1
|
In vitro and in silico evaluation of Ononis isoflavonoids as molecules targeting the central nervous system. PLoS One 2022; 17:e0265639. [PMID: 35298568 PMCID: PMC8929578 DOI: 10.1371/journal.pone.0265639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Isoflavonoids with various structural elements show a promising potential effect on central nervous system activities. Despite their favorable medicinal properties, the pharmacokinetic characteristics of this thoroughly investigated group of natural phenolics have only been described to a limited extent. Regarding the lack of information about the BBB permeability of isoflavones, isoflavanones, and pterocarpans found in Ononis species, the aim of our study was to investigate their physico-chemical properties influencing their absorption and distribution. Furthermore, we aimed to characterize the possible MAO-B inhibiting features of Ononis isoflavonoids in silico. Octanol-water partitioning and BBB-PAMPA permeability of formononetin, calycosin D, onogenin, sativanone, medicarpin and maackiain were assessed for the first time in our study. The log P values ranged from 2.21 to 3.03 and log D7.4 values from 2.48 to 3.03, respectively, indicating optimal polarity for BBB permeation. The results of PAMPA-BBB expressed as log Pe values fell between -5.60 and -4.45, predicting their good permeation capability as well. The effective permeability values showed structure-dependent differences, indicating that the pterocarpan type skeleton was the most preferred type, followed by isoflavanones, then isoflavones. The methoxy or methylenedioxy substitution of the same skeleton did not influence the permeability significantly, contrary to an additional hydroxyl group. Membrane retention showed a similar structure dependent pattern to that of effective permeability, ranging from 16% to 70%. For the identification of volumes of chemical space related to particular biological activities the ChemGPS-NP framework was used. The MAO-B inhibitory potency and selectivity were also predicted and validated. Based on our results, MAO-B inhibitory potency could be predicted with good precision, but in the case of selectivity, only the direction could be concluded (favors MAO-B or MAO-A), not the magnitude. Our finding reflects that Ononis isoflavonoid aglycones show an excellent fit with the suggested parameters for BBB permeability and this is the first study to confirm the highly favorable position of these natural products for MAO-B inhibition.
Collapse
|
2
|
van Dinteren S, Araya-Cloutier C, de Bruijn WJC, Vincken JP. A targeted prenylation analysis by a combination of IT-MS and HR-MS: Identification of prenyl number, configuration, and position in different subclasses of (iso)flavonoids. Anal Chim Acta 2021; 1180:338874. [PMID: 34538332 DOI: 10.1016/j.aca.2021.338874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
Prenylated (iso)flavonoids are potent bioactive compounds found in the Fabaceae family. Analysis and quantification of this type of phytochemicals is challenging due to their large structural diversity. In this study, the fragmentation of prenylated (iso)flavonoids was investigated using electrospray ionization ion trap mass spectrometry (ESI-IT-MSn) with fragmentation by collision induced dissociation (CID) in combination and Orbitrap-MS (ESI-FT-MS2) with fragmentation by higher energy C-trap dissociation (HCD). With this combination of IT-MSn and high resolution MS (FT-MSn), it was possible to determine the fragmentation pathways and characteristic spectral features of different subclasses of prenylated (iso)flavonoid standards, as well as characteristic fragmentations and neutral losses of different prenyl configurations. Based on our findings, a decision guideline was developed to (i) identify (iso)flavonoid backbones, (ii) annotate prenyl number, (iii) configuration, and (iv) position of unknown prenylated (iso)flavonoids, in complex plant extracts. In this guideline, structural characteristics were identified based on: (i) UV absorbance of the compound, (ii) mass-to-charge (m/z) ratio of the parent compound; (iii) ratio of relative abundances between neutral losses 42 and 56 u in MSn; (iv) retro-Diels-Alder (RDA) fragments, neutral losses 54 and 68 u, and the ratio [M+H-C4H8]+/[M+H]+. Using this guideline, 196 prenylated (iso)flavonoids were annotated in a Glycyrrhiza glabra root extract. In total, 75 skeletons were single prenylated, 104 were double prenylated, and for merely 17 skeletons prenyl number could not unambiguously be annotated. Our prenylation guideline allows rapid screening for identification of prenylated (iso)flavonoids, including prenyl number, configuration, and position, in complex plant extracts. This guideline supports research on these bioactive compounds in the areas of plant metabolomics and natural products.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Jung YS, Rha CS, Baik MY, Baek NI, Kim DO. A brief history and spectroscopic analysis of soy isoflavones. Food Sci Biotechnol 2020; 29:1605-1617. [PMID: 33282429 PMCID: PMC7708537 DOI: 10.1007/s10068-020-00815-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The production of soybean continues to increase worldwide. People are showing more interest in the beneficial health effects of soybeans than before. However, the origin and history of soybeans are still being discussed among many researchers. Chromatographic methods enable the desirable separation of a variety of isoflavones from soybeans. The structures of isolated soy isoflavones have been successfully identified in tandem with spectroscopic analytical instruments and technologies such as liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The theoretical background behind spectroscopy may help improve the understanding for the analysis of isoflavones in soybeans and soy-derived foods. This review covers the origin of the English name of soybean and its scientific name, Glycine max (L.) Merrill, based on the evidence reported to date. Moreover, the reports of soy isoflavones discovered over a period of about 100 years have been briefly reviewed.
