1
|
Kumar S, Gogoi AS, Shukla S, Trivedi M, Gulati S. Conclusion and Future Prospects of Chitosan-Based Nanocomposites. CHITOSAN-BASED NANOCOMPOSITE MATERIALS 2022:305-341. [DOI: 10.1007/978-981-19-5338-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Swaidan A, Ghayyem S, Barras A, Addad A, Szunerits S, Boukherroub R. Enhanced Antibacterial Activity of CuS-BSA/Lysozyme under Near Infrared Light Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2156. [PMID: 34578471 PMCID: PMC8467990 DOI: 10.3390/nano11092156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
The synthesis of multifunctional photothermal nanoagents for antibiotic loading and release remains a challenging task in nanomedicine. Herein, we investigated a simple, low-cost strategy for the preparation of CuS-BSA nanoparticles (NPs) loaded with a natural enzyme, lysozyme, as an antibacterial drug model under physiological conditions. The successful development of CuS-BSA NPs was confirmed by various characterization tools such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Lysozyme loading onto CuS-BSA NPs was evaluated by UV/vis absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), zeta potential, and dynamic light scattering measurements. The CuS-BSA/lysozyme nanocomposite was investigated as an effective means for bacterial elimination of B. subtilis (Gram-positive) and E. coli (Gram-negative), owing to the combined photothermal heating performance of CuS-BSA and lysozyme release under 980 nm (0.7 W cm-2) illumination, which enhances the antibiotic action of the enzyme. Besides the photothermal properties, CuS-BSA/lysozyme nanocomposite possesses photodynamic activity induced by NIR illumination, which further improves its bacterial killing efficiency. The biocompatibility of CuS-BSA and CuS-BSA/Lysozyme was elicited in vitro on HeLa and U-87 MG cancer cell lines, and immortalized human hepatocyte (IHH) cell line. Considering these advantages, CuS-BSA NPs can be used as a suitable drug carrier and hold promise to overcome the limitations of traditional antibiotic therapy.
Collapse
Affiliation(s)
- Abir Swaidan
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
- LEADDER, Laboratoire des Etudes Appliquées au Développement Durable et Energie Renouvelable, Lebanese University, Hadath 1417614411, Lebanon
| | - Sena Ghayyem
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
- Analytical Chemistry Department, School of Chemistry, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Alexandre Barras
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| | - Ahmed Addad
- CNRS, UMR 8207—UMET, University of Lille, F-59000 Lille, France;
| | - Sabine Szunerits
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| | - Rabah Boukherroub
- University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.S.); (S.G.); (A.B.); (S.S.)
| |
Collapse
|
3
|
Tian Y, Tang R, Wang X, Zhou J, Li X, Ma S, Gong B, Ou J. Bioinspired dandelion-like silica nanoparticles modified with L-glutathione for highly efficient enrichment of N-glycopeptides in biological samples. Anal Chim Acta 2021; 1173:338694. [PMID: 34172155 DOI: 10.1016/j.aca.2021.338694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
The pretreatment of complicated biological samples to eliminate the interference of nonglycopeptides and improve the efficiency of glycopeptides detection is crucial in glycoproteomics research. Hydrophilic interaction chromatography (HILIC) has been adopted for enrichment of glycosylated peptides following identification with mass spectrometry, but it is still urgent to develop novel hydrophilic materials to save cost and improve enrichment efficiency. Scientists are pursuing to fabricate freestanding intelligent artificial materials. One promising approach is to use biomimic material. In our case, "one-pot" strategy was developed to prepare bioinspired nano-core-shell silica microspheres (CSSMs), employing tetrapropylorthosilicate as the silicon source and phenolic resin as the soft template. The pore structure of the obtained microspheres diverged from the center to the outside with diameter ranged from 150 to 340 nm, and shell layer ranged from 25 to 83 nm by adjusting the preparation parameters. Some of them showed dandelion-like morphology. After hydrophilic modification, these CSSMs exhibited great hydrophilicity and could be used as sorbents for enriching N-glycopeptides from complicated biological samples in HILIC. Up to 594 unique N-glycopeptides and 367 N-glycosylation sites from 182 N-glycoproteins were unambiguously identified from 2 μL of human serum, which was superior to the enrichment performance of many HILIC materials in reported papers, demonstrating great potential advantages in proteomic application.
