1
|
Wang Q, Yu B, Yang B, Zhang X, Yu G, Wang Z, Qin H, Ma Y. Precision Fabrication and Optimization of Nanostructures for Exosome Detection via Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:266. [PMID: 39997829 PMCID: PMC11858208 DOI: 10.3390/nano15040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Exosome detection is crucial for biomedical research and clinical diagnostics due to their unique characteristics. Surface-enhanced Raman spectroscopy (SERS) based on nanostructure substrates with local field enhancement capability is a promising detection approach. However, the random distribution of nanostructures leads to uneven "hotspots" distribution, which limits their application in SERS detection. Here, we systematically investigated the impact of experimental parameters on nanostructure morphology and analyzed their formation mechanism, achieving controllable nanocone fabrication. Subsequent experiments confirmed the reliability and effectiveness of the fabricated nanocone in exosome SERS detection. This work not only realized flexible control of nanostructures but also expanded their application prospects in the field of exosome analysis.
Collapse
Affiliation(s)
- Qingyi Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Bowen Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China;
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| | - Zeyu Wang
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Hua Qin
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; (Q.W.); (Z.W.)
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (B.Y.); (X.Z.); (G.Y.)
| |
Collapse
|
2
|
Zhang R, Guo Y, Huang C, Fang J. Label-Free SERS Analysis of Biological and Physical Information Heterogeneity of Nanoscale Extracellular Vesicle by Matching Specific Sizes of Enhanced Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409806. [PMID: 39726305 DOI: 10.1002/smll.202409806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure. The classification of normal and cancerous cell-derived exosomes by PCA method, the accuracy is improved from 91.2% to 95.1% by optimizing sizes of nano-enhanced particles. In addition, stem cell-derived EVs of diverse sizes and morphologies similarly show acuity of spectrum variation to NPs size, which is conductive to qualitative studies. This new strategy will offer a widened in-depth understanding of the surface information, size, and morphology of EVs, which can be applied to the study of biological functions.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yu Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
3
|
Wang M, Wan H, Wang Y, Yuan H, Ni Q, Sun B, Sun J, Wang Y. A Microfluidics-Based Multiplex SERS Immunoassay Device for Analysis of Acute Ischemic Stroke Biomarkers. Transl Stroke Res 2023:10.1007/s12975-023-01204-x. [PMID: 37987987 DOI: 10.1007/s12975-023-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
Sensitive and accurate methods for early detection of acute ischemic stroke (AIS) are essential for timely treatment and prognostic assessment of patients. In this study, we report a microfluidics-based ultrasensitive surface-enhanced Raman scattering (SERS) immunoassay device for the quantitative determination of multiplex biomarkers in AIS. By preparing 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) antibody-modified gold nanoparticles (AuNPs) on SERS devices as SERS probes, the biomarkers in whole blood of AIS were accurately captured and further visualized for SERS signal intensity quantitative analysis of six biomarkers in the blood samples. It is worth mentioning that the limit of detection (LOD) of the method can reach the level of fg/mL, with excellent sensitivity and selectivity. Meanwhile, the analytical comparison with ELISA method showed that the detection results of both methods were consistent, which verified the feasibility of the assembled device. The SERS immunoassay device detection provides a powerful strategy for the prediction, early diagnosis and dynamic monitoring of prognosis of AIS with a wide range of clinical practice prospects.
Collapse
Affiliation(s)
- Mengyue Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, Shandong, China
| | - Huiyu Wan
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, Shandong, China
| | - Yanjiao Wang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hui Yuan
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, Shandong, China.
| | - Jingyi Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, Shandong, China.
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, 271000, Shandong, China.
| |
Collapse
|
4
|
Gannesen AV, Ziganshin RH, Zdorovenko EL, Klimko AI, Ianutsevich EA, Danilova OA, Tereshina VM, Gorbachevskii MV, Ovcharova MA, Nevolina ED, Martyanov SV, Shashkov AS, Dmitrenok AS, Novikov AA, Zhurina MV, Botchkova EA, Toukach PV, Plakunov VK. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin. Front Microbiol 2022; 13:1003942. [PMID: 36204611 PMCID: PMC9530943 DOI: 10.3389/fmicb.2022.1003942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.
Collapse
Affiliation(s)
- Andrei V. Gannesen
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alena I. Klimko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Ianutsevich
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Olga A. Danilova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | | | - Maria A. Ovcharova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina D. Nevolina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Martyanov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei A. Novikov
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Marina V. Zhurina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Philipp V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir K. Plakunov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Silva PBD, Silva JRD, Rodrigues MC, Vieira JA, Andrade IAD, Nagata T, Santos AS, Silva SWD, Rocha MCOD, Báo SN, Moraes-Vieira PM, Proença-Modena J, Angelim MK, de Souza GF, Muraro SP, de Barros ALB, de Souza Martins GA, Ribeiro-Dias F, Machado G, Fessel MR, Chudzinski-Tavassi AM, Ronconi CM, Gonçalves D, Curi R, Oliveira ON, Azevedo RB. Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta 2022; 243:123355. [PMID: 35272155 PMCID: PMC8895652 DOI: 10.1016/j.talanta.2022.123355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Mass testing for the diagnosis of COVID-19 has been hampered in many countries owing to the high cost of genetic material detection. This study reports on a low-cost immunoassay for detecting SARS-CoV-2 within 30 min using dynamic light scattering (DLS). The immunosensor comprises 50-nm gold nanoparticles (AuNPs) functionalized with antibodies against SARS-CoV-2 spike glycoprotein, whose bioconjugation was confirmed using transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and surface-enhanced Raman scattering spectroscopy (SERS). The specific binding of the bioconjugates to the spike protein led to an increase in bioconjugate size, with a limit of detection (LOD) 5.29 × 103 TCID50/mL (Tissue Culture Infectious Dose). The immunosensor was also proven to be selective upon interaction with influenza viruses once no increase in size was observed after DLS measurement. The strategy proposed here aimed to use antibodies conjugated to AuNPs as a generic platform that can be extended to other detection principles, enabling technologies for low-cost mass testing for COVID-19.
Collapse
|
6
|
Kim WH, Lee JU, Jeon MJ, Park KH, Sim SJ. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens Bioelectron 2022; 205:114116. [DOI: 10.1016/j.bios.2022.114116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
|
7
|
Rippa M, Sagnelli D, Vestri A, Marchesano V, Munari B, Carnicelli D, Varrone E, Brigotti M, Tozzoli R, Montalbano M, Morabito S, Zhou J, Zyss J, Petti L. Plasmonic Metasurfaces for Specific SERS Detection of Shiga Toxins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4969-4979. [PMID: 35044743 PMCID: PMC8815041 DOI: 10.1021/acsami.1c21553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
The interest in the development of nanoscale plasmonic technologies has dramatically increased in recent years. The photonic properties of plasmonic nanopatterns can be controlled and tuned via their size, shape, or the arrangement of their constituents. In this work, we propose a 2D hybrid metallic polymeric nanostructure based on the octupolar framework with enhanced sensing property. We analyze its plasmonic features both numerically and experimentally, demonstrating the higher values of their relevant figures of merit: we estimated a surface-enhanced Raman spectroscopy (SERS) enhancement factor of 9 × 107 and a SPR bulk sensitivity of 430 nm/RIU. In addition, our nanostructure exhibits a dual resonance in the visible and near-infrared region, enabling our system toward multispectral plasmonic analysis. Finally, we illustrate our design engineering strategy as enabled by electron beam lithography by the outstanding performance of a SERS-based biosensor that targets the Shiga toxin 2a, a clinically relevant bacterial toxin. To the best of our knowledge, this is the first time that a SERS fingerprint of this toxin has been evidenced.