Collapse
Affiliation(s)
- Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Chan-Su Rha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Nam-In Baek
- Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
4
|
Nakata R, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. A fragmentation study of isoflavones by IT-TOF-MS using biosynthesized isotopes. Biosci Biotechnol Biochem 2018; 82:1309-1315. [PMID: 29699437 DOI: 10.1080/09168451.2018.1465810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
To aid in the identification and quantification of biologically and agriculturally significant natural products, tandem mass spectrometry can provide accurate structural information with high selectivity and sensitivity. In this study, diagnostic fragmentation patterns of isoflavonoids were examined by liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). The fragmentation scheme for [M+H-2CO]+ ions derived from isoflavones and [M+H-B-ring-CO]+ ions derived from 5-hydroxyisoflavones, were investigated using different isotopically labeled isoflavones, specifically [1',2',3',4',5',6',2,3,4-13C9] and [2',3',5',6',2-D5] isoflavones. Specific isotopically labeled isoflavones were prepared through the biosynthetic incorporation of pharmacologically applied 13C- and D-labelled L-phenylalanine precursors in soybean plants following the application of insect elicitors. Using this approach, we empirically demonstrate that the [M+H-2CO]+ ion is generated by an intramolecular proton rearrangement during fragmentation. Furthermore, [M+H-B-ring-CO]+ ion is demonstrated to contain a C2H moiety derived from C-ring of 5-hydroxyisoflavones. A mechanistic understanding of characteristic isoflavone fragmentation patterns contributes to the efficacy and confidence in identifying related isoflavones by LC-MSn.
Collapse
Affiliation(s)
- Ryu Nakata
- a Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Naoko Yoshinaga
- a Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | - Yutaka Okumoto
- a Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Alisa Huffaker
- b Section of Cell and Developmental Biology , University of California at San Diego , San Diego , CA , USA
| | - Eric A Schmelz
- b Section of Cell and Developmental Biology , University of California at San Diego , San Diego , CA , USA
| | - Naoki Mori
- a Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| |
Collapse
|
5
|
Cai T, Guo ZQ, Xu XY, Wu ZJ. Recent (2000-2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC-MS. MASS SPECTROMETRY REVIEWS 2018; 37:202-216. [PMID: 27341181 DOI: 10.1002/mas.21514] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MSn spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018.