Collapse
Affiliation(s)
- Yang Tian
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xia Wang
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiahua Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Zhou Y, Jiang X, Tong T, Fang L, Wu Y, Liang J, Xiao S. High antiviral activity of mercaptoethane sulfonate functionalized Te/BSA nanostars against arterivirus and coronavirus. RSC Adv 2020; 10:14161-14169. [PMID: 35498493 PMCID: PMC9051606 DOI: 10.1039/d0ra01387k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Mercaptoethane sulfonate functionalised Te/BSA nanostars are prepared and exhibit excellent antiviral activity against arteriviruses and coronaviruses.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Veterinary Medicine
| | - Xiaohan Jiang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Science
| | - Ting Tong
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Science
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Veterinary Medicine
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Science
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Science
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- College of Veterinary Medicine
| |
Collapse
|
5
|
Trapani A, Tripodo G, Mandracchia D, Cioffi N, Ditaranto N, De Leo V, Cordero H, Esteban MA. Glutathione-loaded solid lipid nanoparticles based on Gelucire® 50/13: Spectroscopic characterization and interactions with fish cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Zhou Y, Bai Y, Liu H, Jiang X, Tong T, Fang L, Wang D, Ke Q, Liang J, Xiao S. Tellurium/Bovine Serum Albumin Nanocomposites Inducing the Formation of Stress Granules in a Protein Kinase R-Dependent Manner. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25241-25251. [PMID: 29993233 DOI: 10.1021/acsami.8b09402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of nanoparticles (NPs) on cellular stress responses is important to the understanding of nanotoxicities and developing safe therapies. Although the relationship between NPs and cellular stress responses has been preliminarily investigated, stress responses to NPs remain unclear. Here, tellurium/bovine serum albumin (Te/BSA) nanocomposites were prepared using sodium tellurite, BSA, and glutathione as precursors. The as-prepared Te/BSA nanocomposites, with particle size similar to that of many viruses, are found to induce the formation of stress granules (SGs), a kind of cytoplasmic RNA granule formed under various stresses. The SGs in Te/BSA nanocomposite-treated cells are composed of T-cell internal antigen 1 (TIA1), TIA1-related protein, and eukaryotic initiation factor 3η. Using chemical inhibitors and small interfering RNA-mediated silencing, protein kinase R (PKR) is identified as the α-subunit of eukaryotic initiation factor 2 (eIF2α)-kinase activated upon Te/BSA nanocomposite incubation, which is also the dominant kinase responsible for eIF2α activation under virus infection. Mechanistically, PKR is activated in a heparin-dependent manner. This study reveals a biological effect of Te/BSA nanocomposites on stress responses, providing a preliminary basis for further research on viruslike particles and the application of NPs in biology.
Collapse
|
7
|
Liu T, Wang Y, Li B, Deng H, Huang Z, Qian L, Wang X. Urea free synthesis of chitin-based acrylate superabsorbent polymers under homogeneous conditions: Effects of the degree of deacetylation and the molecular weight. Carbohydr Polym 2017; 174:464-473. [DOI: 10.1016/j.carbpol.2017.06.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
8
|
Sportelli MC, Volpe A, Picca RA, Trapani A, Palazzo C, Ancona A, Lugarà PM, Trapani G, Cioffi N. Spectroscopic Characterization of Copper-Chitosan Nanoantimicrobials Prepared by Laser Ablation Synthesis in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 7:E6. [PMID: 28336840 PMCID: PMC5295196 DOI: 10.3390/nano7010006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 11/16/2022]
Abstract
Copper-chitosan (Cu-CS) nanoantimicrobials are a novel class of bioactive agents, providing enhanced and synergistic efficiency in the prevention of biocontamination in several application fields, from food packaging to biomedical. Femtosecond laser pulses were here exploited to disrupt a Cu solid target immersed into aqueous acidic solutions containing different CS concentrations. After preparation, Cu-CS colloids were obtained by tuning both Cu/CS molar ratios and laser operating conditions. As prepared Cu-CS colloids were characterized by Fourier transform infrared spectroscopy (FTIR), to study copper complexation with the biopolymer. X-ray photoelectron spectroscopy (XPS) was used to elucidate the nanomaterials' surface chemical composition and chemical speciation of the most representative elements. Transmission electron microscopy was used to characterize nanocolloids morphology. For all samples, ξ-potential measurements showed highly positive potentials, which could be correlated with the XPS information. The spectroscopic and morphological characterization herein presented outlines the characteristics of a technologically-relevant nanomaterial and provides evidence about the optimal synthesis parameters to produce almost monodisperse and properly-capped Cu nanophases, which combine in the same core-shell structure two renowned antibacterial agents.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- IFN-CNR, Physics Department "M. Merlin", Bari 70126, Italy.