Collapse
Affiliation(s)
- M. Rippa
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - D. Sagnelli
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - A. Vestri
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - V. Marchesano
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| | - B. Munari
- Dipartimento
di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia
Generale, Università di Bologna, 40126 Bologna, Italy
| | - D. Carnicelli
- Dipartimento
di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia
Generale, Università di Bologna, 40126 Bologna, Italy
| | - E. Varrone
- Dipartimento
di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia
Generale, Università di Bologna, 40126 Bologna, Italy
| | - M. Brigotti
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
- Dipartimento
di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia
Generale, Università di Bologna, 40126 Bologna, Italy
| | - R. Tozzoli
- Laboratorio
Nazionale di Riferimento per E. coli, Dipartimento di Sicurezza Alimentare,
Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - M. Montalbano
- Laboratorio
Nazionale di Riferimento per E. coli, Dipartimento di Sicurezza Alimentare,
Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - S. Morabito
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
- Laboratorio
Nazionale di Riferimento per E. coli, Dipartimento di Sicurezza Alimentare,
Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - J. Zhou
- Institute
of Photonics, Faculty of Science, Ningbo
University, 315211 Ningbo, People’s
Republic of China
| | - J. Zyss
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
- Lumière,
Matière et Interfaces (LUMIN) Laboratory, Institut d’Alembert,
Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, 91190 Gif sur Yvette, France
| | - L. Petti
- Institute
of Applied Sciences and Intelligent Systems “E. Caianiello”
of CNR, 80072 Pozzuoli, Italy
| |
Collapse
|
8
|
Song Y, Sun J, Li C, Lin L, Gao F, Yang M, Sun B, Wang Y. Long-term monitoring of blood biomarkers related to intrauterine growth restriction using AgNPs SERS tags-based lateral flow assay. Talanta 2021; 241:123128. [PMID: 35038640 DOI: 10.1016/j.talanta.2021.123128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/12/2023]
Abstract
Sensitive and accurate early detection of fetal growth restriction (FGR) is of vital importance in the development of the fetus during pregnancy and even the health of future life. Here, an ultrasensitive and straightforward surface-enhanced Raman scattering (SERS)-based double targets detection in pregnancy is implemented by utilizing functionalized Ag nanoparticles (AgNPs). Through fabricating 4-MPA antibody-modified AgNPs on the lateral flow assay (LFA) strips as the SERS nanotags, the target proteins in blood samples from pregnancy were accurately captured, which further quantizing PI3K and CRAF in unprocessed blood. This strategy warrant excellent selectivity and sensitivity with the limits of detection (LODs) are 0.76 fg mL-1 for PI3K and 0.61 fg mL-1 for CRAF, leading reliable quantification for these two targets. Meanwhile, the feasibility of this assembly was testified by comparing with conventional ELISA method, and the results showed that a high degree of consistency was obtained in these two detection assays. This SERS-colorimetric dual-signal LFA strip can provide a novel strategy for early diagnosis of fetal-related disorders, which is essential for disease diagnosis and treatment guidance during pregnancy.
Collapse
Affiliation(s)
- Yanan Song
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China; Qingdao Medical College of Qingdao University, Qingdao, China
| | - Jingyi Sun
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, China
| | - Chunmei Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Li Lin
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Feng Gao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Baoliang Sun
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
9
|
Nikelshparg EI, Prikhozhdenko ES, Verkhovskii RA, Atkin VS, Khanadeev VA, Khlebtsov BN, Bratashov DN. Live Cell Poration by Au Nanostars to Probe Intracellular Molecular Composition with SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2588. [PMID: 34685030 PMCID: PMC8539561 DOI: 10.3390/nano11102588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
A new type of flat substrate has been used to visualize structures inside living cells by surface-enhanced Raman scattering (SERS) and to study biochemical processes within cells. The SERS substrate is formed by stabilized aggregates of gold nanostars on a glass microscope slide coated with a layer of poly (4-vinyl pyridine) polymer. This type of SERS substrate provides good cell adhesion and viability. Au nanostars' long tips can penetrate the cell membrane, allowing it to receive the SERS signal from biomolecules inside a living cell. The proposed nanostructured surfaces were tested to study, label-free, the distribution of various biomolecules in cell compartments.
Collapse
Affiliation(s)
- Evelina I. Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Roman A. Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Vsevolod S. Atkin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Vitaly A. Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
- Veterinary Medicine and Biotechnology Faculty, Saratov State Agrarian University, 1 Teatralnaya Square, 410012 Saratov, Russia
| | - Boris N. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
| |
Collapse
|
10
|
Koster HJ, Rojalin T, Powell A, Pham D, Mizenko RR, Birkeland AC, Carney RP. Surface enhanced Raman scattering of extracellular vesicles for cancer diagnostics despite isolation dependent lipoprotein contamination. NANOSCALE 2021; 13:14760-14776. [PMID: 34473170 PMCID: PMC8447870 DOI: 10.1039/d1nr03334d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/20/2021] [Indexed: 05/20/2023]
Abstract
Given the emerging diagnostic utility of extracellular vesicles (EVs), it is important to account for non-EV contaminants. Lipoprotein present in EV-enriched isolates may inflate particle counts and decrease sensitivity to biomarkers of interest, skewing chemical analyses and perpetuating downstream issues in labeling or functional analysis. Using label free surface enhanced Raman scattering (SERS), we confirm that three common EV isolation methods (differential ultracentrifugation, density gradient ultracentrifugation, and size exclusion chromatography) yield variable lipoprotein content. We demonstrate that a dual-isolation method is necessary to isolate EVs from the major classes of lipoprotein. However, combining SERS analysis with machine learning assisted classification, we show that the disease state is the main driver of distinction between EV samples, and largely unaffected by choice of isolation. Ultimately, this study describes a convenient SERS assay to retain accurate diagnostic information from clinical samples by overcoming differences in lipoprotein contamination according to isolation method.
Collapse
Affiliation(s)
- Hanna J Koster
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Alyssa Powell
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Dina Pham
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| | - Andrew C Birkeland
- Department of Otolaryngology - Head and Neck Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Palermo G, Rippa M, Conti Y, Vestri A, Castagna R, Fusco G, Suffredini E, Zhou J, Zyss J, De Luca A, Petti L. Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43715-43725. [PMID: 34469103 PMCID: PMC8447193 DOI: 10.1021/acsami.1c12525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An inverted pyramidal metasurface was designed, fabricated, and studied at the nanoscale level for the development of a label-free pathogen detection on a chip platform that merges nanotechnology and surface-enhanced Raman scattering (SERS). Based on the integration and synergy of these ingredients, a virus immunoassay was proposed as a relevant proof of concept for very sensitive detection of hepatitis A virus, for the first time to our best knowledge, in a very small volume (2 μL), without complex signal amplification, allowing to detect a minimal virus concentration of 13 pg/mL. The proposed work aims to develop a high-flux and high-accuracy surface-enhanced Raman spectroscopy (SERS) nanobiosensor for the detection of pathogens to provide an effective method for early and easy water monitoring, which can be fast and convenient.