Collapse
Affiliation(s)
- Tian Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ze-Qin Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiao-Ying Xu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhi-Jun Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
6
|
Bustamante-Rangel M, Delgado-Zamarreño MM, Pérez-Martín L, Rodríguez-Gonzalo E, Domínguez-Álvarez J. Analysis of Isoflavones in Foods. Compr Rev Food Sci Food Saf 2018; 17:391-411. [DOI: 10.1111/1541-4337.12325] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Myriam Bustamante-Rangel
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - María Milagros Delgado-Zamarreño
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Lara Pérez-Martín
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Encarnación Rodríguez-Gonzalo
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Javier Domínguez-Álvarez
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| |
Collapse
|
7
|
Lucci P, Saurina J, Núñez O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Yoneyama K, Akashi T, Aoki T. Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids. PLANT & CELL PHYSIOLOGY 2016; 57:2497-2509. [PMID: 27986914 PMCID: PMC5159607 DOI: 10.1093/pcp/pcw178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/15/2016] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max) accumulates several prenylated isoflavonoid phytoalexins, collectively referred to as glyceollins. Glyceollins (I, II, III, IV and V) possess modified pterocarpan skeletons with C5 moieties from dimethylallyl diphosphate, and they are commonly produced from (6aS, 11aS)-3,9,6a-trihydroxypterocarpan [(-)-glycinol]. The metabolic fate of (-)-glycinol is determined by the enzymatic introduction of a dimethylallyl group into C-4 or C-2, which is reportedly catalyzed by regiospecific prenyltransferases (PTs). 4-Dimethylallyl (-)-glycinol and 2-dimethylallyl (-)-glycinol are precursors of glyceollin I and other glyceollins, respectively. Although multiple genes encoding (-)-glycinol biosynthetic enzymes have been identified, those involved in the later steps of glyceollin formation mostly remain unidentified, except for (-)-glycinol 4-dimethylallyltransferase (G4DT), which is involved in glyceollin I biosynthesis. In this study, we identified four genes that encode isoflavonoid PTs, including (-)-glycinol 2-dimethylallyltransferase (G2DT), using homology-based in silico screening and biochemical characterization in yeast expression systems. Transcript analyses illustrated that changes in G2DT gene expression were correlated with the induction of glyceollins II, III, IV and V in elicitor-treated soybean cells and leaves, suggesting its involvement in glyceollin biosynthesis. Moreover, the genomic signatures of these PT genes revealed that G4DT and G2DT are paralogs derived from whole-genome duplications of the soybean genome, whereas other PT genes [isoflavone dimethylallyltransferase 1 (IDT1) and IDT2] were derived via local gene duplication on soybean chromosome 11.
Collapse
Affiliation(s)
- Keisuke Yoneyama
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
9
|
Gampe N, Darcsi A, Lohner S, Béni S, Kursinszki L. Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC–MS/MS and NMR. J Pharm Biomed Anal 2016; 123:74-81. [DOI: 10.1016/j.jpba.2016.01.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|
10
|
Aisyah S, Gruppen H, Andini S, Bettonvil M, Severing E, Vincken JP. Variation in accumulation of isoflavonoids in Phaseoleae seedlings elicited by Rhizopus. Food Chem 2015; 196:694-701. [PMID: 26593543 DOI: 10.1016/j.foodchem.2015.09.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Abstract
Seeds from seven species of tribe Phaseoleae, i.e. Phaseolus, Vigna, Lablab and Psophocarpus, were investigated for inducibility of isoflavonoids by germination with or without subsequent elicitation with Rhizopus oryzae. Germination alone poorly induced isoflavonoid production (in the range of 0.2-0.7 mg representative compound equivalents (RCE)/g DW), whereas application of Rhizopus onto the seedlings increased the isoflavonoid content considerably (in the range of 0.5-3.3 mg RCE/g DW). The inducibility of different isoflavonoid subclasses in seedlings with Rhizopus varied per species. Isoflavones and isoflavanones were mainly found in elicited seedlings of Phaseolus, Vigna and Lablab, whereas pterocarpans were mainly observed in those of Psophocarpus. Despite their phylogenetic relatedness, the seeds of various species within Phaseoleae appeared to respond differently towards elicitation by Rhizopus during germination. The kind of molecules induced followed the phylogenetic relationship of the various species, but their amounts induced during germination, alone or combined with elicitation, did not.
Collapse
Affiliation(s)
- Siti Aisyah
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Department of Chemistry Education, Indonesia University of Education, Setiabudi 229, Bandung 40154, Indonesia
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Silvia Andini
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Monique Bettonvil
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Edouard Severing
- Laboratory of Genetics, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
11
|
Schendel RR, Karrer C, Bunzel D, Huch M, Hildebrand AA, Kulling SE, Bunzel M. Structural Transformation of 8-5-Coupled Dehydrodiferulates by Human Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7975-7985. [PMID: 26287944 DOI: 10.1021/acs.jafc.5b03234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ingested dehydrodiferulates (DFAs) are partially released from cereal dietary fiber by human colonic microbiota, but little research has explored the further microbial metabolism of 8-5-coupled DFAs. This study investigated the in vitro microbial metabolism and elucidated major metabolites of free 8-5-DFAs (benzofuran and open forms) and an esterified analogue, 8-5-DFA diethyl ester (benzofuran). Synthesized standard compounds were incubated with fresh human fecal suspensions. Metabolites were isolated and structurally elucidated using high-resolution-LC-time-of-flight-(ToF)-MS, GC-MS, and NMR. Nine metabolite structures were unambiguously characterized with NMR, and four additional metabolites were tentatively identified to reveal structural conversion motifs: propenyl side chain hydrogenation (all substrates), O-demethylation and reductive ring-opening (8-5-DFA diethyl ester and free 8-5-DFA [benzofuran]), and de-esterification (8-5-DFA diethyl ester). A pathway of microbial 8-5-DFA metabolism was proposed based on metabolite formation kinetics. Importantly, de-esterification of the 8-5-DFA diethyl ester occurred primarily after and/or concurrently with other metabolism steps. Cleavage to monomers was not observed.