- Chemistry Department, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Annalisa Volpe
- IFN-CNR, Physics Department "M. Merlin", Bari 70126, Italy.
- Physics Department, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Rosaria Anna Picca
- Chemistry Department, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Claudio Palazzo
- Department of Pharmacy-Drug Sciences, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Antonio Ancona
- IFN-CNR, Physics Department "M. Merlin", Bari 70126, Italy.
| | - Pietro Mario Lugarà
- IFN-CNR, Physics Department "M. Merlin", Bari 70126, Italy.
- Physics Department, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| | - Nicola Cioffi
- Chemistry Department, Università degli Studi di Bari "Aldo Moro", Bari 70126, Italy.
| |
Collapse
|
9
|
Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review. J Drug Target 2015; 23:775-88. [PMID: 25758751 DOI: 10.3109/1061186x.2015.1020809] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nose to brain delivery of neurotherapeutics have been tried by several researchers to explore the virtues of this route viz. circumvention of BBB, avoidance of hepatic metabolism, practicality, safety, ease of administration and non-invasiveness. Nanoparticle (NP) therapeutics is an emerging modality for the treatment of Parkinson's disease (PD) as it offers targeted delivery and enhances the therapeutic efficacy and/or bioavailability of neurotherapeutics. This review presents a concise incursion into the nanomedicines suitable for PD therapy delivered via naso-brain transport. Clinical signs of PD, its pathophysiology, specific genetic determinants, diagnosis and therapy involved have been hashed out. Properties of brain-targeting NPs, transport efficacy and various nanocarriers developed so far also been furnished. In our opinion, nanotechnology-enabled naso-brain drug delivery is an excellent means of delivering neurotherapeutics and is a promising avenue for researchers to develop new formulations for the effective management of PD.
Collapse
Affiliation(s)
- Abhijeet D Kulkarni
- a Industrial Pharmacy Laboratory, Department of Pharmaceutics , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , Maharashtra , India
| | - Yogesh H Vanjari
- a Industrial Pharmacy Laboratory, Department of Pharmaceutics , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , Maharashtra , India
| | - Karan H Sancheti
- a Industrial Pharmacy Laboratory, Department of Pharmaceutics , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , Maharashtra , India
| | - Veena S Belgamwar
- b Department of Pharmaceutical Sciences , R.T.M. Nagpur University , Nagpur , Maharashtra , India , and
| | - Sanjay J Surana
- c Department of Pharmacognosy , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , Maharashtra , India
| | - Chandrakantsing V Pardeshi
- a Industrial Pharmacy Laboratory, Department of Pharmaceutics , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , Maharashtra , India
| |
Collapse
|
10
|
Dementjev A, Mordas G, Ulevičius V, Gulbinas V. Investigation of microstructured chitosans by coherent anti-Stokes Raman microscopy. J Microsc 2014; 257:217-25. [PMID: 25529768 DOI: 10.1111/jmi.12204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
This work describes application of coherent anti-Stokes Raman scattering (CARS) microscopy technique for analytical characterization of microstructured materials based on chitosan. We demonstrate that nitrogen-hydrogen vibration band in the high wavenumber region of CARS spectrum prevails over response from oxygen-hydrogen vibrations and can be used as a spectral marker of chitosan. The chemically selective imaging is experimentally demonstrated by applying CARS microscopy to discriminate between chitosan and polystyrene microparticles. CARS microscopy was shown to be a valuable tool for characterization of polluted chitosan fibre from utilized engine filter material. A possibility to observe foreign material pieces on the surface of the polluted chitosan fibre is demonstrated and discussed.