Collapse
Affiliation(s)
- Giovanna Palermo
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
- CNR
NANOTEC—Istituto di Nanotecnologia, UOS Cosenza, 87036 Rende, CS, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Ylli Conti
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Riccardo Castagna
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| | - Giovanna Fusco
- Department
of Food Safety, Nutrition and Veterinary
Public Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department
of Food Safety, Nutrition and Veterinary
Public Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Jun Zhou
- Institute
of Photonics, Faculty of Science, Ningbo University, 315211 Ningbo, People’s Republic of China
| | - Joseph Zyss
- LUMIN Laboratory
(CNRS), Institut d’Alembert, Universitè Paris Saclay, 91190 Gif sur Yvette, France
| | - Antonio De Luca
- Department
of Physics, University of Calabria, Via
P. Bucci, 87036 Rende, CS, Italy
- CNR
NANOTEC—Istituto di Nanotecnologia, UOS Cosenza, 87036 Rende, CS, Italy
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems ”E. Caianiello”
CNR, 80078 Pozzuoli, Italy
| |
Collapse
|
12
|
Lee JH, Shin HJ, Kim YD, Lim DK. Real-time surface-enhanced Raman scattering-based live cell monitoring of the changes in mitochondrial membrane potential. NANOSCALE ADVANCES 2021; 3:3470-3480. [PMID: 36133723 PMCID: PMC9418680 DOI: 10.1039/d0na01076f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Obtaining molecular information on cells in real time has been a critical challenge in studying the interaction between molecules of interest and intracellular components. Fluorescence-based methods have long served as excellent tools to study such important interactions. In this paper, we introduce a Raman scattering-based method as a promising platform to achieve the real-time monitoring of subtle molecular changes occurring within cells. We found that the Raman scattering-based method enabled monitoring changes in the mitochondrial membrane potential at the single-cell level in rheumatoid arthritis synovial fibroblasts induced by tumor necrosis factor-alpha (TNF-α) protein, various chemicals (MgCl2, FCCP, and sodium pyruvate), and a non-chemical stimulus (i.e., light). The triphenylphosphine-modified gold nanoparticles were selectively localized in the mitochondria and showed the characteristic Raman spectrum of cytochrome C and other Raman spectra of molecular components inside the cell. The surface-enhanced Raman spectrum originating from mitochondria was sensitively changed over time when mitochondrial depolarization was induced by the addition of TNF-α, or chemicals known to induce mitochondrial depolarization. The Raman-based signal changes were well matched with results of the conventional fluorescence-based analysis. However, in contrast to the conventional approach, the Raman-based method enables monitoring such changes in real time and provides detailed molecular information in terms of the interaction of molecules. Therefore, these results highlight the possibility of surface-enhanced Raman scattering-based live cell analysis for future proteomics or drug-screening applications.
Collapse
Affiliation(s)
- Ji Hye Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Hyeon Jeong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Yong Duk Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul South Korea
| |
Collapse
|
13
|
Mosier-Boss PA, Sorensen KC, George RD, Sims PC, Obraztsova A. Surface enhanced Raman scattering of bacteria using capped and uncapped silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118742. [PMID: 32717522 DOI: 10.1016/j.saa.2020.118742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Surface enhanced Raman scattering (SERS) spectra of bacteria were obtained using citrate (capped) and borohydride (uncapped) generated silver nanoparticles (Ag NPs).The observed differences in SERS spectra are attributed to the manner in which these Ag NPs interact with bacteria. Capped Ag NPs are able to partition through the surface polysaccharides of the bacterial cell to bind to the inner and outer cell membranes, as well as the periplasmic space between them. The resultant spectra show contributions due to the components of the cell envelope and cellular secretions. Uncapped Ag NPs are unable to partition through the polysaccharide outer structures of the cells. Spectral features observed for these uncapped Ag NPs are secretions primarily due to the metabolites of purine degradation.
Collapse
Affiliation(s)
- P A Mosier-Boss
- GEC, 5101B Backlick Rd., Annandale, VA 22003, United States of America.
| | - K C Sorensen
- Naval Information Warfare Center Pacific, San Diego, CA 92152, United States of America
| | - R D George
- Naval Information Warfare Center Pacific, San Diego, CA 92152, United States of America
| | - P C Sims
- Naval Information Warfare Center Pacific, San Diego, CA 92152, United States of America
| | - A Obraztsova
- San Diego State University Research Foundation, San Diego, CA 92182, United States of America
| |
Collapse
|
14
|
SERS Platform Based on Bimetallic Au-Ag Nanowires-Decorated Filter Paper for Rapid Detection of miR-196ain Lung Cancer Patients Serum. J CHEM-NY 2020. [DOI: 10.1155/2020/5073451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Detecting microRNA (miRNA) biomarkers expression is of great significance for the diagnosis and treatment of lung cancer. Surface-enhanced Raman scattering (SERS) has achieved microRNA sensing for the diagnosis of primary liver cancers. In this work, we developed a SERS technology for the rapid detection of lung cancers-related miRNA (miR-196a) using bimetallic Au-Ag nanowire (AgNW@AuNPs) substrates coupled with the target hairpin DNA. The finite-difference time-domain simulation proved that a large number of “hot spots” were generated between the AgNW and AuNPs, which resulted in a huge enhancement of the signal of Raman reporters. Filter paper treated by hexadecenyl succinic anhydride hydrophobic and modified with AgNWs@AuNPs was used as capturing substrate. The detection limits of miR-196a in PBS and serum were as low as 96.58 aM and 130 aM, respectively. Studies on nonspecific sequence and single-base mismatch of miRNA demonstrated that SERS-based platform was highly selective, excellent uniform, and reproducible. Finally, the platform was used to show that the miR-196a expression in the serum of lung cancer patients was much higher than that in healthy people. The detection results indicated that the SERS platform had potential applications in cancer diagnosis and might be a viable alternative to the conventional miRNA detection method, the real-time polymerase chain reaction (RT-PCR) technology.
Collapse
|
15
|
Rojalin T, Koster HJ, Liu J, Mizenko RR, Tran D, Wachsmann-Hogiu S, Carney RP. Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles. ACS Sens 2020; 5:2820-2833. [PMID: 32935542 PMCID: PMC7522966 DOI: 10.1021/acssensors.0c00953] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
For
more effective early-stage cancer diagnostics, there is a need
to develop sensitive and specific, non- or minimally invasive, and
cost-effective methods for identifying circulating nanoscale extracellular
vesicles (EVs). Here, we report the utilization of a simple plasmonic
scaffold composed of a microscale biosilicate substrate embedded with
silver nanoparticles for surface-enhanced Raman scattering (SERS)
analysis of ovarian and endometrial cancer EVs. These substrates are
rapidly and inexpensively produced without any complex equipment or
lithography. We extensively characterize the substrates with electron
microscopy and outline a reproducible methodology for their use in
analyzing EVs from in vitro and in vivo biofluids. We report effective
chemical treatments for (i) decoration of metal surfaces with cysteamine
to nonspecifically pull down EVs to SERS hotspots and (ii) enzymatic
cleavage of extraluminal moieties at the surface of EVs that prevent
localization of complementary chemical features (lipids/proteins)
to the vicinity of the metal-enhanced fields. We observe a major loss
of sensitivity for ovarian and endometrial cancer following enzymatic
cleavage of EVs’ extraluminal domain, suggesting its critical
significance for diagnostic platforms. We demonstrate that the SERS
technique represents an ideal tool to assess and measure the high
heterogeneity of EVs isolated from clinical samples in an inexpensive,
rapid, and label-free assay.