Collapse
Affiliation(s)
- Rachel R Schendel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Cecile Karrer
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Diana Bunzel
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institute (MRI) , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institute (MRI) , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Andreas A Hildebrand
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institute (MRI) , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Lutter S, Schmalbach K, Esch HL, Lehmann L. The isoflavone irilone contributes to the estrogenic potential of dietary supplements containing red clover. Arch Toxicol 2013; 88:309-21. [PMID: 23982890 DOI: 10.1007/s00204-013-1114-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 08/01/2013] [Indexed: 12/26/2022]
Abstract
A recent intervention study demonstrated the occurrence of irilone as second most abundant isoflavone next to daidzein in human plasma after consumption of a red clover-based dietary supplement (RCDS) containing predominately formononetin ≫ biochanin A > irilone (12 % of these isoflavones). To elucidate the relevance of this finding, in the present study (1) the representativeness of the isoflavone composition of the RCDS and (2) the estrogenic activity of irilone were investigated. Thus, major isoflavones were quantified in eight commercially available RCDS. Furthermore, the estrogenic activities of irilone and other isoflavones were determined by marker gene expression in Ishikawa and cell proliferation in MCF-7 cells. Irilone amounted to 1.8-10.9 mg/g capsule content and 5-18 % of the three major isoflavones, respectively, demonstrating the general occurrence of irilone in RCDS. Moreover, irilone significantly induced the activity of alkaline phosphatase (AlP) as well as AlP, progesterone receptor, and androgen receptor mRNA levels in Ishikawa cells. Furthermore, irilone significantly induced MCF-7 cell proliferation. Neither 17β-estradiol (E2)-induced AlP activity nor E2-induced MCF-7 cell proliferation was affected by irilone. ICI182,780 antagonized IRI-induced effects on both AlP activity and cell proliferation, suggesting an estrogen receptor agonistic mode of action. Taking into account the estrogenic activity of red clover isoflavones (formononetin, biochanin A, prunetin, glycitein) and their biotransformation products (daidzein, genistein, ethylphenol) as well as published plasma levels of isoflavones after consumption of RCDS, irilone could contribute approximately 50 % of the E2 equivalents estimated for daidzein.
Collapse
Affiliation(s)
- Stefanie Lutter
- Institute of Pharmacy and Food Chemistry, Chair of Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany
| | | | | | | |
Collapse
|
13
|
Choi KY, Jung EO, Yun H, Yang YH, Kazlauskas RJ, Kim BG. Development of colorimetric HTS assay of cytochrome p450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity. Chembiochem 2013; 14:1231-8. [PMID: 23780920 DOI: 10.1002/cbic.201300212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 11/10/2022]
Abstract
A current challenge in high-throughput screening (HTS) of hydroxylation reactions by P450 is a fast and sensitive assay for regioselective hydroxylation against millions of mutants. We have developed a solid-agar plate-based HTS assay for screening ortho-specific hydroxylation of daidzein by sensing formaldehyde generated from the O-dealkylation reaction. This method adopts a colorimetric dye, pararosaniline, which has previously been used as an aldehyde-specific probe within cells. The rationale for this method lies in the fact that the hydroxylation activity at ortho-carbon position to COH correlates with a linear relationship to O-dealkylation activity on chemically introduced methoxy group at the corresponding COH. As a model system, a 4',7-dihydroxyisoflavone (daidzein) hydroxylase (CYP102D1 F96V/M246I), which catalyzes hydroxylation at ortho positions of the daidzein A/B-ring, was examined for O-dealklyation activity, by using permethylated daidzein as a surrogate substrate. By using the developed indirect bishydroxylation screening assay, the correlation coefficient between O-dealkylation and bishydroxylation activity for the template enzyme was 0.72. For further application of this assay, saturation mutants at A273/G274/T277 were examined by mutant screening with a permethylated daidzein analogue substrate (A-ring inactivated in order to find enhanced 3'-regioselectiviy). The whole-cell biotransformation of daidzein by final screened mutant G1 (A273H/G274E/T277G) showed fourfold increased conversion yield, with 14.3 mg L(-1) production titer and greatly increased 3'-regioselectiviy (3'/6=11.8). These results show that there is a remarkably high correlation (both in vitro and in vivo), thus suggesting that this assay would be ideal for a primary HTS assay for P450 reactions.