Collapse
Affiliation(s)
- A Dementjev
- Center for Physical Sciences and Technology, A. Goštauto, Vilnius, Lithuania
| | | | | | | |
Collapse
|
11
|
França R, Mbeh DA, Samani TD, Le Tien C, Mateescu MA, Yahia L, Sacher E. The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan. J Biomed Mater Res B Appl Biomater 2014; 101:1444-55. [PMID: 24591223 DOI: 10.1002/jbm.b.32964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/11/2013] [Accepted: 02/17/2013] [Indexed: 11/11/2022]
Abstract
The surfaces of three chitosan samples, differing only in their degrees of deacetylation and of carboxyethyl chitosan were chemically characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and Fourier transform infrared, both before and after sterilization with ethylene oxide. Unexpected elemental ratios suggest that surface chemical modification occurred during the processing of the original chitin, with further surface modification on subsequent sterilization, despite previous reports to the contrary. Cell viability was evaluated by direct contact methyl thiazole tetrazolium and lactate dehydrogenase assays between the chitosan particles and A549 human epithelial cells, which demonstrated that the modifications incurred on sterilization are reflected in biocompatibility changes. All the samples were found to be biocompatible and nontoxic before sterilization and remained so subsequently.
Collapse
Affiliation(s)
- Rodrigo França
- Department of Restorative Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada, R3E 0W2
| | | | | | | | | | | | | |
Collapse
|
12
|
Deshayes S, Gref R. Synthetic and bioinspired cage nanoparticles for drug delivery. Nanomedicine (Lond) 2014; 9:1545-64. [DOI: 10.2217/nnm.14.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nanotechnology has the potential to revolutionize drug delivery, but still faces some limitations. One of the main issues regarding conventional nanoparticles is their poor drug-loading and their early burst release. Thus, to overcome these problems, researchers have taken advantage of the host–guest interactions that drive some assemblies to form cage molecules able to strongly entrap their cargo and design new nanocarriers called cage nanoparticles. These systems can be classified into two categories: bioinspired nanosystems such as virus-like particles, ferritin, small heat shock protein: and synthetic host–guest supramolecular systems that require engineering to actually form supramolecular nanoassemblies. This review will highlight the recent advances in cage nanoparticles for drug delivery with a particular focus on their biomedical applications.
Collapse
Affiliation(s)
- Stephanie Deshayes
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Ruxandra Gref
- Institut de Sciences Moléculaires UMR CNRS 8214 Université Paris-Sud, Orsay, 91405, France
| |
Collapse
|
13
|
Md S, Haque S, Fazil M, Kumar M, Baboota S, Sahni JK, Ali J. Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method. Expert Opin Drug Deliv 2014; 11:827-42. [PMID: 24655115 DOI: 10.1517/17425247.2014.894504] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The present work evaluated whether the prepared nanoparticles (NPs) would be able to target the drug to the brain by a non-invasive nasal route enhancing its bioavailability. METHODS Bromocriptine (BRC) chitosan NPs (CS NPs) were prepared by ionic gelation method. The biodistribution, pharmacokinetic parameters and dopamine concentration was analysed by ultra-HPLC/mass spectrometry method. The histopathological examination in haloperidol-induced Parkinson's disease in mice model following intranasal (i.n.) administration was evaluated. RESULTS BRC was found stable in all exposed conditions and the percentage accuracy observed for intra-day and inter-day batch samples ranged from 90.5 to 107% and 95.3 to 98.9% for plasma and brain homogenates, respectively. BRC-loaded CS NPs showed greater retention into the nostrils (42 ± 8.5% radioactivity) for about 4 h, whereas the 44 ± 7.5% could be retained up to 1 h for BRC solution. The brain:blood ratios of 0.96 ± 0.05 > 0.73 ± 0.15 > 0.25 ± 0.05 of BRC-loaded CS NPs (i.n.) > BRC solution (i.n.) > BRC-loaded CS NPs (intravenous), respectively, at 0.5 h indicated direct nose-to-brain transport bypassing blood-brain barrier. BRC-loaded CS NPs administered intranasally showed significantly high dopamine concentration (20.65 ± 1.08 ng/ml) as compared to haloperidol-treated mice (10.94 ± 2.16 ng/ml) (p < 0.05). Histopathology of brain sections showed selective degeneration of the dopaminergic neurons in haloperidol-treated mice which was markedly reverted by BRC-loaded CS NPs. CONCLUSION Nanoparticulate drug delivery system could be potentially used as a nose-to-brain drug delivery carrier for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Jamia Hamdard, Faculty of Pharmacy , Hamdard Nagar, New Delhi-110062 , India +91 9811312247 ; +011 26059633 ; javedaali@ yahoo.com