Collapse
Affiliation(s)
- Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Hanna J. Koster
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal H3A 0G4, Canada
| | - Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | - Di Tran
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| | | | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis 95616, United States
| |
Collapse
|
16
|
Yan Y, Nie Y, An L, Tang YQ, Xu Z, Wu XL. Improvement of Surface-Enhanced Raman Scattering Method for Single Bacterial Cell Analysis. Front Bioeng Biotechnol 2020; 8:573777. [PMID: 33042973 PMCID: PMC7527739 DOI: 10.3389/fbioe.2020.573777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) is a useful tool for label-free analysis of bacteria at the single cell level. However, low reproducibility limits the use of SERS. In this study, for the sake of sensitive and reproducible Raman spectra, we optimized the methods for preparing silver nanoparticles (AgNPs) and depositing AgNPs onto a cell surface. We found that fast dropwise addition of AgNO3 into the reductant produced smaller and more stable AgNPs, with an average diameter of 45 ± 4 nm. Compared with that observed after simply mixing the bacterial cells with AgNPs, the SERS signal was significantly improved after centrifugation. To optimize the SERS enhancement method, the centrifugal force, method for preparing AgNPs, concentration of AgNPs, ionic strength of the solution used to suspend the cells, and density of the cells were chosen as impact factors and optimized through orthogonal experiments. Finally, the improved method could generate sensitive and reproducible SERS spectra from single Escherichia coli cells, and the SERS signals primarily arose from the cell envelope. We further verified that this optimal method was feasible for the detection of low to 25% incorporation of 13C isotopes by the cells and the discrimination of different bacterial species. Our work provides an improved method for generating sensitive and reproducible SERS spectra.
Collapse
Affiliation(s)
- Yingchun Yan
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China.,College of Engineering, Peking University, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Liyun An
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China.,College of Engineering, Peking University, Beijing, China
| | - Yue-Qin Tang
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Zimu Xu
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China.,Institute of Ocean Research, Peking University, Beijing, China
| |
Collapse
|
17
|
Guo J, Sesena Rubfiaro A, Lai Y, Moscoso J, Chen F, Liu Y, Wang X, He J. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 2020; 145:4852-4859. [PMID: 32542257 PMCID: PMC7425357 DOI: 10.1039/d0an00838a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pHi) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pHi change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pHe) change. The HeLa cancer cells can better resist pHe change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
Collapse
Affiliation(s)
- Jing Guo
- Department of Physics, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou M, Zhao C, Li Y, Guo Y, Liu H, Zhang Y, Liu Z. Facile synthesis of metal-phenolic-coated gold nanocuboids for surface-enhanced Raman scattering. APPLIED OPTICS 2020; 59:6124-6130. [PMID: 32672759 DOI: 10.1364/ao.395067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Metal-phenolic networks (MPNs) have been exploited to be a versatile coating film to fabricate core-shell structure due to their general adherent properties. Herein, gold nanocuboid (GNCB) wrapped by MPNs (GNCB at MPNs) are prepared by a facile encapsulation method for surface-enhanced Raman scattering (SERS) analysis. The MPN coating not only reshapes the electric field distribution around the nanostructures but also allows the substrate to adsorb more analytes, both of which contribute to the superior SERS activity of GNCB at MPNs. The SERS signals induced by plasmonic nanostructures increase four- to sixfold after MPN coating, reaching a maximum Raman enhancement factor calculated to be 9.47×108. Moreover, the core-shell SERS substrate also demonstrates improved biocompatibility (∼fivefold increase) that facilitates the reliable SERS analysis of cancer cells and further diverse biomedical applications.
Collapse
|
19
|
Cao X, Wang Z, Bi L, Bi C, Du Q. Gold nanocage-based surface-enhanced Raman scattering probes for long-term monitoring of intracellular microRNA during bone marrow stem cell differentiation. NANOSCALE 2020; 12:1513-1527. [PMID: 31854413 DOI: 10.1039/c9nr07791j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability to monitor the differentiation of living stem cells is essential for understanding stem cell biology and the practical application of stem cell therapies. However, conventional methods of analyzing biomarkers related to differentiation still require a large number of cells or cell lysates. This requirement leads to the unavoidable loss of cell sources and hinders the real-time monitoring of cellular processes. In this study, we report an ultrasensitive surface-enhanced Raman scattering (SERS) method for the long-term detection and imaging of miR-144-3p in osteogenic differentiation of BMSCs, by using target miRNA-induced gold nanocage (GNC)-hairpin DNA1 (hpDNA1)-hpDNA2-GNC assembly in living cells. The finite-difference time domain method demonstrated that the electromagnetic intensities of the dimer and polymer of the GNCs were significantly enhanced compared to that of GNCs only, which theoretically confirmed the rational design of the SERS strategy. The hpDNA-conjugated GNC probes were prepared and used to recognize the target and distinguish from other miRNAs. This method enabled excellent sensitivity and high selectivity toward miR-144-3p with a limit of detection of 13.6 aM and a broad range from 100 aM to 100 pM in cell lysates. Then, we used transmission electron microscopy images, fluorescence microscopy images, and dark-field microscopy images to study the internalization of the probes in BMSCs. A Cell Counting Kit-8 experiment indicated that the probes were not cytotoxic in a certain concentration range. BMSCs were treated with an osteogenic inductor so that they would subsequently differentiate into osteocytes. Upon cellular uptake of these nanoprobes, we observed intense and time-dependent SERS responses from the important osteogenic biomarker miR-144-3p, only in BMSCs undergoing osteogenic differentiation and living undifferentiated BMSCs but not in osteoblasts. Finally, the accuracy of SERS has been proved by a quantitative real-time polymerase chain reaction experiment. The above results demonstrated that our nanoprobes are capable of long-term tracking of the dynamic expression of miR-144-3p (21 days) in the differentiating BMSCs. SERS has broad application prospects in the long-term detection of stem cell differentiation, and identification and isolation of specific cell types as well as in biomedical diagnosis.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | | | | | | | | |
Collapse
|
20
|
Zhang P, Wang L, Fang Y, Zheng D, Lin T, Wang H. Label-Free Exosomal Detection and Classification in Rapid Discriminating Different Cancer Types Based on Specific Raman Phenotypes and Multivariate Statistical Analysis. Molecules 2019; 24:molecules24162947. [PMID: 31416240 PMCID: PMC6720265 DOI: 10.3390/molecules24162947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023] Open
Abstract
Exosomes contain different functional bimolecular characteristics related to physiological or pathological processes and are now recognized as new biomarkers in different human cancers. Rapid detection and classification of cancer-related exosomes might be helpful in the rapid screening of patients that may have cancer. Here, we report a surface enhanced Raman scattering technology for rapid and label-free exosomal detection (Exo-SERS) to aid in the discrimination of different cancer cells based on specific Raman phenotypes and multivariate statistical analysis. The results demonstrated that exosomes derived from both tumor cells and normal cells exhibit special, unique Raman phenotypes. Using the Exo-SERS method, the cancer cells were accurately discriminated from normal cells, and subtle molecular changes between the different cell types could be detected with high sensitive. This research provides a rapid, label-free and non-destructive manner for detecting and discriminating between cancer types.