Collapse
Affiliation(s)
- Kwon-Young Choi
- School of Chemical and Biological Engineering, Seoul National University, 1 Kwanak-ro, 151-742 Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Tchoumtchoua J, Njamen D, Mbanya JC, Skaltsounis AL, Halabalaki M. Structure-oriented UHPLC-LTQ Orbitrap-based approach as a dereplication strategy for the identification of isoflavonoids from Amphimas pterocarpoides crude extract. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:561-575. [PMID: 23674281 DOI: 10.1002/jms.3167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 06/02/2023]
Abstract
Hyphenated techniques and especially ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) are nowadays widely employed in natural products research. However, the complex nature of plant extracts complicates considerably the analysis and the identification of their constituents. Nevertheless, new MS analyzers with increased resolving power and accuracy such as the orbital trap (Orbitrap) could facilitate drastically this process. The objective of this study is the development of a new structure-oriented approach based on fast UHPLC-high-resolution (HR)MS and HRMS/MS methodologies for the identification of isoflavonoids in crude extracts. In addition, aims to assist dereplication procedures, to decrease the laborious isolation steps and orient the focused isolation of compounds of interest. As a proof of concept, the methanol extract of the stem bark of Amphimas pterocarpoides (Leguminosae) was selected. Based on chromatographic (retention time, polarity) and spectrometric features (ultraviolet spectra, accurate m/z, proposed elemental composition, ring double bond equivalent, and relative isotopic abundance) as well as HRMS/MS spectra, several isoflavonoids were identified. In order to verify the proposed structures, 11 isoflavonoids were selectively isolated and unambiguously identified using 1&2D nuclear magnetic resonance techniques. Moreover, the isolated isoflavonoids were studied in HRMS/MS level, employing electrospray ionization and atmospheric pressure chemical ionization sources, in both modes. Useful information regarding their fragmentation patterns was obtained, and characteristic diagnostic ions were defined for the identification of methoxylated isoflavones, dihydroisoflavones and 5-hydroxylated isoflavonoids. Based on the current results, the proposed dereplication strategy was verified and could comprise a novel approach for the analysis of crude extracts in the future not only for isoflavonoids but also for other chemical classes of natural products.
Collapse
Affiliation(s)
- Job Tchoumtchoua
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | | | | | | | | |
Collapse
|
15
|
Nolvachai Y, Marriott PJ. GC for flavonoids analysis: Past, current, and prospective trends. J Sep Sci 2012; 36:20-36. [DOI: 10.1002/jssc.201200846] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Yada Nolvachai
- Centre for Green Chemistry; School of Chemistry; Monash University; Clayton Australia
| | - Philip J. Marriott
- Centre for Green Chemistry; School of Chemistry; Monash University; Clayton Australia
| |
Collapse
|
16
|
Hong B, Li W, Song A, Zhao C. Determination of indole alkaloids and highly volatile compounds in Rauvolfia verticillata by HPLC-UV and GC-MS. J Chromatogr Sci 2012; 51:926-30. [PMID: 23212134 DOI: 10.1093/chromsci/bms191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rauvolfia verticillata (Lour.) Baill. (also called Luofumu in Chinese) is commonly used in traditional Chinese medicine for lowering blood pressure. In this study, a high-performance liquid chromatography assay using ultraviolet detection is described for the simultaneous measurement of the five bioactive indole alkaloids (sarpagine, yohimbine, ajmaline, ajmalicine and reserpine) in Rauvolfia. The detection of all five compounds was conducted at 280 nm. In quantitative analysis, the five compounds showed good regressions (R(2) > 0.9988) within the test ranges, and the recovery of the method was in the range of 90.4-101.4%. In addition, a simple gas chromatography mass method using a DB-1 silica capillary column (30 m × 0.25 mm i.d., 0.25 µm) is described for the identification of the highly volatile compounds in Rauvolfia. In qualitative analysis, more than 39 compounds were assayed and identified using the mass function and the National Institute of Standards and Technology database search system. The results demonstrated that the combination of quantitative and qualitative analyses offered an efficient way to evaluate the quality and consistency of Rauvolfia verticillata.