| | | | | | | | | | | | | |
Collapse
|
14
|
Trapani A, Palazzo C, Contino M, Perrone MG, Cioffi N, Ditaranto N, Colabufo NA, Conese M, Trapani G, Puglisi G. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study. Biomacromolecules 2014; 15:882-93. [PMID: 24521085 DOI: 10.1021/bm401733p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements. The P-gp interacting properties were evaluated measuring the effects of thiolated- and unmodified-polymers on the bidirectional transport (BA/AB) of rhodamine-123 across Caco-2 cells as well as in the calcein-AM and ATPase activity assays. Although all the thiomers and unmodified polymers showed optimal-excellent mucoadhesive properties, the best mucoadhesive performances have been obtained by CS and CS-based thiomers. Moreover, it was found that the pretreatment of Caco-2 cell monolayer with GCS-NAC or GCS restores Rho-123 cell entrance by inhibiting P-gp activity. Hence, GCS-NAC and GCS may constitute new biomaterials useful for improving the bioavailability of P-gp substrates.
Collapse
Affiliation(s)
- Adriana Trapani
- Dipartimento di Farmacia-Scienze del Farmaco and ‡Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro" , Via Orabona, 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Robles E, Juárez J, Burboa MG, Gutiérrez LE, Taboada P, Mosquera V, Valdez MA. Properties of insulin-chitosan complexes obtained by an alkylation reaction on chitosan. J Appl Polym Sci 2013. [DOI: 10.1002/app.39999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emmanuel Robles
- Departamento de Investigación en Polímeros y Materiales; Universidad de Sonora, Rosales y Transversal; Hermosillo 83000 Sonora México
| | - Josué Juárez
- Departamento de Física; Universidad de Sonora, Rosales y Transversal; Hermosillo 83000 Sonora México
| | - María. G. Burboa
- Departamento de Investigaciones Científicas y Tecnológicas; Universidad de Sonora, Rosales y Transversal; Hermosillo 83000 Sonora México
| | - Luis E. Gutiérrez
- Departamento de Investigaciones Científicas y Tecnológicas; Universidad de Sonora, Rosales y Transversal; Hermosillo 83000 Sonora México
| | - Pablo Taboada
- Laboratorio de Física de Coloides y Polímeros, Grupo de Sistemas Complejos, Departamento de Física de la Materia Condensada, Facultad de Física; Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Víctor Mosquera
- Laboratorio de Física de Coloides y Polímeros, Grupo de Sistemas Complejos, Departamento de Física de la Materia Condensada, Facultad de Física; Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Miguel A. Valdez
- Departamento de Física; Universidad de Sonora, Rosales y Transversal; Hermosillo 83000 Sonora México
| |
Collapse
|
16
|
França R, Mbeh DA, Samani TD, Le Tien C, Mateescu MA, Yahia L, Sacher E. The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan. J Biomed Mater Res B Appl Biomater 2013:n/a-n/a. [PMID: 23744606 DOI: 10.1002/jbmb.32964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/11/2013] [Accepted: 02/17/2013] [Indexed: 11/06/2022]
Abstract
The surfaces of three chitosan samples, differing only in their degrees of deacetylation and of carboxyethyl chitosan were chemically characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and Fourier transform infrared, both before and after sterilization with ethylene oxide. Unexpected elemental ratios suggest that surface chemical modification occurred during the processing of the original chitin, with further surface modification on subsequent sterilization, despite previous reports to the contrary. Cell viability was evaluated by direct contact methyl thiazole tetrazolium and lactate dehydrogenase assays between the chitosan particles and A549 human epithelial cells, which demonstrated that the modifications incurred on sterilization are reflected in biocompatibility changes. All the samples were found to be biocompatible and nontoxic before sterilization and remained so subsequently. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.