Collapse
Affiliation(s)
- Ping Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Limin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Yaping Fang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Dawei Zheng
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Taifeng Lin
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Huiqin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
21
|
Taylor J, Milton J, Willett M, Wingfield J, Mahajan S. What do we actually see in intracellular SERS? Investigating nanosensor-induced variation. Faraday Discuss 2019; 205:409-428. [PMID: 28901362 DOI: 10.1039/c7fd00156h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plasmonic nanoparticles (NPs), predominantly gold (AuNPs), are easily internalised into cells and commonly employed as nanosensors for reporter-based and reporter-free intracellular SERS applications. While AuNPs are generally considered non-toxic to cells, many biological and toxicity studies report that exposure to NPs induces cell stress through the generation of reactive oxygen species (ROS) and the upregulated transcription of pro-inflammatory genes, which can result in severe genotoxicity and apoptosis. Despite this, the extent to which normal cellular metabolism is affected by AuNP internalisation remains a relative unknown along with the contribution of the uptake itself to the SERS spectra obtained from within so called 'healthy' cells, as indicated by traditional viability tests. This work aims to interrogate the perturbation created by treatment with AuNPs under different conditions and the corresponding effect on the SERS spectra obtained. We characterise the changes induced by varying AuNP concentrations and medium serum compositions using biochemical assays and correlate them to the corresponding intracellular reporter-free SERS spectra. The different serum conditions lead to different extents of nanoparticle internalisation. We observe that changes in SERS spectra are correlated to an increasing amount of internalisation, confirmed qualitatively and quantitatively by confocal imaging and ICP-MS analysis, respectively. We analyse spectra and characterise changes that can be attributed to nanoparticle induced changes. Thus, our study highlights a need for understanding condition-dependent NP-cell interactions and standardisation of nanoparticle treatments in order to establish the validity of intracellular SERS experiments for use in all arising applications.
Collapse
Affiliation(s)
- J Taylor
- Department of Chemistry, Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
22
|
Cao X, Chen S, Wang Z, Liu Y, Luan X, Hou S, Li W, Shi H. The label-free detection and distinction of CYP2C9-expressing and non-expressing cells by surface-enhanced Raman scattering substrates based on bimetallic AuNPs-AgNWs. RSC Adv 2019; 9:13304-13315. [PMID: 35520768 PMCID: PMC9063916 DOI: 10.1039/c9ra02046b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is capable of catalyzing the biotransformation of endogenous compounds in cells, indicating that this enzyme could change the intracellular environment and is related to the pathogenesis of diseases. Currently, it is still a challenge to study the differences in cellular components between CYP2C9-expressing and non-expressing cells. In this study, employing a Au nanoparticles-Ag nanowires (AuNPs-AgNWs) decorated silicon wafer as a novel non-destructive and label-free tool, we applied surface-enhanced Raman scattering (SERS) spectroscopy to detect and distinguish the cellular composition of CYP2C9-expressing cells (293T-Mig-2C9) and non-expressing cells (293T-Mig-R1). AgNWs with high surface roughness were formed by modification of AuNPs onto their surface by electrostatic interactions, which enabled them to exhibit greatly enhanced SERS ability. Then, they were employed to fabricate SERS substrates via an electrostatically assisted 3-aminopropyltriethoxysilane (APTES)-functionalized surface-assembly method. The SERS substrates exhibited high sensitivity with a detection limit of 1 × 10-9 M for 4-mercaptobenzoic acid (4-MBA). Meanwhile, the SERS substrates exhibited good uniformity and reproducibility. The cytotoxicity assay demonstrated that the SERS substrates displayed good biocompatibility with 293T cells. Before SERS measurements, CYP2C9 constantly expressed cells (293T-Mig-2C9 cells) and control cells (293T-Mig-R1 cells) were constructed. The expression of CYP2C9 and the catalytic activity in the cells were checked. Using the AuNPs-AgNWs substrates as a high-performance in vitro sensing platform allowed us to obtain fingerprint spectra of 293T-Mig-R1 and 293T-Mig-2C9 cells. The difference spectra between the two cell lines were studied to interpret the spectral differences and gain insight into the biochemical variations. Finally, principal component analysis (PCA) score plots of the SERS spectra were also used to better view the differences between the two cell lines. SERS detection based on the AuNPs-AgNWs substrates provides a sensitive, non-destructive and label-free method for differentiation between 293T-Mig-R1 and 293T-Mig-2C9 cells.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine Yangzhou 225001 PR China
| | - Shuai Chen
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou 225001 PR China
| | - Zhenyu Wang
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology Panjin 124221 China
| | - Xiaowei Luan
- School of Life Science and Medicine, Dalian University of Technology Panjin 124221 China
| | - Sicong Hou
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou 225009 China
| | - Wei Li
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou 225001 PR China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225001 PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou 225001 PR China
| |
Collapse
|
23
|
Sebastian M, Aravind A, Mathew B. Green Silver Nanoparticles Based Multi-Technique Sensor for Environmental Hazardous Cu(II) Ion. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-0608-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Full-Scale Label-Free Surface-Enhanced Raman Scattering Analysis of Mouse Brain Using a Black Phosphorus-Based Two-Dimensional Nanoprobe. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The brain takes the vital role in human physiological and psychological activities. The precise understanding of the structure of the brain can supply the material basis for the psychological behavior and cognitive ability of human beings. In this study, a fast molecular fingerprint analysis of mouse brain tissue was performed using surface-enhanced Raman scattering (SERS) spectroscopy. A nanohybrid consisting of flake-like black phosphorus (BP) and Au nanoparticles (BP-AuNSs) served as the novel SERS substrate for the spectral analysis of brain tissue. BP-AuNSs exhibited outstanding SERS activity compared to the traditional citrate-stabilized Au nanoparticles, which could be largely ascribed to the plentiful hot spots formed in the BP nanosheet. Rapid, full-scale and label-free SERS imaging of mouse brain tissue was then realized with a scanning speed of 56 ms per pixel. Fine textures and clear contour were observed in the SERS images of brain tissue, which could be well in accordance with the classical histological analysis; however, it could avoid the disadvantages in the processing procedure of tissue section. Additionally, the SERS spectra illustrated plentiful biochemical fingerprint of brain tissue, which indicated the molecular composition of various encephalic regions. The SERS difference spectrum of the left versus right hemisphere revealed the biochemical difference between the two hemispheres, which helped to uncover the psychological and cognitive models of the left and right hemispheres.