Collapse
Affiliation(s)
- Bo Hong
- 1Institute of Medicine, Qiqihar Medical University, Qiqihar 161042, China
| | | | | | | |
Collapse
|
17
|
Systematic bottom-up approach for flavonoid derivative screening in plant material using liquid chromatography high-resolution mass spectrometry. Anal Bioanal Chem 2012; 403:995-1006. [DOI: 10.1007/s00216-012-5865-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
|
18
|
Quantification of genistein and daidzein in two endemic Genista species and their antioxidant activity. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100408015o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the current research, the total and free genistein and daidzein contents
were determined in two endemic Genista species (G. sandrasica and G. vuralii)
by an HPLC method. The highest amount of total genistein and total daidzein
was found in G. sandrasica, 0.582 % and 0.113 %, respectively, whereas only
the free daidzein content of G. sandrasica was higher than that of G.
vuralii. The antioxidant activity of the crude methanol and hydrolyzed
extracts of these species was evaluated by three in vitro methods; namely
DPPH free radical scavenging, ferrous ionchelating and ferric-reducing
antioxidant power (FRAP) tests at 0.25, 0.50, and 1.0 mg ml. The hydrolyzed
extracts of both species displayed greater antioxidant activity than the
crude methanol extracts in all tests. Total phenol and flavonoid contents in
the extracts were determined via the Folin-Ciocalteau and AlCl3 reagents,
respectively. G. vuralii was richer in terms of total phenol and flavonoid
contents compared to G. sandrasica.
Collapse
|
19
|
Braune A, Maul R, Schebb NH, Kulling SE, Blaut M. The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota. Mol Nutr Food Res 2010; 54:929-38. [PMID: 19998384 DOI: 10.1002/mnfr.200900233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal bacteria may influence bioavailability and physiological activity of dietary isoflavones. We therefore investigated the ability of human intestinal microbiota to convert irilone and genistein in vitro. In contrast to genistein, irilone was largely resistant to transformation by fecal slurries of ten human subjects. The fecal microbiota converted genistein to dihydrogenistein, 6'-hydroxy-O-desmethylangolensin, and 2-(4-hydroxyphenyl)-propionic acid. However, considerable interindividual differences in the rate of genistein degradation and the pattern of metabolites formed from genistein were observed. Only one metabolite, namely dihydroirilone, was formed from irilone in minor amounts. In further experiments, Eubacterium ramulus, a prevalent flavonoid-degrading species of the human gut, was tested for transformation of irilone. In contrast to genistein, irilone was not converted by E. ramulus. Irilone only differs from genistein by a methylenedioxy group attached to the A-ring of the isoflavone skeleton. This substitution obviously restricts the degradability of irilone by human intestinal bacteria.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | | | | | | | | |
Collapse
|
20
|
Litescu SC, Eremia SAV, Bertoli A, Pistelli L, Radu GL. Laccase-Nafion Based Biosensor for the Determination of Polyphenolic Secondary Metabolites. ANAL LETT 2010. [DOI: 10.1080/00032710903518518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Determination of mycotoxins in foods: current state of analytical methods and limitations. Appl Microbiol Biotechnol 2010; 86:1595-612. [DOI: 10.1007/s00253-010-2535-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 11/26/2022]
|
22
|
Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal Bioanal Chem 2009; 394:1361-73. [DOI: 10.1007/s00216-009-2765-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
|
23
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2008; 19:568-575. [PMID: 18988322 DOI: 10.1002/pca.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
24
|
Liu EH, Qi LW, Cao J, Li P, Li CY, Peng YB. Advances of modern chromatographic and electrophoretic methods in separation and analysis of flavonoids. Molecules 2008; 13:2521-44. [PMID: 18927516 PMCID: PMC6245463 DOI: 10.3390/molecules13102521] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/30/2008] [Accepted: 10/07/2008] [Indexed: 12/01/2022] Open
Abstract
Flavonoids, one of the largest groups of secondary metabolites, are widespread in vegetable crops such as herbs, fruits, vegetables, grains, seeds and derived foods such as juices, wines, oils, etc. They receive considerable attention due to their biological and physiological importance. Hundreds of publications on the analysis of flavonoids have appeared over the past decade. Traditional and more advanced techniques have come to prominence for sample preparation, separation, detection, and identification. This review intends to provide an updated, concise overview on the recent development and trends of separation, identification and quantification for flavonoids by modern chromatographic and spectrophotometric analytical techniques, including gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). The sample preparation before analysis is also briefly summarized.
Collapse
Affiliation(s)
- E-Hu Liu
- Key Laboratory of Modern Chinese Medicines-China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China.
| | | | | | | | | | | |
Collapse
|