Collapse
Affiliation(s)
- Rodrigo França
- Department of Restorative Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada, R3E 0W2
| | | | | | | | | | | | | |
Collapse
|
17
|
Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 2013; 447:115-23. [DOI: 10.1016/j.ijpharm.2013.02.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/21/2022]
|
18
|
Ma FK, Li J, Kong M, Liu Y, An Y, Chen XG. Preparation and hydrolytic erosion of differently structured PLGA nanoparticles with chitosan modification. Int J Biol Macromol 2013; 54:174-9. [DOI: 10.1016/j.ijbiomac.2012.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
|
19
|
Yang JS, Yang L. Preparation and application of cyclodextrin immobilized polysaccharides. J Mater Chem B 2013; 1:909-918. [DOI: 10.1039/c2tb00107a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Abstract
The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondira often rely on disruption of protein--protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion.
Collapse
Affiliation(s)
- Jonathan E Constance
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
21
|
|
22
|
Trapani A, Denora N, Iacobellis G, Sitterberg J, Bakowsky U, Kissel T. Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: a promising strategy for the administration of the anticancer drug to brain tumors. AAPS PharmSciTech 2011; 12:1302-11. [PMID: 21948322 DOI: 10.1208/s12249-011-9695-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022] Open
Abstract
Brain tumor treatment employing methotrexate (MTX) is limited by the efflux mechanism of Pg-p on the blood-brain barrier. We aimed to investigate MTX-loaded chitosan or glycol chitosan (GCS) nanoparticles (NPs) in the presence and in the absence of a coating layer of Tween 80 for brain delivery of MTX. The effect of a low Tween 80 concentration was evaluated. MTX NPs were formulated following the ionic gelation technique and size and zeta potential measurements were acquired. Transport across MDCKII-MDR1 monolayer and cytotoxicity studies against C6 glioma cell line were also performed. Cell/particles interaction was visualized by confocal microscopy. The particles were shown to be cytotoxic against C6 cells line and able to overcome MDCKII-MDR1 cell barrier. GCS-based NPs were the most cytotoxic NPs. Confocal observations highlighted the internalization of Tween 80-coated fluorescent NPs more than Tween 80-uncoated NPs. The results suggest that even a low concentration of Tween 80 is sufficient for enhancing the transport of MTX from the NPs across MDCKII-MDR1 cells. The nanocarriers represent a promising strategy for the administration of MTX to brain tumors which merits further investigations under in vivo conditions.
Collapse
|
23
|
Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 2011; 419:296-307. [DOI: 10.1016/j.ijpharm.2011.07.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/22/2022]
|
24
|
Guan J, Cheng P, Huang S, Wu J, Li Z, You X, Hao L, Guo Y, Li R, Zhang H. Optimized Preparation of Levofloxacin-loaded Chitosan Nanoparticles by Ionotropic Gelation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.phpro.2011.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Yata VK, Ghosh SS. Synthesis and characterization of a novel chitosan based E. coli cytosine deaminase nanocomposite for potential application in prodrug enzyme therapy. Biotechnol Lett 2010; 33:153-7. [DOI: 10.1007/s10529-010-0416-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/07/2010] [Indexed: 11/30/2022]
|
26
|
Otero-Espinar F, Torres-Labandeira J, Alvarez-Lorenzo C, Blanco-Méndez J. Cyclodextrins in drug delivery systems. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50046-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|