Collapse
|
25
|
Kim WH, Lee JU, Song S, Kim S, Choi YJ, Sim SJ. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar. Analyst 2019; 144:1768-1776. [DOI: 10.1039/c8an01745j] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of head-flocked gold nanopillars and sandwich DNA probes is an advanced label-free, ultra-high sensitive, multiplexed nanoplasmonic detection system of circulating miRNAs for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Woo Hyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Soohyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Young Jae Choi
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| |
Collapse
|
26
|
Wang Z, Xue J, Bi C, Xin H, Wang Y, Cao X. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages. Analyst 2019; 144:7250-7262. [DOI: 10.1039/c9an01579e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly sensitive surface-enhanced Raman scattering (SERS) strategy based on hairpin DNA-functionalized gold nanocages for the detection of intracellular miR-125a-5p.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- PR China
| | - Jin Xue
- Guangling College
- Yangzhou University
- Yangzhou
- PR China
| | - Caili Bi
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- PR China
| | - Heng Xin
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- PR China
| | - Youwei Wang
- Department of Otorhinolaryngology
- Affiliated Hospital of Yangzhou University
- Yangzhou
- PR China
| | - Xiaowei Cao
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- PR China
| |
Collapse
|
27
|
García Grajeda BA, Aguila SA, Peinado Guevara H, Reynoso-Soto E, Ochoa-Terán A, Trujillo-Navarrete B, Cruz Enríquez A, Campos-Gaxiola JJ. Colorimetric and rapid determination of Cr(III) ions in water samples using AuNPs modified with 11-mercaptoundecyl phosphonic acid: spectroscopic characterization and reaction mechanism. INORG NANO-MET CHEM 2018. [DOI: 10.1080/24701556.2018.1503680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Blanca A. García Grajeda
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| | - Sergio A. Aguila
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Ensenada, Baja California, México
| | - Héctor Peinado Guevara
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| | - Edgar Reynoso-Soto
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, México
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, México
| | | | - Adriana Cruz Enríquez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| | - José J. Campos-Gaxiola
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, C.U. Los Mochis, Sinaloa, México
| |
Collapse
|
28
|
Label-Free Detection of Human Serum Using Surface-Enhanced Raman Spectroscopy Based on Highly Branched Gold Nanoparticle Substrates for Discrimination of Non-Small Cell Lung Cancer. J CHEM-NY 2018. [DOI: 10.1155/2018/9012645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on serum in screening tests. In this study, a potential label-free serum test based on SERS spectroscopy was developed to analyze human serum for the diagnosis of the non-small cell lung cancer (NSCLC). We firstly synthesized novel highly branched gold nanoparticles (HGNPs) at high yield through a one-step reduction of HAuCl4 with dopamine hydrochloride at 60°C. Then, HGNP substrates with good reproducibility, uniformity, and high SERS effect were fabricated by the electrostatically assisted (3-aminopropyl) triethoxysilane-(APTES-) functionalized silicon wafer surface-sedimentary self-assembly method. Using as-prepared HGNP substrates as a high-performance sensing platform, SERS spectral data of serum obtained from healthy subjects, lung adenocarcinoma patients, lung squamous carcinoma patients, and large cell lung cancer patients were collected. The difference spectra among different types of NSCLC were compared, and analysis result revealed their intrinsic difference in types and contents of nucleic acids, proteins, carbohydrates, amino acids, and lipids. SERS spectra were analyzed by principal component analysis (PCA), which was able to distinguish different types of NSCLC. Considering its time efficiency, being label-free, and sensitivity, SERS based on HGNP substrates is very promising for mass screening NSCLC and plays an important role in the detection and prevention of other diseases.
Collapse
|
29
|
Liu Z, Chen H, Jia Y, Zhang W, Zhao H, Fan W, Zhang W, Zhong H, Ni Y, Guo Z. A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. NANOSCALE 2018; 10:18795-18804. [PMID: 30277241 PMCID: PMC6234316 DOI: 10.1039/c8nr05300f] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Flake-shaped nanohybrids based on black phosphorus (BP) have been developed as multifunctional theranostic nanoplatforms for drug delivery, phototherapy and bioimaging. In this work, we report a facile strategy for fabrication of black phosphorus-Au nanoparticle hybrids (BP-AuNPs), which reveal an extraordinary near-infrared (NIR) photothermal transduction efficiency and drug delivery capacity. The applications of the nanocomposites as therapeutic agents for high-performance chemo-photothermal tumor therapy are accomplished in vitro and in vivo. BP-AuNPs also exhibit wonderful surface-enhanced Raman scattering (SERS) activity under NIR laser excitation with a low Raman background, allowing BP-AuNPs to be used as a promising two-dimensional (2D) fingerprint nanoprobe for bio-SERS analysis. The cellular component identification and label-free live-cell bioimaging based on this type of 2D SERS substrate are generally investigated, which open up promising new perspectives in nanomedicine, including diagnosis, imaging and therapy.
Collapse
Affiliation(s)
- Zhiming Liu
- MOE key Laboratory of Laser Life Science &SATCM Third Grade laboratory of Chinese Medicine and photonics Technology, college of Biophotonics, south China Normal University, Guangzhou, Guangdong 510631, P.R. China. E-mail: ;
| | - Haolin Chen
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd., Portland, OR 97239-4197, USA
| | - Wen Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, P. R. China
| | - Henan Zhao
- MOE key Laboratory of Laser Life Science &SATCM Third Grade laboratory of Chinese Medicine and photonics Technology, college of Biophotonics, south China Normal University, Guangzhou, Guangdong 510631, P.R. China. E-mail: ;
| | - Wendong Fan
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Wolun Zhang
- MOE key Laboratory of Laser Life Science &SATCM Third Grade laboratory of Chinese Medicine and photonics Technology, college of Biophotonics, south China Normal University, Guangzhou, Guangdong 510631, P.R. China. E-mail: ;
| | - Huiqing Zhong
- MOE key Laboratory of Laser Life Science &SATCM Third Grade laboratory of Chinese Medicine and photonics Technology, college of Biophotonics, south China Normal University, Guangzhou, Guangdong 510631, P.R. China. E-mail: ;
| | - Yirong Ni
- MOE key Laboratory of Laser Life Science &SATCM Third Grade laboratory of Chinese Medicine and photonics Technology, college of Biophotonics, south China Normal University, Guangzhou, Guangdong 510631, P.R. China. E-mail: ;
| | - Zhouyi Guo
- MOE key Laboratory of Laser Life Science &SATCM Third Grade laboratory of Chinese Medicine and photonics Technology, college of Biophotonics, south China Normal University, Guangzhou, Guangdong 510631, P.R. China. E-mail: ;
| |
Collapse
|
30
|
Alattar N, Daud H, Al-Majmaie R, Zeulla D, Al-Rubeai M, Rice JH. Surface-enhanced Raman scattering for rapid hematopoietic stem cell differentiation analysis. APPLIED OPTICS 2018; 57:E184-E189. [PMID: 30117870 DOI: 10.1364/ao.57.00e184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/29/2018] [Indexed: 05/27/2023]
Abstract
Raman-spectroscopy-based methods, such as surface-enhanced Raman spectroscopy, are a well-evolved method to molecular fingerprint cell types. Here we demonstrate that surface-enhanced Raman spectroscopy can enable us to distinguish cell development stages of bone marrow hematopoietic stem cells towards red blood cells through the identification of specific surface-enhanced Raman spectroscopy biomarkers. The approach taken here is to allow cells to take in gold nanoparticles as Raman enhancement platforms for kinetic structural observations presented here through the view of the multidimensional parameter contribution, thereby enabling profiling of bone marrow hematopoietic stem cells acquired from proliferation (stage one), differentiation (stage two), and mature red blood cells (stage three).
