
Collapse
|
36
|
Mamo SK, Gonzalez-Rodriguez J. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP). SENSORS 2014; 14:23269-82. [PMID: 25490589 PMCID: PMC4299062 DOI: 10.3390/s141223269] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/03/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensitivity and selectivity. In this work, a highly sensitive and selective molecularly imprinted polymer with electrochemical capabilities for the determination of TATP has been developed. The molecular imprinting has been performed via electropolymerisation onto a glassy carbon electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template and LiClO4. Differential Pulse Voltammetry of TATP, with LiClO4 as supporting electrolyte, was performed in a potential range of -2.0 V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design was used to optimise the monomer concentration at 0.1 mol∙L(-1), template concentration at 100 mmol∙L(-1) and the number of cyclic voltammetry scan cycles to 10. The molecularly imprinted polymer-modified glassy carbon electrode demonstrated good performance at low concentrations for a linear range of 82-44,300 µg∙L(-1) and a correlation coefficient of r(2) = 0.996. The limits of detection (LoD) and quantification (LoQ) achieved were 26.9 μg∙L(-1) and 81.6 μg∙L(-1), respectively. The sensor demonstrated very good repeatability with precision values (n = 6, expressed as %RSD) of 1.098% and 0.55% for 1108 and 2216 µg∙L(-1), respectively. It also proved selective for TATP in the presence of other explosive substances such as PETN, RDX, HMX, and TNT.
Collapse
|
37
|
Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer. Talanta 2014; 127:152-62. [DOI: 10.1016/j.talanta.2014.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/22/2022]
|
38
|
Krawczyk T, Baj S. Review: Advances in the Determination of Peroxides by Optical and Spectroscopic Methods. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.900781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Xu M, Han JM, Wang C, Yang X, Pei J, Zang L. Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8708-14. [PMID: 24801730 DOI: 10.1021/am501502v] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Trace vapor detection of hydrogen peroxide (H2O2) represents a practical approach to nondestructive detection of peroxide-based explosives, including liquid mixtures of H2O2 and fuels and energetic peroxide derivatives, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), and hexamethylene triperoxide diamine (HMTD). Development of a simple chemical sensor system that responds to H2O2 vapor with high reliability and sufficient sensitivity (reactivity) remains a challenge. We report a fluorescence ratiometric sensor molecule, diethyl 2,5-bis((((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)carbonyl)amino)terephthalate (DAT-B), for H2O2 that can be fabricated into an expedient, reliable, and sensitive sensor system suitable for trace vapor detection of H2O2. DAT-B is fluorescent in the blue region, with an emission maximum at 500 nm in the solid state. Upon reaction with H2O2, DAT-B is converted to an electronic "push-pull" structure, diethyl 2,5-diaminoterephthalate (DAT-N), which has an emission peak at a longer wavelength centered at 574 nm. Such H2O2-mediated oxidation of aryl boronates can be accelerated through the addition of an organic base such as tetrabutylammonium hydroxide (TBAH), resulting in a response time of less than 0.5 s under 1 ppm of H2O2 vapor. The strong overlap between the absorption band of DAT-N and the emission band of DAT-B enables efficient Förster resonance energy transfer (FRET), thus allowing further enhancement of the sensing efficiency of H2O2 vapor. The detection limit of a drop-cast DAT-B/TBAH film was projected to be 7.7 ppb. By combining high sensitivity and selectivity, the reported sensor system may find broad application in vapor detection of peroxide-based explosives and relevant chemical reagents through its fabrication into easy-to-use, cost-effective kits.
Collapse
Affiliation(s)
- Miao Xu
- Department of Materials Science and Engineering, University of Utah , 36 South Wasatch Drive, Salt Lake City, Utah 84112, United States
| | | | | | | | | | | |
Collapse
|
40
|
Guo P, Zhao G, Chen P, Lei B, Jiang L, Zhang H, Hu W, Liu M. Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance H₂O₂ vapor sensing. ACS NANO 2014; 8:3402-3411. [PMID: 24654963 DOI: 10.1021/nn406071f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Porphyrins are recognized as important π-conjugated molecules correlating supramolecular chemistry, nanoscience, and advanced materials science. So far, as their supramolecular nanoassemblies are addressed, most efforts focus on the photo- or opto-related subjects. Beyond these traditional subjects, it is strongly desired to develop advanced porphyrin nanoassemblies in some other new topics of paramount importance. By means of a surfactant-assisted assembly, we herein show that porphyrins of different central metal ions, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (H2TPyP), zinc 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (ZnTPyP), and oxo-[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV) (TiOTPyP), could be organized to form irregular aggregates, short nanorods, and long yet straight nanofibers, respectively. Remarkably, in terms of an organic ribbon mask technique, we show that such long yet straight TiOTPyP nanofibers could be integrated into single nanofiber-based two-end nanoelectronics. Such simple nanodevices could serve as high-performance sensors of a satisfactory stability, reproducibility, and selectivity for an expeditious detection of vapor-phase H2O2. This provides a new alternative for a fast sensing of vapor-phase H2O2, which is currently an important issue in the fields of anti-terrorism, industrial healthcare, etc. In contrast to the traditional investigations focusing on the photo- or opto-related topics, our work endows porphyrin nanostructures with new opportunities as advanced nanomaterials in terms of portable yet high-performance nanoelectronic sensors, which is an issue of general concern in modern advanced nanomaterials.
Collapse
Affiliation(s)
- Peipei Guo
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences , No. 2 Zhongguancun Beiyijie, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Matsumoto A, Nishiyabu R, Kubo Y. Synthesis of a borylated boron–dibenzopyrromethene dye enabling the visual detection of H2O2 vapor. RSC Adv 2014. [DOI: 10.1039/c4ra06061j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boron–dibenzopyrromethene dye with a pinacolboryl group has been newly synthesized for the use as a reaction-based chemosensor. A TLC plate coated by the dye enables us to detect H2O2 vapor visually.
Collapse
Affiliation(s)
- Asaki Matsumoto
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji Tokyo, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji Tokyo, Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji Tokyo, Japan
| |
Collapse
|
42
|
Dinesh B, Mani V, Saraswathi R, Chen SM. Direct electrochemistry of cytochrome c immobilized on a graphene oxide–carbon nanotube composite for picomolar detection of hydrogen peroxide. RSC Adv 2014. [DOI: 10.1039/c4ra02789b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A new bionanocomposite electrode based on cytochrome c immobilized graphene oxide-multiwalled carbon nanotube is used to fabricate a highly selective and sensitive amperometric biosensor for the picomolar level detection of hydrogen peroxide which may find application in bioimaging and healthcare
Collapse
Affiliation(s)
- Bose Dinesh
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021, India
| | - Veerappan Mani
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106, Republic of China
| | - Ramiah Saraswathi
- Department of Materials Science
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106, Republic of China
| |
Collapse
|
43
|
Ray RS, Sarma B, Mohanty S, Misra M. Theoretical and experimental study of sensing triacetone triperoxide (TATP) explosive through nanostructured TiO2 substrate. Talanta 2014; 118:304-11. [DOI: 10.1016/j.talanta.2013.09.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 11/15/2022]
|
44
|
Salinas Y, Solano MV, Sørensen RE, Larsen KR, Lycoops J, Jeppesen JO, Martínez-Máñez R, Sancenón F, Marcos MD, Amorós P, Guillem C. Chromo-Fluorogenic Detection of Nitroaromatic Explosives by Using Silica Mesoporous Supports Gated with Tetrathiafulvalene Derivatives. Chemistry 2013; 20:855-66. [DOI: 10.1002/chem.201302461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/10/2013] [Indexed: 01/04/2023]
|
45
|
Parajuli S, Miao W. Sensitive Determination of Triacetone Triperoxide Explosives Using Electrogenerated Chemiluminescence. Anal Chem 2013; 85:8008-15. [DOI: 10.1021/ac401962b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suman Parajuli
- Department of Chemistry
and Biochemistry, The University of Southern Mississippi, Hattiesburg,
Mississippi 39406, United States
| | - Wujian Miao
- Department of Chemistry
and Biochemistry, The University of Southern Mississippi, Hattiesburg,
Mississippi 39406, United States
| |
Collapse
|
46
|
Bulatov V, Reany O, Grinko R, Schechter I, Keinan E. Time-resolved, laser initiated detonation of TATP supports the previously predicted non-redox mechanism. Phys Chem Chem Phys 2013; 15:6041-8. [PMID: 23493859 DOI: 10.1039/c3cp44662j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previously reported computational study of the decomposition pathways of triacetone triperoxide (TATP), 1, predicted that unlike most energetic materials, which involve self-combustion of fuel and oxidants, 1 decomposes via a thermoneutral, non-redox pathway that involves entropy burst. These predictions are now corroborated by time-resolved monitoring of deflagration or detonation of 1 using a fast video camera following initiation by a short pulse focused laser beam. While a fireball always accompanies the explosion of 1 under air, the formation of a fireball is totally prevented under a nitrogen atmosphere. These observations indicate that combustion of the gaseous primary products occurs as a secondary event only in the presence of exogenous oxygen. The composition of the product mixture was found to depend on the experimental conditions. With long pulse focused laser beam (150 μs at 1064 nm) at either 210 or 110 mJ, the small amounts of charcoal needed for initiation suggest that the energy required to initiate 1 by pulse laser is 4-10 mJ, much smaller than the energy required for initiation by either mechanical stress or electric discharge. This time-resolved study highlights the very unusual properties of the peroxide based explosives.
Collapse
Affiliation(s)
- Valery Bulatov
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
47
|
Salinas Y, Martínez-Máñez R, Jeppesen JO, Petersen LH, Sancenón F, Marcos MD, Soto J, Guillem C, Amorós P. Tetrathiafulvalene-capped hybrid materials for the optical detection of explosives. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1538-1543. [PMID: 23373746 DOI: 10.1021/am303111c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mesoporous silica microparticles capped with TTF moieties and containing a ruthenium dye in the pores were used for the turn-on optical detection of the nitroaromatic explosives Tetryl and TNT via a selective pore uncapping and release of the entrapped dye.
Collapse
Affiliation(s)
- Yolanda Salinas
- Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia - Universitat de Valencia, E-46022, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Romolo FS, Cassioli L, Grossi S, Cinelli G, Russo MV. Surface-sampling and analysis of TATP by swabbing and gas chromatography/mass spectrometry. Forensic Sci Int 2013; 224:96-100. [DOI: 10.1016/j.forsciint.2012.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 10/04/2012] [Accepted: 11/06/2012] [Indexed: 11/26/2022]
|
49
|
Xu M, Han JM, Zhang Y, Yang X, Zang L. A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide. Chem Commun (Camb) 2013; 49:11779-81. [DOI: 10.1039/c3cc47631f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
|