Collapse
|
31
|
Chen L, Ma N, Park Y, Jin S, Hwang H, Jiang D, Jung YM. Highly sensitive determination of iron (III) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:43-46. [PMID: 29273300 DOI: 10.1016/j.saa.2017.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we introduced Raman spectroscopy techniques that were based on the traditional Fe3+ determination method with phenanthroline as a probe. Interestingly, surface-enhanced Raman spectroscopy (SERS)-based approach exhibited excellent sensitivities to phenanthroline. Different detection mechanisms were observed for the RR and SERS techniques, in which the RR intensity increased with increasing Fe3+ concentration due to the observation of the RR effect of the phenanthroline-Fe2+ complex, whereas the SERS intensity increased with decreasing Fe3+ concentration due to the observation of the SERS effect of the uncomplexed phenanthroline. More importantly, the determination sensitivity was substantially improved in the presence of a SERS-active substrate, giving a detection limit as low as 0.001μg/mL, which is 20 times lower than the limit of the UV-vis and RR methods. Furthermore, the proposed SERS method was free from other ions interference and can be used quality and sensitivity for the determination of the city tap water.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ning Ma
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hoon Hwang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Dayu Jiang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
32
|
Cozar IB, Colniţă A, Szöke-Nagy T, Gherman AMR, Dina NE. Label-Free Detection of Bacteria Using Surface-Enhanced Raman Scattering and Principal Component Analysis. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1445747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ionuţ Bogdan Cozar
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Alia Colniţă
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Tiberiu Szöke-Nagy
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Institute of Biological Research Cluj-Napoca, Branch of the National Institute of Research and Development for Biological Sciences Bucharest, Cluj-Napoca, Romania
| | - Ana Maria Raluca Gherman
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Mosier-Boss PA. Review on SERS of Bacteria. BIOSENSORS-BASEL 2017; 7:bios7040051. [PMID: 29137201 PMCID: PMC5746774 DOI: 10.3390/bios7040051] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.
Collapse
|
34
|
Kuku G, Altunbek M, Culha M. Surface-Enhanced Raman Scattering for Label-Free Living Single Cell Analysis. Anal Chem 2017; 89:11160-11166. [DOI: 10.1021/acs.analchem.7b03211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gamze Kuku
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Mine Altunbek
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Mustafa Culha
- Department of Genetics and
Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| |
Collapse
|
35
|
Investigating the Origins of Toxic Response in TiO₂ Nanoparticle-Treated Cells. NANOMATERIALS 2017; 7:nano7040083. [PMID: 28398241 PMCID: PMC5408175 DOI: 10.3390/nano7040083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in sunscreens, cosmetics and body implants, and this raises toxicity concerns. Although a large number of reports claim that they are safe to use, others claim that they induce reactive oxygen species formation and can be carcinogenic. In this study, the origins of toxic response to TiO2 NPs were investigated by using Surface-enhanced Raman spectroscopy (SERS) which provides multidimensional information on the cellular dynamics at single cell level without any requirement for cell fixation. Three cell lines of vein (HUVEC), lung carcinoma (A549) and skin (L929) origin were tested for their toxic response upon exposure to 20, 40, 80 and 160 µg/mL anatase-TiO2 NPs for 24 h. It was demonstrated that the level of toxic response is both cell line and dose-dependent. L929 fibroblasts were the most resistant cell line to oxidative stress whereas in HUVEC and A549, cell lines collagen and lipid deformation were observed, respectively.
Collapse
|
36
|
Aybeke EN, Belliot G, Lemaire-Ewing S, Estienney M, Lacroute Y, Pothier P, Bourillot E, Lesniewska E. HS-AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1600918. [PMID: 28044439 DOI: 10.1002/smll.201600918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Studies on human norovirus are severely hampered by the absence of a cell culture system until the discovery of murine norovirus (MNV). The cell membrane domains called lipid rafts have been defined as a port of entry for viruses. This study is conducted to investigate murine norovirus binding on the mouse leukemic monocyte macrophage cell line. Lipid raft related structures are extracted from cells by detergent treatment resulting detergent-resistant membrane (DRMs) domains. The real-time polymerase chain reaction technique is performed to detect the viral genome, thereby the MNV binding on the DRMs. The interactions between MNV and DRMs are investigated by high-speed atomic force microscopy (HS-AFM) combined with surface-enhanced Raman spectroscopy (SERS). The inoculation of the virus onto cells results in the aggregations of detergent-resistant membrane domains significantly. The characteristic Raman band of MNV is found in inoculated samples. To be sure that these results are originated from specific interactions between DRM and MNV, methyl-β-cyclo-dextrin (MβCD) is applied to disrupt lipid rafts. The MNV binding on DRMs is precluded by the MβCD treatment. The cholesterols chains are defined as a key factor in the interactions between norovirus and DRMs. The authors conclude that the MNV binding involves the presence of DRMs and cholesterol dependent.
Collapse
Affiliation(s)
- Ece N Aybeke
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Gaël Belliot
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | | | - Marie Estienney
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Yvon Lacroute
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Pierre Pothier
- Laboratory of Virology, National Reference Center for Enteric Viruses, CHU F. Mitterrand, Dijon, F-21000, France
- AgroSup Dijon, PAM UMR A 02.102, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Bourillot
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, F-21000, France
| |
Collapse
|
37
|
Cao X, Shan Y, Tan L, Yu X, Bao M, Li W, Shi H. Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy. J Mater Chem B 2017; 5:5983-5995. [DOI: 10.1039/c7tb01212h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, a novel surface-enhanced Raman scattering (SERS) substrates based on hollow gold nanoflower (HAuNF)-decorated silicon wafers have been fabricated for detection and identification of the differentiation of bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| | - Yibo Shan
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| | - Lianqiao Tan
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xi Yu
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| | - Min Bao
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| | - Wei Li
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| | - Hongcan Shi
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou 225001
- China
| |
Collapse
|
38
|
De Bleye C, Dumont E, Dispas A, Hubert C, Sacré PY, Netchacovitch L, De Muyt B, Kevers C, Dommes J, Hubert P, Ziemons E. Monitoring of anatabine release by methyl jasmonate elicited BY-2 cells using surface-enhanced Raman scattering. Talanta 2016; 160:754-760. [PMID: 27591672 DOI: 10.1016/j.talanta.2016.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022]
Abstract
A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells.
Collapse
Affiliation(s)
- C De Bleye
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium.
| | - E Dumont
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - A Dispas
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - C Hubert
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - P-Y Sacré
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - L Netchacovitch
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - B De Muyt
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - C Kevers
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - J Dommes
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - Ph Hubert
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - E Ziemons
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| |
Collapse
|
39
|
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 2016; 141:5037-55. [PMID: 27479539 PMCID: PMC5048737 DOI: 10.1039/c6an01003b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
Abstract
Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed.
Collapse
Affiliation(s)
- Jack Taylor
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | - Anna Huefner
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK. and Sector for Biological and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Li Li
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | - Jonathan Wingfield
- Discovery Sciences, Screening and Compound Management, AstraZeneca, Unit 310 - Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Sumeet Mahajan
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
40
|
Dina NE, Muntean CM, Leopold N, Fălămaș A, Halmagyi A, Coste A. Structural Changes Induced in Grapevine (Vitis vinifera L.) DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study. NANOMATERIALS 2016; 6:nano6060096. [PMID: 28335224 PMCID: PMC5302626 DOI: 10.3390/nano6060096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
Abstract
In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L.) varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs) infrared (IR) laser pulse irradiation (λ = 1100 nm) are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS) signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG) and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA), eight different grapevine varieties were discriminated.
Collapse
Affiliation(s)
- Nicoleta E Dina
- National Institute for Research & Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania.
| | - Cristina M Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Babeş-Bolyai University, Faculty of Physics, Kogălniceanu 1, 400084 Cluj-Napoca, Romania.
| | - Alexandra Fălămaș
- National Institute for Research & Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania.
| | - Adela Halmagyi
- National Institute of Research and Development for Biological Sciences, branch Institute of Biological Research, Republicii Street 48, 400015 Cluj-Napoca, Romania.
| | - Ana Coste
- National Institute of Research and Development for Biological Sciences, branch Institute of Biological Research, Republicii Street 48, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
41
|
Aioub M, El-Sayed MA. A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles. J Am Chem Soc 2016; 138:1258-64. [DOI: 10.1021/jacs.5b10997] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mena Aioub
- Laser Dynamics Laboratory,
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Mostafa A. El-Sayed
- Laser Dynamics Laboratory,
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
42
|
|
43
|
Zhou H, Wang Q, Yuan D, Wang J, Huang Y, Wu H, Jian J, Yang D, Huang N, Haisch C, Jiang Z, Chen S. Early apoptosis real-time detection by label-free SERS based on externalized phosphatidylserine. Analyst 2016; 141:4293-8. [PMID: 27181439 DOI: 10.1039/c6an00606j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early apoptosis real-time detection by label-free SERS based on externalized phosphatidylserine usingin situsynthesized silver nanoparticles.
Collapse
|
44
|
Langer J, Novikov SM, Liz-Marzán LM. Sensing using plasmonic nanostructures and nanoparticles. NANOTECHNOLOGY 2015; 26:322001. [PMID: 26207013 DOI: 10.1088/0957-4484/26/32/322001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticles are widely used in various fields of science and technology as well as in everyday life. In particular, gold and silver nanoparticles display unique optical properties that render them extremely attractive for various applications. In this review, we focus on the use of noble metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single molecule detection. Sensors based on plasmon resonance shifts, as well as the use of surface-enhanced Raman scattering and surface-enhanced fluorescence, will be considered in this work.
Collapse
Affiliation(s)
- Judith Langer
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, E-20009 Donostia-San Sebastián, Spain
| | | | | |
Collapse
|
45
|
Muntean CM, Leopold N, Tripon C, Coste A, Halmagyi A. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:107-114. [PMID: 25748988 DOI: 10.1016/j.saa.2015.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/18/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
In this work the surface-enhanced Raman scattering (SERS) spectra of five genomic DNAs from non-cryopreserved control tomato plants (Lycopersicon esculentum Mill. cultivars Siriana, Darsirius, Kristin, Pontica and Capriciu) respectively, have been analyzed in the wavenumber range 400-1800 cm(-1). Structural changes induced in genomic DNAs upon cryopreservation were discussed in detail for four of the above mentioned tomato cultivars. The surface-enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. We have found, that DNA isolated from Siriana cultivar leaf tissues suffers the weakest structural changes upon cryogenic storage of tomato shoot apices. On the contrary, genomic DNA extracted from Pontica cultivar is the most responsive system to cryopreservation process. Particularly, both C2'-endo-anti and C3'-endo-anti conformations have been detected. As a general observation, the wavenumber range 1511-1652 cm(-1), being due to dA, dG and dT residues seems to be influenced by cryopreservation process. These changes could reflect unstacking of DNA bases. However, not significant structural changes of genomic DNAs from Siriana, Darsirius and Kristin have been found upon cryopreservation process of tomato cultivars. Based on this work, specific plant DNA-ligand interactions or accurate local structure of DNA in the proximity of a metallic surface, might be further investigated using surface-enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Cristina M Muntean
- National Institute for Research & Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania.
| | - Nicolae Leopold
- Babeş-Bolyai University, Faculty of Physics, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Carmen Tripon
- National Institute for Research & Development of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Ana Coste
- Institute of Biological Research, Branch of National Institute of Research and Development for Biological Sciences, Republicii 48, 400015 Cluj-Napoca, Romania
| | - Adela Halmagyi
- Institute of Biological Research, Branch of National Institute of Research and Development for Biological Sciences, Republicii 48, 400015 Cluj-Napoca, Romania
| |
Collapse
|
46
|
Guo H, Zhang Z, Xing B, Mukherjee A, Musante C, White JC, He L. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4317-24. [PMID: 25775209 DOI: 10.1021/acs.est.5b00370] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.
Collapse
Affiliation(s)
- Huiyuan Guo
- †Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zhiyun Zhang
- ‡Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- †Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Arnab Mukherjee
- §Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Craig Musante
- §Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Jason C White
- §Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Lili He
- ‡Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
47
|
Garg B, Sung CH, Ling YC. Graphene-based nanomaterials as molecular imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:737-58. [PMID: 25857851 DOI: 10.1002/wnan.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed.
Collapse
Affiliation(s)
- Bhaskar Garg
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chu-Hsun Sung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
48
|
Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, Yap LW, Premaratne M, Cheng W. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. NANOSCALE 2015; 7:2862-8. [PMID: 25599516 DOI: 10.1039/c4nr06429a] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We systematically investigated the size- and shape-dependent SERS activities of plasmonic core-shell nanoparticles towards detection of the pesticide thiram. Monodisperse Au@Ag nanocubes (NCs) and Au@Ag nanocuboids (NBs) were synthesized and their Ag shell thickness was precisely adjusted from ∼1 nm to ∼16 nm. All these nanoparticles were used as SERS substrates for thiram detection, and the Raman intensities with three different lasers (514 nm, 633 nm and 782 nm) were recorded and compared. Our results clearly show that: (1) the excitation wavelength discriminated particle shapes regardless of particle sizes, and the maximized Raman enhancement was observed when the excitation wavelength approaches the SERS peak (provided there is significant local electric field confinement on the plasmonic nanostructures at that wavelength); (2) at the optimized laser wavelength, the maximum Raman enhancement was achieved at a certain threshold of particle size (or silver coating thickness). By exciting particles at their optimized sizes with the corresponding optimized laser wavelengths, we achieved a detection limit of roughly around 100 pM and 80 pM for NCs and NBs, respectively.
Collapse
Affiliation(s)
- Pengzhen Guo
- Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang Province 150080, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wuytens PC, Subramanian AZ, De Vos WH, Skirtach AG, Baets R. Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy. Analyst 2015; 140:8080-7. [DOI: 10.1039/c5an01782c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Top-down patterned gold nanodome microchips are taken up by living cells and serve as a uniform and reproducible sensor for intracellular surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Pieter C. Wuytens
- Photonics Research Group
- INTEC Department
- Ghent University-imec
- Ghent
- Belgium
| | | | - Winnok H. De Vos
- Department of Molecular Biotechnology
- Ghent University
- Ghent
- Belgium
- Laboratory of Cell Biology and Histology
| | - Andre G. Skirtach
- Department of Molecular Biotechnology
- Ghent University
- Ghent
- Belgium
- Center for Nano and Biophotonics
| | - Roel Baets
- Photonics Research Group
- INTEC Department
- Ghent University-imec
- Ghent
- Belgium
| |
Collapse
|
50
|
Radziuk D, Moehwald H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys Chem Chem Phys 2015; 17:21072-93. [DOI: 10.1039/c4cp04946b] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Single molecule surface enhanced Raman scattering (SM-SERS) is a highly local effect occurring at sharp edges, interparticle junctions and crevices or other geometries with a sharp nanoroughness of plasmonic nanostructures (“hot spots”) for an analyte detection.
Collapse
Affiliation(s)
- Darya Radziuk
- Max-Planck Institute of Colloids and Interfaces
- Department of Interfaces
- Germany
| | - Helmuth Moehwald
- Max-Planck Institute of Colloids and Interfaces
- Department of Interfaces
- Germany
| |
Collapse
|